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Abstract The last decade’s research on the performance

of proton-exchange membrane direct ethanol fuel cells

(PEM-DEFCs) and anion exchange membrane direct eth-

anol fuel cells (AEM-DEFCs) is included in the present

review. Future research challenges are identified along with

potential strategies to overcome them. Pt-containing or Pt-

free PEM-DEFCs that use acid proton-exchange mem-

branes (typically Nafion type) exhibit relatively low per-

formance (i.e., the state-of-the-art peak power density is

110 mW cm-2 at 145 �C over 4 mg of total Pt loading),

while Pt-containing or Pt-free AEM-DEFCs that use low-

cost anion-exchange membrane have recently exhibited

better performance values (i.e., the state-of-the-art peak

power density is about 185 mW cm-2 at 80 �C over Au-

modified Pd catalysts supported on carbon nanotubes. The

required faster kinetics of the ethanol oxidation and espe-

cially for the oxygen reduction reaction seem to be satisfied

from one side by the AEM-DEFCs and from the other by

PEM-DEFCs only if working at intermediate temperature

values ([150 �C). Moreover, new possibilities of using less

expensive metal catalysts (as silver, nickel, and palladium)

are opening mainly for AEM-DEFCs and the last years

for PEM-DEFCs too. Finally, it is worth to be noticed that

the best value ever reported (peak power density is

360 mW cm-2 at 60 �C) has been obtained in a very

promising alkaline-acid direct ethanol fuel cell (AA-DEFC).

Keywords PEM-DEFC � AEM-DEFC � Ethanol

electrooxidation � Oxygen reduction Pt-based electrodes �
Pt-free electrodes � Pd-based electrodes

1 Introduction

Fuel cells technology is nowadays shifting from the fun-

damental research to real-world applications. Polymer

electrolyte fuel cells (PEFCs) or solid polymer fuel cells

(SPFCs) running on hydrogen in acidic environment were

first used by NASA’s Gemini program in the 1960s to

provide with auxiliary power requirements in the space

vehicles and drinking water for the astronauts [1]. They

have been proved to represent an efficient energy conver-

sion system and are currently being developed for many

applications such as automotive and transportation in

general, portable devices and auxiliary power units

(APUs), because of the important improvements achieved

in the field of electrocatalysis in the past decade [2–5]. In

the last few years, the interest on alkaline fuel cells (AFCs)

also increased, mainly due to more favorable oxygen

reduction and fuel oxidation reactions with a variety of

non-noble metal catalysts (e.g., Fe, Co, and Ni). AFC

technology was the first fuel cell technology employed in

applications such as the NASA’s Apollo and Space Shuttle

flights [6], while among the whole family of fuel cells,

AFCs exhibit the best electrode performance when running

on pure hydrogen and oxygen under similar operating

conditions. A comparison of PEMFC versus AFC tech-

nologies using H2 as a fuel is provided by McLean et al.

[7]. However, a serious problem of AFCs, the progressive

carbonation of the alkaline electrolyte due to carbon

dioxide (CO2) from air or the oxidation product of the fuel,

hindered its further development. This problem was
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addressed mainly by the application of alkaline anion-

exchange membranes (AEMs) [8–14].

Alkaline AEMs conduct hydroxide ions (OH-) and rep-

resent the high pH equivalent to proton-exchange mem-

branes (PEMs) employed in the acidic-type PEMFCs.

Quaternary ammonium groups are used as anion-exchange

groups in these materials. However, due to their low stability

in highly pH (strongly alkaline) media [15], only a few

membranes have been evaluated for use as AEMs in alkaline

SPFCs. Yu and Scott [13] employed Solvay’ MORG-

ANE�—ADP membrane that belongs to another important

class of membranes made from perfluorinated backbone

polymers. This commercial AEM consisted of a cross-linked

fluorinated polymer carrying quaternary ammonium as

exchange groups, and the electrochemical performance of

such an AEM-based DMFC was examined. However, the

quaternary ammonium conductive groups may decompose

in concentrated alkaline solution following the Hofmann

degradation reaction [16], thus: it is crucial how these

exchange groups are attached to the polymer backbone,

especially if one considers that, during fuel cell operation,

the pH may increase up to 14. Membranes with a C–H

backbone are also of interest, considering their manufac-

turing and availability. According to Matsuoka et al. [10], an

alcohol penetrating the AEM may protect it from a peroxide

attack. They used a polyolefin backbone chain from Tok-

uyama (Japan), on which was fixed tetraalkylammonium

groups. In the literature most of the AEMs are provided by

Tokuyama Corporation [17, 18]. Scott’s group, however, has

recently reported striking advances in the field of AEM-

based PEFCs operating on hydrogen using radiation grafted

polymers. Mamlouk et al. [19, 20] studied radiation grafted

polymers as an AEM for an alkaline DMFC, which exhibited

enhanced oxygen reduction reaction (ORR) kinetics

and superior performance and output. Moreover, high power

output and durability cross-linked composite anion

exchange membranes have been prepared and tested by Zhao

et al. [21] and Lin et al. [22] using linear polymer and poly

(ionic liquids), respectively.

