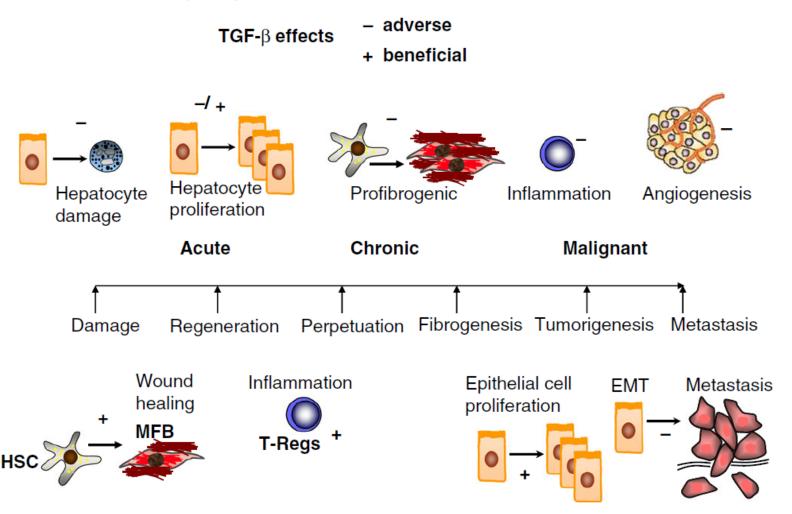
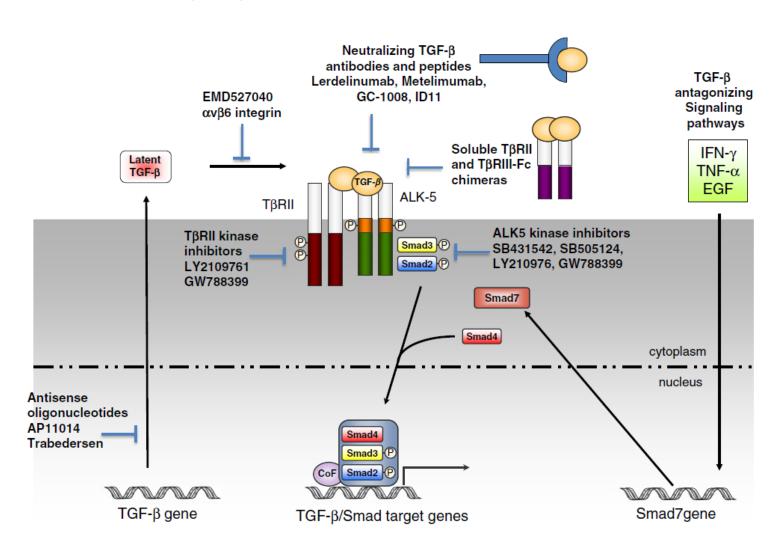


Co-financed by Greece and the European Union


Η ΥΠΕΡΕΚΦΡΑΣΗ ΤΟΥ SMAD7 ΠΡΟΣΤΑΤΕΥΕΙ ΤΟ ΗΠΑΡ ΑΠΟ ΤΗΝ ΤGF-B/SMAD ΜΕΣΟΛΑΒΟΥΜΕΝΗ ΙΝΟΓΕΝΕΣΗ

OVEREXPRESSION OF SMAD7 PROTECTS LIVER FROM TGF-B/SMAD-MEDIATED FIBROGENESIS

- <u>Γ. Γερμανίδης(1)</u>, Ν. Αργέντου(2), Ε. Αποστόλου(3), Θ. Βασιλειάδης(1), Β.Παναγιωτίδης(1), Π. Σιδεράς(3), ΑΕ Γερμενής(2), Μ.Σπελέτας(2)
- (1)ΠΓΝΘ ΑΧΕΠΑ, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, 54636 Θεσσαλονίκη
- (2) Τμήμα Ανοσολογίας και Ιστοσυμβατότητας Ιατρικής Σχολής Πανεπιστημίου Θεσσαλίας, 41110 Λάρισα
- (3)Κέντρο Ανοσολογίας και Μεταμοσχεύσεων, Ερευνητικό Βιο-Ιατρικό Ίδρυμα Ακαδημίας Αθηνών, 11527 Αθήνα