AEM-based PEFCs have been attracting attention

worldwide, mainly due to the prospect of using Pt-free

electrocatalysts. Several advantages have been identified

and reported over conventional AFCs: (i) there is no pre-

cipitated carbonate, since there is no mobile cation present,

(ii) no electrolyte weeping, (iii) potentially simplified water

management; in alkaline AEM-based SPFCs, water is

produced at the anode and consumed at the cathode, and

(v) potentially reduced corrosion [23]. DEFCs operating in

alkaline (AEM) medium exhibit several advantages also

over the ones operating in an acidic (PEM) medium, such

as: (i) the ORR is faster under alkaline conditions than

acidic ones, thus introducing lower activation overpoten-

tials; (ii) non-precious metal catalysts can be used

effectively; (iii) due to the less corrosive environment, a

number of cheap materials for the cell components can be

employed; and (iv) EtOH crossover is less severe in AEM-

based DEFCs, because the crossover takes place in the

opposite way to the OH- transport.

Concerning the fuel, hydrogen is the most suitable from

the electrochemical and specific energy (energy per gram

of fuel) point of view. However, the use of pure hydrogen

has posed numerous storage and processing challenges that

have inhibited its widespread use, especially in portable

applications. Compared to the use of H2 in fuel cells, liquid

alcohol fuels are easy to store and transport. The direct

oxidation of alcohol will also eliminate a heavy reformer

needed to produce H2 from liquid or gaseous carbonaceous

fuels. Therefore, the use of H2-rich and readily available

alcohols, such as methanol (MeOH) [24–27] and ethanol

(EtOH), as a fuel source has also attracted the interest of

the fuel cells research community. EtOH, which is easily

derived in large quantity via fermentation of biomass, is a

green, sustainable, carbon–neutral fuel. Additionally, in

comparison to MeOH, EtOH is non-toxic and its boiling

point is relatively higher. Ideally, the electrochemical

EtOH oxidation reaction (EOR) would produce twelve

electrons per molecule of ethanol, whereas its energy

density is 8.0 kWh kg-1 (6.3 kWh L-1). In this respect,

fuel cells running on EtOH—direct EtOH fuel cells

(DEFCs) represent a promising choice for sustainable

energy conversion, and have been drawn a great deal of

attention [28–43].

In terms of the catalysts employed in DEFCs, Pt and Pt-

based catalysts are commonly used. In either acidic or

alkaline media, the most extensively investigated anode

catalysts, contain binary and ternary combinations based

almost exclusively on PtRu and PtSn (see e.g., [4, 41, 44,

45]); adsorbed CO, however, resulting from EOR, poisons

the electrode and reduces the activity of platinum [46]. The

contribution of alloyed and non-alloyed platinum and tin to

the EOR on PtSn/C catalysts for DEFCs was also evaluated

via a simple model [47], that can predict the performance

of a single DEFC by varying the Sn content and/or the

degree of alloying of PtSn/C catalysts used as the anode

material. Furthermore, EtOH cannot be totally electro-

oxidized to CO2 at temperature values below 100 �C, due

to the difficulty in breaking the C–C bond in the EtOH

molecule. This represents the major challenge in DEFC

research [48].

Until now, electrocatalysts that provide sufficiently

complete oxidation of EtOH to CO2 in acid electrolytes

(releasing 12 electrons per EtOH molecule) have remained

unknown. Usually, the electrode process terminates with

the formation of acetaldehyde (2e-) or acetic acid (4e-)

[49–52]. However, recently it was demonstrated that the

use of ternary PtRhSnO2/C electrocatalysts—synthesized

120 J Appl Electrochem (2013) 43:119–136

123



by depositing Pt and Rh atoms on carbon-supported tin

oxide nanoparticles—could lead directly to the oxidation of

EtOH toward CO2 in acidic media [53–55]. Very recently,

De Souza et al. [42] reported that Pt-Etek/C presented

different activity for the EOR depending on the support. Pt/

C on carbon cloth was seen that facilitates the C–C bond

cleavage of the EtOH molecule via a new ATR–FTIR setup

introduced in [42] for in situ spectro-electrochemical

studies in non-reflective and rough electrodes.

In an alkaline environment, it was shown [56] that an

efficient oxidation of EtOH with the release of no less than

8–10 e- per EtOH molecule is possible if carbon-supported

nanosized RuM (M = Ni, Co, Fe) are used as anodic cata-

lysts. Fang et al. [57] indicated that the C–C bond cleavage of

EtOH on Pd occurred at NaOH concentrations lower than

0.5 M (pH values B13), an observation which was also

supported via density functional theory (DFT) calculations

[58]. However, important problems to be solved to ensure the

efficiency of EtOH liquid fuel in alkaline media are: (a) the

use of a cathode catalyst tolerant to EtOH and (b) the choice

of an ion exchange membrane with a high electrical con-

ductivity and good separation properties for EtOH.

The durability of the state-of-the-art catalyst employed

in PEM-based DEFC research (e.g., PtSn/C) has been

scarcely analyzed [59–61]. Hsieh et al. [60] investigated

the electrochemical activity and durability of nanosized Pt–

Sn binary catalysts on carbon nanotube grown on carbon

paper (CNT/CP) composites. Accelerated durability test

(ADT) was performed to accelerate the degradation of the

Pt/C and PtSn/C catalysts by continuously cycling the

potential in acidic environment in the work of Su et al.

[61]. The potential cycling was conducted for 500 cycles,

and the electrochemical stability of the electrocatalysts was

studied by the linear sweep voltammetry after the ADT.

For the state-of-the-art Pd-based electrocatalysts for the

oxidation of alcohols in alkaline media Bianchini and Shen

[2] discuss on the catalyst lifetime among other research

areas, whereas in a very recent study, Li and Zhao [40]

reported on the durability test of an AEM-based DEFC that

is composed of a Pd/C anode, an A201 membrane, and a

Fe–Co cathode. They have shown that the major voltage

loss occurs in the initial discharge stage, but the loss

becomes smaller and more stable with the discharge time.

It was also reported that the irreversible degradation rate of

the fuel cell is around 0.02 mV h-1, which is similar to the

degradation rate of conventional PEM-based DMFCs.

Furthermore, the performance loss of the AEM-DEFC was

mainly attributed to the anode degradation, while the per-

formance of the cathode and the membrane remains rela-

tively stable. Nevertheless, the chemical stability of the

catalysts over longer periods of time (fuel cell durability

studies) is an important issue that still needs to be con-

sidered and is suggested for further investigations.

EtOH crossover is another major obstacle for DEFC

commercialization, leading to a serious decrease in the

cathode performance. Several studies have examined EtOH

crossover [30, 35, 43, 51, 62], and its effect on mixed

potential formation in DEFCs [32, 33]. Water uptake and

transport properties, including diffusivity, electro-osmotic

drag coefficient, and the mass transfer coefficient of water

at the cathode catalyst were also examined for AEMs [63].

It was recently shown that in low temperature PEM-

DEFCs, oxygen is also permeating from cathode and is

able to chemically oxidize EtOH at the anode [36]. The

same group, reported distribution of products of EtOH

electrooxidation on Pt, PtRu, and PtSn as a function of fuel

cell voltage (under load) and temperature for the first

time [64].

Song and Tsiakaras [45] provided with a brief review of

the research and development of PEM-DEFCs up to 2005,

including (a) development of anode electrocatalysts for

EOR, (b) MEA preparation procedure, (c) single DEFC

performance, and (d) EtOH crossover phenomena, whereas

Antolini [44] reviewed catalysts tested as anode and cath-

ode materials also for PEM-DEFCs, with particular atten-

tion on the relationship between the chemical and physical

characteristics of the catalysts (catalyst composition,

degree of alloying, and the presence of oxides) and their

activity for the EOR. In a recent review, Antolini and

Gonzalez [65] provided with a short review that examines

the effects of Pt–Sn structural characteristics, such as

degree of alloying and Sn oxidation state, depending on the

synthesis method, on the electrocatalytic activity for

MeOH and EtOH oxidation. Very recently, Tsiakaras and

co-workers [4] provided with the state-of-the-art of low-

and non-Pt electrocatalysts (anodes and cathodes) for

PEM-based fuel cells running on H2, MeOH, or EtOH.

The progress achieved from 2005 to 2009 in the design

of Pd-based electrocatalysts for the oxidation of alcohols in

alkaline media is reviewed by Bianchini and Shen in [2].

Particular attention was dedicated to discuss the important

role played by the Pd nanostructure and by the support

material in governing the kinetics and selectivity of the

oxidation process as well as the catalyst lifetime, whereas

reviews of past research on the development of AEM-based

direct alcohol fuel cells (DAFCs) were recently presented

[66–69]. Antolini and Gonzalez [66] provided with an

overview of catalysts and membranes for AEM-DAFCs

and of their testing when fueled with methanol, ethanol, or

ethylene glycol. Yu et al. [67] reviewed principles and

mechanisms of alcohol oxidation and oxygen reduction in

AEM-DAFCs. Different types of catalysts from conven-

tional precious metal catalyst of Pt and Pt alloys to other

lower cost Pd, Au, and Ag metal catalysts were compared.

Non-precious metal catalysts, and lanthanum, strontium

oxides and perovskite-type oxides were discussed, and
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membranes like the ones used as polymer electrolytes and

developed for AEM-DAFCs were also reviewed. Zhao

et al. [68] reviewed past research on the development of

AEM-DEFCs including the aspect of catalysis, AEMs, and

single cell design and performance testing.