PROS AND CONS OF TRANSFORMING GROWTH FACTOR-B (TGF-B) SIGNALLING DURING THE PROGRESSION OF CHRONIC LIVER DISEASES

CELL TISSUE RES (2012) 347:245–256

TGF-B SIGNAL TRANSDUCTION PATHWAY AND TARGETS FOR THERAPEUTIC INTERVENTION

CELL TISSUE RES (2012) 347:245–256

BACKGROUND

- Smad7 is a dominant intracellular inhibitor of TGFb/Activin signal transduction.¹ Recent animal model studies have corroborated the protective function of Smad7 in attenuating TGF-β-mediated fibrosis in multiple organs, including liver, through manipulation of Smad7 expression.²⁻⁵
- This study was scheduled in order to determine whether Smad7 mRNA expression correlates with the expression of the molecules participating in the TGFβ/Activin signal transduction pathway in liver tissue of patients with chronic hepatic diseases and to seek correlations with the status of liver inflammation, fibrosis and the effect of treatment.

PATIENTS & METHODS (1)

- Liver biopsies obtained from 67 patients with chronic hepatic diseases including
- a) 18 with chronic HCV hepatitis (CHC);
- b) 19 with chronic HBV hepatitis at diagnosis (CHB/d);
- c) 4 with CHB after antiviral treatment and relapse (CHB/nr)
- d) 14 with CHB after antiviral treatment response and maintained remission for >5y (CHB/r);
- e) 12 with non alcoholic fatty liver disease (NAFLD).
- Three individuals submitted to liver biopsy due to a mild increase of aminotransferases but without liver architecture changes (served as controls).
- Demographic, clinicopathological and serological data of the analyzed subjects are summarized in **Table 1**.

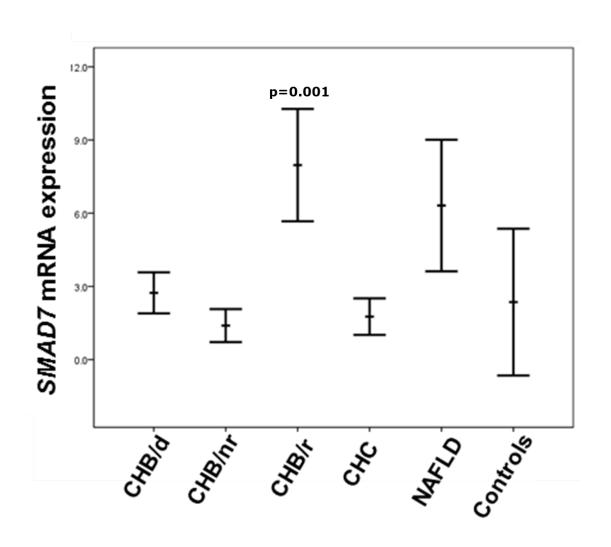
Table 1. Clinicopathological and serological data of the patients of the study

	Controls	CHB/d ^a	CHB/nr b	CHB/r°	CHC d	NAFLD ^e
No	3	19	4	14	18	12
Sex (M/F) f	2/1	9/10	2/2	11/3	14/4	7/5
Age (median, range)	61, 60-67	54, 24-64	57, 22-65	52, 23-60	41.5, 27-54	45, 21-71
AST ^g (U/μL), (median, range)	42, 36-45	51, 17-1969	62, 39-277	29.5, 15-51	45, 24-237	31.5, 19-70
ALT ^h (U/μL), (median, range)	32, 21-48	61, 15-1478	97.5, 70-332	31.5, 17-49	75, 32-213	54, 15-141
Inflammation grade ⁱ						
I-O i	3	_	_	1	_	3
I-1 i	_	4	_	10	2	4
I-2 ¹	_	8	3	3	10	5
I-3 ⁱ	_	5	1	_	6	_
I-4 i	_	2	_	_	_	_
Fibrosis (median, range) ⁱ	_	4.0, 0-6	4.5, 1-5	2.0, 0-3	3.0, 1-6	0.5, 0-2
HAI-score (median, range)	_	8.0, 1-15	8.0, 5-11	2.0, 0-7	7.0, 2-12	2.0, 0-5
Viral load (median, range)	_	4 Meq/mL (0.009-699)	0.10 Meq/mL (0-44.5)	0 Meq/mL (0-0.008)	0.70 Meq/mL (0.10-6.25)	0, 0-0