The present review provides a brief state-of-the-art of Pt

and Pt-free PEM, and AEM-DEFCs and a comparison

between their performance characteristics. Key references

to the latest scientific literature and reviews are included,

along with a brief overview of principles and mechanisms

characterizing these electrochemical converters. In Sect. 2

the technological and economic barriers/challenges for

PEM- and AEM-based DEFCs are listed, whereas in Sect.

3 the principles and mechanisms of acid and alkaline

DEFCs are described. Next, in Sects. 4 and 5, the single

fuel cell’s performance and catalytic activity data are also

reviewed.

2 Economic and technological challenges for PEM-

and AEM-DEFCs

The U.S. Department of Energy (DoE) and its Fuel Cell

Technologies Program disseminated a 2011 report con-

cerning automotive fuel cells. Their cost was reduced by

more than 82 % since 2002 (from $275/kW in 2002 to

$49/kW in 2011, based on projections to high-volume

manufacturing—500,000 units per year) [70]. These cost

reductions reflect numerous individual advances in key

areas, including the development of durable membrane

electrode assemblies (MEAs) with low platinum group

metal (PGM) content [71]. The balance of plant (includes

assembly and testing) cost represents almost 55 %,

whereas the stack cost represents 45 % of the total system

cost. Here, the platinum cost represents about 30 % of the

stack cost, assuming a Pt price of $35 per gram. We have to

note, however, that the last 12 months (up to July 2012)

average price for Pt is 46 Euro per gram. Table 1 [72]

shows a list with average prices (of the last 12 months) of

the metals employed in fuel cells electrocatalysis.

When focusing on portable appliances and consumer

electronics equipment, however, where DAFCs are con-

sidered as the systems of choice, the percentage of the

catalyst cost contribution on the total system cost may be

significantly higher due to higher amounts of precious

metals used. Thus, despite the fluctuating metal market

prices, it is clear that every improvement in electrochem-

ical kinetics will eventually be reflected in lower stack and

fuel cell system cost. In this respect, the maximum mass

specific power density (max-MSPD), which will be dis-

cussed in Sect. 4 with respect to several PEM- and AEM-

DEFC power density data, is of foremost importance.

Hereafter, barriers/challenges for both technologies are

listed.

2.1 PEM-based DEFCs

• The cost of the system, not only because a considerable

amount of Pt-based catalysts at both the anode and

cathode is required, but also because acid electrolyte

membranes (e.g., Nafion, and Nafion-based) are

expensive.

• The incomplete oxidation of EtOH to acetaldehyde and

acetic acid that liberates only 2 and 4 electrons,

respectively, and greatly reduces the Faradaic effi-

ciency of the fuel cell.

• The kinetics of the EOR in acid media is slow, leading

to a large activation loss.

• EtOH crossover from the anode to the cathode within

the PEM that leads to a parasitic current generation

(mixed potential formation).

• The use of a cathode catalyst tolerant to EtOH.

• The durability of the state-of-the-art catalyst employed

(e.g., PtSn/C) has been scarcely analyzed. Thus, the

chemical stability of the catalysts over longer periods of

time is an issue of foremost importance that still needs to

be considered and is suggested for further investigations.

2.2 AEM-based DEFCs

• The complete oxidation of EtOH to CO2 remains a

challenging issue (the most important one). Nowadays,

Pd-based catalysts show appreciable performance

toward the EOR in alkaline media. However, EOR is

incomplete and EtOH is selectively oxidized to acetate.

• The activity and durability of the Pd catalyst. The

activity and durability of the Pd catalyst for the EOR in

Table 1 Average prices (Euros per gram) for the last 12 months of

the most used metals in fuel cells electrocatalysts [72]

Metal Average price (Euros per gram)

Pt 46.0

Rh 44.0

Au 42.5

Ir 31.0

Pd 19.0

Re 4.8

Ru 3.0

Ag 0.72

Co 0.02

Ni 0.01

Sn 0.01

Cu 0.00612

Al 0.00152
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alkaline media needs to be further enhanced, and the

design of multi-metallic electrocatalysts is essential.

• A challenging issue in the cathode catalyst material is

how to enhance the catalytic activity of non-Pt catalysts,

making them comparable to that of Pt. For example, so

far, Ag-based cathode catalysts for the ORR in alkaline

media have a larger particle size than Pt-based catalysts

do. Hence, a target in the cathode electrode is to develop

new synthesis methods that can lead to high electro-

chemical surface area Ag-based catalysts.

• A significant improvement is needed to upgrade the

OH- conductivity, chemical, mechanical, and thermal

stability of the existing AEMs. The OH- conductivity

can be improved by increasing the amount of charged

groups in the membrane; however, there is a trade-off

with the mechanical properties. A loss of the mechan-

ical properties by promoting excessive water uptake is

the result of increasing the concentration of the charged

groups. The thinness of the AEM is an important

requirement related to mechanical stability; to keep

good mechanical stability when immersed in water, an

AEM as thin as *50 lm is necessary. AEM suffers

also of a poor chemical stability in alkaline media,

stemming from the hydroxide attack on the cationic

group. The result of this degradation is an important

loss in the number of anionic exchange groups, and a

decrease of the ionic conductivity.

• Like the AEM, both the ionic conductivity and the

thermal and chemical stability of the nowadays ionomers

present within the catalyst layers are still low. Hence,

significant work is needed to enhance the ionic conduc-

tivity and stability of ionomers. Recently, Mamlouk et al.

[19, 73] studied the effect of ionomer content on the cell

performance and the effect of catalyst layer thickness

without ionomer on cell performance.

Water transport management is a key issue for both PEM-

and AEM-DEFCs. The appropriate management of this

process is necessary so as to avoid either cathode flooding

(high water crossover) or a high cathode activation loss

(too low water crossover). EtOH transport management is

another key issue for both PEM- and AEM-DEFCs. Note

that in AEM-DEFCs, as the cathode catalyst (non-Pt) is

generally tolerant to EtOH oxidation, the mixed potential

problem as a result of fuel crossover is not as serious as in

PEM-DEFCs. Furthermore, the effect of the EtOH cross-

over in AEM-DEFCs is suppressed; the EtOH crossover

within the membrane takes place in the opposite way to the

OH- transport, thereby diminishing that detrimental pro-

cess. EtOH crossover, adversely affects fuel efficiency (i.e.,

energy density) due to the wasteful oxidation on the cath-

ode side leading to a mixed potential formation [32, 33].

This mixed potential on the cathode causes a decrease in

DEFC voltage, and eventually results in decreased fuel

efficiency, thereby lowering the energy density of the

system. Low EtOH flow rates and low concentrations

enable very high fuel efficiencies. However, mass transport

limitations prevent the attainment of useful power densities

under those conditions that enable high fuel efficiencies

[74]. Moreover, the electro-oxidation reaction of EtOH in

acid PEM-based DEFCs evolves through multiple steps

resulting in the production of mainly acetic acid and

acetaldehyde [49]. On the other hand, the EtOH electro-

oxidation in alkaline AEM-based DEFCs evolves through a

simpler path producing less acetic acid in the form of ions

(CH3COO-) and favoring the formation of acetate [75].

This results in fuel utilization much higher than the one

achieved in the PEM-based DEFCs, better cell perfor-

mances, and a higher energy density.

An important drawback, however, of the AEM-based

DEFC is the formation of a pH gradient with time (more

alkaline at the cathode, more acidic at the anode) that will

cause the occurrence of an electromotive force in opposition

to the electromotive force of the reaction itself [76, 77]. In

case of a high pH gradient, this will strongly deteriorate the

polarization performance. Wang et al. [76] discussed in their

study this thermodynamic disadvantage for an AEM-based

DMFC. As reported, the significant reduction of activation

overpotential in alkaline media can compensate for the

voltage loss due to the thermodynamic effects associated to

the pH gradient. Furthermore, Aricò et al. [77] mentioned in

their work that recirculation of the liquid electrolyte through

the device not only enhances conductivity but also signifi-

cantly reduces the pH gradient.

Nevertheless, PEM- and AEM-DEFCs are attracting

increasing interest, as electrochemical energy converters for

portable appliances; as a result there exist a blossoming research

activity focused on PEM- and AEM-DEFCs (see Fig. 1).

Fig. 1 Publications for proton-exchange membrane and alkaline

membrane fuel cells running on EtOH from the WEB of knowledge

from the year 2005 to 2012
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It can be seen that for a period of 5 years (2007–2011)

an average of almost 30 research papers per year on PEM-

DEFCs appeared, reflecting the constant interest of the

research community in this type of DEFC, mainly due to

the reliability of the existing Nafion membranes and to the

interest toward new catalyst developments for breaking the

C–C bond and fully oxidize the EtOH molecule to CO2. On

the other hand, the scarcity of reliable and cost competitive

AEMs has certainly contributed to moderate the interest of

many researchers in Pd-based electrocatalysts and AEM-

DEFCs. With the advent, however, of efficient and com-

mercially available AEMs, together with the progress

achieved in the development of new and more active cat-

alytic systems, the situation has changed and the research

on anode and cathode catalytic architectures for AEM-

DEFCs increases steadily from 2005 to 2012 (see Fig. 1).

3 Principles and mechanisms of a direct ethanol

fuel cell

In a PEM-DEFC, EtOH together with water is supplied to

the anode, where it undergoes electro-oxidation. Figure 2a

shows a schematic principle of a proton-conducting DEFC

with a mixture of EtOH and water circulating in the anode,

and oxygen in the cathode, whereas Fig. 2b shows a

schematic principle of an AEM-DEFC with a mixture of

EtOH and water circulating in the anode, and oxygen in the

cathode. Electrons are subsequently transferred via the

external circuit to the cathode, where they are utilized in

the ORR process. The reactants and mobile species in the

polymer electrolyte are intimately tied to its pH.