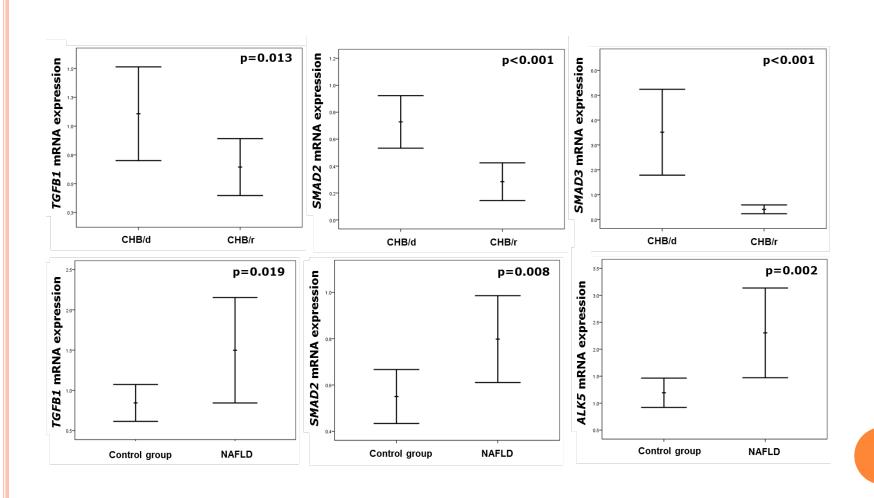
Abbreviations: ^a CHB/d, newly diagnosed patients with Chronic HBV hepatitis; ^b CHB/nr, CHB patients 6 months after treatment withdrawal and no virologic/biochemical sustained response, ^c CHB/r, CHB patients after antiviral treatment response and remission for >5y, ^d CHC, Chronic HCV hepatitis; ^e NAFLD, non-alcoholic fatty liver disease; ^f M, male; F, female; ^g AST, aspartate aminotransferase; ^h ALT, alanine aminotransferase; ^l Inflammation grade (I-0: without inflammation, I-1: minimal, I-2: mild, I-3: moderate and I-4: marked) and fibrosis

PATIENTS & METHODS (2)

- The mRNA levels of
- TGFBs (TGFB-1,-2,-3),
- activins (A,B,C,E), ALK4, ALK5,
- o SMAD molecules (SMAD-2, -3, -4, -7), and
- CTGF were determined in a quantitative reverse transcriptase PCR using SYBR-Green PCR Supermix (Invitrogen, UK).
- Primers were either designed or commercially obtained by SA Biosciences (USA). The sequences of the designed primers as well as the thermocycling conditions for all genes are summarized in **Table 2**.
- The beta-2-microglobulin (B2M) gene was used as a reference gene for sample normalization.
- Statistical analyses were performed using the SPSS ver. 18.0 software.


Table 2. Primers and PCR conditions for the amplification of the analyzed genes

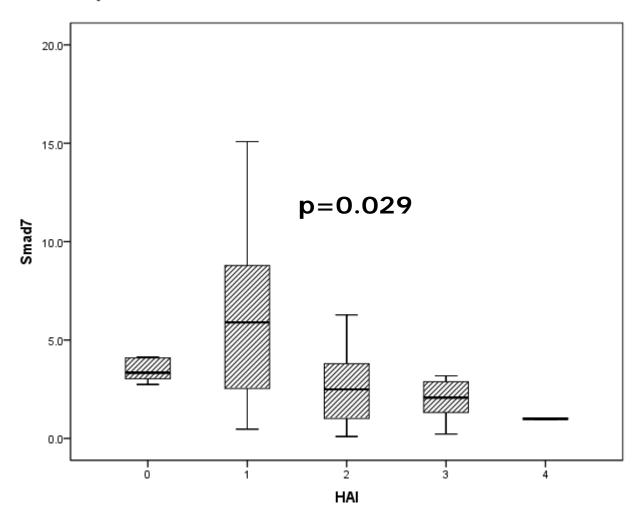
Gene	Primers	Sequence	PCR conditions
TGFB1	forward	commercially obtained by SABiosciences,	95°C for 10 min, followed by 40 cycles
	reverse	Cat No PPH00508A	(95°C for 15 s, 60°C for 60 s)
TGFB2	forward	5'- AgAgTgCCTgAACAA -3'	95°C for 2 min, followed by 40 cycles
	reverse	5'- CCATTCgCCTTCTgCTCTT -3'	(95°C for 15 s, 53°C for 15 s, 72°C for 15 s)
TGFB3	forward	commercially obtained by SABiosciences ,	95°C for 10 min, followed by 40 cycles
	reverse	Cat No PPH00531E	(95°C for 10 s, 58°C for 10 s, 72°C for 30 s)
ALK5	forward	commercially obtained by SABiosciences,	95°C for 10 min, followed by 40 cycles
	reverse	Cat No PPH00237B	(95°C for 15 s, 60°C for 60 s)
ALK4	forward	5'- CATTgACATTgCCCCgAATC -3'	95°C for 2 min, followed by 50 cycles
	reverse	5'- CgAgCAATCTCCCAATATACAAg -3'	(95°C for 15 s, 56°C for 40 s), and 72°C for 2 min
SMAD2	forward	commercially obtained by SABiosciences,	95°C for 10 min, followed by 40 cycles
	reverse	Cat No PPH01949E	(95°C for 15 s, 58°C for 15 s, 72°C for 15 s)
SMAD3	forward	commercially obtained by SABiosciences,	95°C for 10 min, followed by 40 cycles
	reverse	Cat No PPH01921B	(95°C for 10 s, 58°C for 10 s, 72°C for 30 s)
SMAD4	forward	commercially obtained by SABiosciences,	95°C for 10 min, followed by 40 cycles
	reverse	Cat No PPH00134B	(95°C for 15 s, 60°C for 60 s)
SMAD7	forward	commercially obtained by SABiosciences,	95°C for 10 min, followed by 40 cycles
	reverse	Cat No PPH01905B	(95°C for 15 s, 60°C for 60 s)
CTGF	forward	5'- ACCAATgACAACgCCTCCTg -3'	95°C for 10 min, followed by 40 cycles
	reverse	5'- TTgCCCTTCTTA ATgTTCTCTTCC -3'	(95°C for 15 s, 60°C for 60 s)
INHBA	forward	5'- AgCAgACCTCggAgATCATC -3'	95°C for 2 min, followed by 50 cycles
	reverse	5'- TTggggACTTTTAggAAgAgC -3'	(95°C for 15 s, 56°C for 40 s), and 72°C for 2 min
INHBB	forward	5'- AggAgCgCgTTTCCgAAATC -3'	95°C for 2 min, followed by 50 cycles
	reverse	5'- TggTTgCCTTCgTTggAgATg -3'	(95°C for 15 s, 56°C for 40 s), and 72°C for 2 min
INHBC	forward	5'- AgAgCTgCTTTgAggACTgC -3'	95°C for 2 min, followed by 50 cycles
	reverse	5'- AAgACgAgTCTggTTGATggTg -3'	(95°C for 15 s, 56°C for 40 s), and 72°C for 2 min
INHBE	forward	5'- gCAACAATTCCTggCgATACC -3'	95°C for 2 min, followed by 50 cycles
	reverse	5'- gCCCTCAATTTCCCCTCCAC -3'	(95°C for 15 s, 56°C for 40 s), and 72°C for 2 min
B2M	forward	commercially obtained by SABiosciences,	95°C for 10 min, followed by 40 cycles
	reverse	Cat No PPH01094E	(95°C for 15 s, 60°C for 60 s)

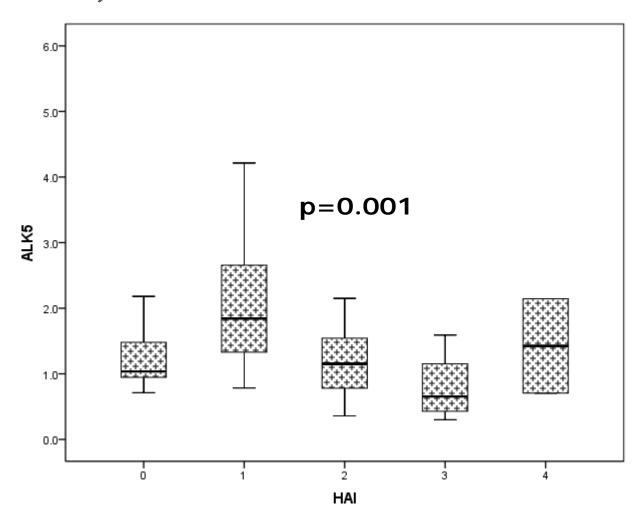

RESULTS(1)