At low pH levels (acidic environment), water is con-

sumed in the anode process together with EtOH, while

protons are transported from the anode electrocatalytic

layer across the electrolyte and consumed in the cathode

process to form water. This is the case for the proton-

conducting membrane DEFC.

In high pH systems (alkaline environment), on the other

hand, the effect is reversed: water is consumed on the cath-

ode side in the ORR process, forming hydroxyl ions. These

ions are now transported across the cell to the anode, where

they are consumed together with EtOH fuel to form mainly

acetaldehyde and acetic acid and to a lesser extend CO2.

3.1 Ethanol oxidation reaction

3.1.1 EOR in acidic media

Many different Pt-based anode catalysts such as PtRu and

PtSn have been investigated and reported to increase the

EOR activity (see e.g., [4, 45]). Among these binary and

ternary alloy catalysts, PtSn catalysts are state-of-the-art

catalysts for the EOR. EtOH electrooxidation over PtSn

catalysts was described in [44, 45]. Li et al. [78] deter-

mined the rate-determining step of PtSn/C in different

potential regions. The dissociative adsorption of EtOH on

the Pt surface is the main step in the lower potential region:

Pt þ CH3CH2OH! Pt� CH3CH2OHð Þads ð1Þ

Pt� CH3CH2OHð Þads! Pt� CH3CHOHð Þadsþ Hþ þ e�

ð2Þ

Pt� CH3CHOHð Þads! Pt� CH3CHOð ÞadsþHþ þ e�

#
CH3CHO ð3Þ

For the higher potential region, the rate-determining step

is the activation of H2O oxidation to OH-. The mechanism

in the higher potential region can be described by the

following equations:

Sn þ H2O! Sn� OHads þ Hþ þ e� ð4Þ

Pt� CH3CHOð Þadsþ OHads ! Pt þ CH3COOH þ Hþ

þ e�

ð5Þ

(a) (b)

Fig. 2 The operational

principle of a DEFC with: an

anion-conducting (a) and a

proton-conducting (b) polymer

electrolyte
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Pt� COads þ Sn� OHads ! Pt þ Sn þ CO2 þ Hþ þ e�

ð6Þ

OH species can further react with the adsorbed

acetaldehyde molecules to produce acetic acid [79].

Moreover, based on the bifunctional mechanism and the

ligand effect [80] some researchers have also shown that

SnO2 can provide O-species for the oxidation of the CO

that is produced on the Pt active sites during the

dissociative adsorption of EtOH [81, 82]. The role of

SnO2 during the EOR activity of the PtSn catalysts has

been proposed in [65, 83]. The authors showed that SnO2

can increase the Pt surface area or help remove the

adsorbed intermediates. SnO2 can improve Pt for the quick

dissociation of EtOH in higher potential region. However,

there may be too many oxides on the alloy surface to block

the active sites on the Pt particles, which would deteriorate

the electrochemical activity [84].

3.1.2 EOR in alkaline media

The mechanism of electrochemical oxidation of EtOH in

alkaline systems was investigated on polycrystalline gold

electrodes [85, 86] and on palladium catalysts [87, 88]. For

EtOH oxidation on palladium, the formation of acetalde-

hyde and/or acetic acid was reported [89, 90], and takes

place according to the following steps:

Pdþ OH� ! Pd� OHads þ e� ð7Þ
Pd þ CH3CH2OH! Pd� CH3CH2OHð Þads ð8Þ

Pd� CH3CH2OHð Þadsþ 3OH�

! Pd� CH3COð Þadsþ 3H2O þ 3e� ð9Þ

Pd� CH3COð Þadsþ Pd� OHads

! Pd� CH3COOH þ Pd ð10Þ

Pd� CH3COOH þ OH� ! Pd þ CH3COO� þ H2O

ð11Þ

The rate-determining step is the one described in

Eq. [10]. There, the adsorbed ethoxy intermediate is

removed by adsorbed hydroxyl ions to form acetate. The

mechanism of EtOH electrooxidation on a palladium

electrode in alkaline solution with various concentrations

of NaOH (0.01–5 M) was also studied in [57, 58]. The

same research [57] suggested that the EtOH oxidation to

CO2 on Pd in moderate alkaline media either proceeds with

no intermediacy of COads (non-poisoning path) or by fast

oxidation of weakly adsorbed CO by the abundant OHads
-

species. The latter eventuality is less likely in view of a

specific study of CO electrooxidation on either Pt or Pt-

based electrocatalysts [91], where it was shown that the CO

coverage on Pt is larger than that on Pd but the

overpotential for CO oxidation is higher on Pd than on Pt.

3.2 Oxygen reduction reaction

3.2.1 ORR in acidic media

The ORR in acidic media has been studied extensively.

Effects of different pH, electrolytes, temperature, and pre-

conditioning of electrodes on ORR have been investigated.

The most accepted mechanism of ORR was first proposed

by Damjanovic et al. [92, 93]. They suggested that the

ORR proceeds along two parallel reaction paths with

comparable rates. One is the direct four-electron transfer

reduction from oxygen to water; the other is the formation

of hydrogen peroxide as an intermediate in a two-electron

transfer reaction.

Using Pt-based electrocatalyst the oxygen reduction

intermediate species share the electrode’s surface with

platinum oxide and/or hydroxide compounds as well as

with other adsorbed species. The formation of platinum

oxide and/or hydroxide compounds shows an irreversible

behavior and so the performance of a Pt electrode may also

depend on this. The recent state-of-the-art for low-Pt and

Pt-free electrocatalysts for ORR, reviewed by Palacin and

co-workers [94], revealed that the research community

adopted many different methods to reduce Pt loading, such

as using nanoparticles on various supports, preparing

Pt-monolayers supported on suitable metal nanoparticles,

1-D, 2-D, and 3-D nanostructures, etc.

Table 2 reports some recent results [95–97] of low-Pt

cathode electrocatalysts for the ORR in the presence and in

the absence of EtOH, characterized with the rotating disk

electrode (RDE) technique. In the absence of EtOH, Pt-M

oxides exhibited relatively good mass activity toward ORR

except in case of PtCeOx/MWCNT. In the presence of

EtOH, despite the fact that there were no current peaks

associated to the oxidation of EtOH, a higher overpotential

(in comparison to the absence of EtOH) was observed, with

Pt0.7–Co0.3/MWCNT to be more tolerant compared to the

other catalysts.

Table 2 Mass activities mA lgPt�1ð Þ (@ 0.8 V, 1,600 rpm) for oxy-

gen reduction reaction in acidic media over platinum-based electro-

catalysts in the presence and in the absence of EtOH

Catalysts Mass activity

mA lgPt�1ð Þ
Mass activity

mA lgPt�1ð Þ
Ref.

In the absence

of ethanol

In the presence

of ethanol

Pt0.5Sn0.5Ox/Ca 0.072 0.024 [95]

Pt0.7Ni0.3Ox/Ca 0.072 0.015 [95]

Pt0.6Co0.4Ox/C 0.072 0.013 [95]

Pt0.7Co0.3/MWCNT 0.014 0.002 [96]

PtCeOx/MWCNTa 0.003 0.001 [97]

a 1,200 rpm

J Appl Electrochem (2013) 43:119–136 125

123



Concerning the Pt-free ORR electrocatalysts, one of the

major challenges is the poor performance compared to the

Pt-based ORR electrocatalysts for PEM-DEFCs. In Table 3

some of Pt-free electrocatalysts [98–102] that have been

examined under the RDE toward ORR in the presence and

in the absence of EtOH are included.

The Ru/C presents the highest kinetic current density

1.8 mA cm-2 versus RHE, which in the presence of EtOH

does not change. The performance of a DEFC based on a

20 % Ru/C cathode (5 mW cm-2; anode Pt loading:

1 mg cm-2) was lower than that observed over 20 % Pt/C

cathode (17 mW cm-2). Also as it is shown in Table 2, Pd-

based alloys ORR electrocatalysts in combination with

cobalt exhibited good activity values and close to that of

Pt/C, presenting very good tolerance in the presence of

EtOH. The Pd–Co–Mo/Carbon black—heat treated at

973 K was also examined successfully as cathode in a

DEFC whose performance peak power density was

8 mW cm-2 with anode catalyst loaded with 1 mg cm-2

of Pt.

3.2.2 ORR in alkaline media

One of the main advantages of alkaline media comes from

the fact that the electrode’s reaction kinetics in these media

is higher than those exhibited in acidic media, enabling the

use of Pt-free catalysts. Moreover, the alkaline media

provides a less corrosive environment to the electrodes. Pd-

based catalysts have shown a surprisingly high ORR

activity, particularly in the alkaline medium, with an ORR

activity close to that of Pt.

The most examined cathode electrocatalyst, according

to the literature is HypermecTM provided by Acta S.p.A

[18, 90, 103–106]. Zhiani et al. [39] compared platinum

supported on carbon and HypermecTM as non-noble metal

cathode catalyst, in AEM-DEFCs, indicating that active

DEFC made by non-noble cathode catalyst showed supe-

rior performance compared to the cell made by 10 wt% Pt/

C cathode catalysts in terms of power density and OCV at

60 �C and at ambient pressure. This result is related to the

higher ORR kinetic of the non-noble metal cathode catalyst

in alkaline media. A different, Au-modified Pd electrocat-

alyst supported on carbon nanotubes was studied as cath-

ode from Xu et al. [107] and non-platinum cathode.

According to their results the fuel cell performance reached

185 mW cm-2 and the Au-modified Pd is also a potential

ORR electrocatalyst in AEM-DEFCs.