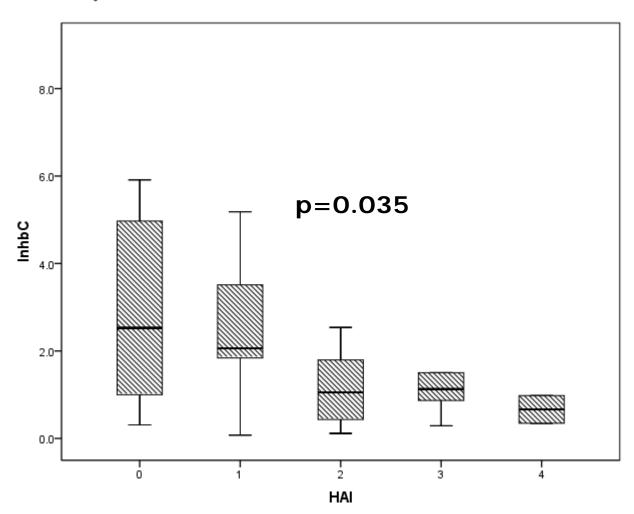
• Patients with CHB/r exhibited a significant increase of *SMAD7* mRNA expression (Fig.1A) and reduced levels of *TGFB1*, *SMAD2*, *SMAD3*, and *CTGF* (p=0.010) as compared to CHB/d patients (Fig.1B). This pattern of expression of *SMAD7* was similar with that observed in patients with NAFLD, a disease characterized rarely by a fibrotic process (Fig.1A).

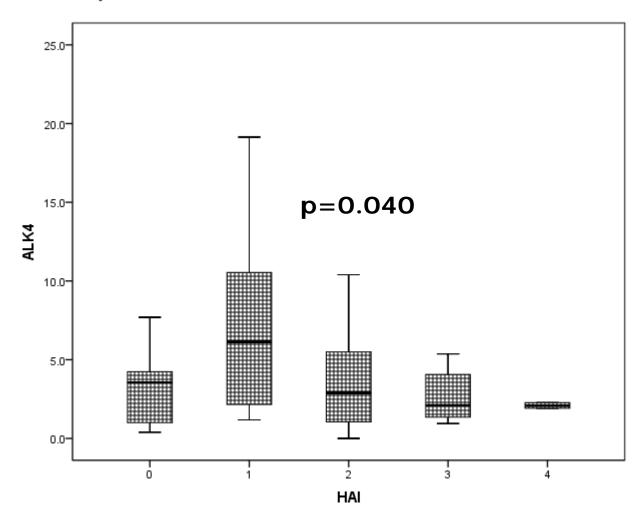
SMAD7 MRNA EXPRESSION

TGFb1 mRNA expression




RESULTS(2)


 SMAD7 expression was also found increased in NAFLD patients as compared to the control group including CHB/d, CHB/nr and CHC patients (p=0.001). Moreover, NAFLD patients were presented with elevated mRNA levels of TGFB1, SMAD2, ALK4, and SMAD4 (p<0.001) (Fig.1C).


RESULTS(3)

 Considering the intensity of inflammation, SMAD7, ALK5, INHBC, and ALK4 exhibited significant increased expression from absent to minimal inflammation with a gradual reduction as inflammation exacerbates (Fig.2).

CONCLUSION

- Our data indicate that in cases with low grade fibrosis, such as
- NAFLD (characterized by a lower incidence of severe liver complications and fibrosis progression) and
- CHB/r, SMAD7 overexpression might be a mechanism limiting the fibrogenic effect of TGFb suggesting that its induction may provide a target for novel therapeutic approaches.

REFERENCES

- 1. Nakao A et al. Nature 1997; 389: 622-626
- 2. Dooley S et al. Gastroenterology 2003;
 125: 178-191
- 3. Tahashi Y et al. Hepatology 2003; 35:
 49-61
- 4. Dooley S et al. Gastroenterology
 2008; 135: 642-659
- 5. Tang LX et al. PLoS One 2012;7: e31350. Epub 2012 Feb 7

Co-financed by Greece and the European Union

Thank you for your attention...