An equally important factor is the improved material

stability when employing alkaline electrolytes. Few elec-

trode materials are stable under strongly acidic condi-

tions, especially under the strongly oxidizing conditions

encountered at oxygen cathodes. In contrast, a much wider

range of materials are stable in alkaline environments,

including much less expensive materials such as Ni [108]

and Ag [109], etc. In the literature, studies on materials for

ORR in alkaline media include mainly manganese oxides

[110–113], Co and its binary alloys [114–118], and Ni

[108, 118, 119], materials that have low cost and with

improved catalytic activity and selectivity toward the

4-way ORR pathway. Moreover, the alkaline environment

gives the rating to the carbon materials to act as metal-free

electrocatalysts and to have much better electrocatalytic

activity, long-term stability, and tolerance to cross-over

effect [120, 121].

The ORR electrocatalysts for AEM-DEFCs are in the stage

of early development as it is obvious from Table 4 which

includes the catalysts [107, 122], which are palladium-based,

that have been examined in alkaline media in the presence and

Table 3 Kinetic current values (mA cm-2) (@ 0.8 V, 1,600 rpm) for

oxygen reduction reaction in acidic media over non-platinum elect-

rocatalysts in the presence and in the absence of EtOH

Catalysts Kinetic current

density

(mA cm-2)

Kinetic current

density

(mA cm-2)

Ref.

In the absence

of ethanol

In the presence

of ethanol

Ru/C 1.8 1.8 [98]

PdCoMo/

CDX-975

1.6 0.58 [99]

PdCoMo/C 1.5 1.21 [99]

PdCo/C 1.5 0.7 [100]

CoSe/C 0.1 0.1 [101]

Pd3Fe/C 0.1 0.1 [102]

Table 4 ORR electrocatalysts for AEM-DEFCs

Catalysts Kinetic current

density (mA cm–2)

Kinetic current density

(mA cm–2)

Experimental conditions Ref.

In the absence of ethanol In the presence of ethanol

PdAg (8 at %)/C 1 0.5 LSV-5 mV s-1 [122]

1 M NaOH or 1 M NaOH ? 0.1 M EtOH

Modified Pd3Au/CNT 370 40a (in absence of

ethanol: 2 mA cm-2)a
Room temperature, 1 M KOH, 3,500 rpm [107]

a CV-measurement: 1 M KOH ? 1 M EtOH
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in the absence of EtOH. Compared to Table 3 the modified

Pd3Au/CNT exhibited very high kinetic current density. Its

EtOH tolerance was examined with the cyclic voltammetry

technique, showing activity toward EOR.

4 Single fuel cell performance (polarization curves)

To accelerate breakthroughs in PEFCs’ R&D and their sus-

tainable commercialization, great effort has been devoted by

a number of research groups worldwide in order to decrease

the Pt loading at a level of \150lgPt cm�2
MEA [123] (or

\200 mgpt kW-1 or\15 gpt for a 75 kW vehicle). Gottes-

feld’s survey on the central milestones in the development

for low temperature fuel cells operating in acidic environ-

ment indicate that the most recent improvements in Pt

catalyst utilization by optimization of catalyst layer com-

position and structure have led to catalyst utilizations as high

as 80 % or more [5]. It was Zhang et al. [124] whose work

focused on moving from preparation of homogenous Pt alloy

particles to tailoring of core-and-shell alloy particles,

targeting (i) further lowering of the mass of precious metal

per unit power output and (ii) further boost of catalytic

activity per square centimeter of catalyst area.

Single cell polarization performance data for PEM- and

AEM-DEFCs were collected and depicted in Fig. 3. It

presents the dependency of the maximum (peak) power

density per square centimeter of geometric area (or maxi-

mum area-specific power density, max-ASPD) on total

metal loading (MEA’s metal loading); here metal can be

either Pt and Pt-based catalysts for PEM-DEFCs, or Pt-

based and Pd-based catalysts for AEM-DEFCs. Lines of

constant maximum mass specific power density (max-

MSPD) can be drawn.

As it can be distinguished in Fig. 3, the best performing

PEM-DEFCs up today are limited to 110 mW cm-2,

reported by Aricò et al. [125]. They have achieved the

highest ever area-specific power density (110 mW cm-2, or

0.0275 mW lg�1
Pttotal

in terms of the max-MSPD) in a PEM-

DEFC at 145 �C, employing a PtRu (2 mgPt cm-2) binary

anode electrocatalyst and a Pt (2 mgPt cm-2) cathode, both

supported on carbon. Another high PEM-DEFC perfor-

mance of 77 mW cm-2 was achieved and reported by Wang

et al. [126] at 170 �C, but with very high platinum loading,

6,653 lgPt cm-2 (0.0115 mW lg�1
Pttotal

), (not shown in Fig. 3

for practical reasons). Also, interesting results were recently

presented by Lobato et al. [127], reporting fuel cell perfor-

mance of 67 mW cm-2 (3,000 lgPt cm-2) at 200 �C. Peak

power densities of 96 mW cm-2 (or 0.017 mW lg�1
Pttotal

) and

79.5 mW cm2 at 90 �C for PEM-DEFC have been obtained

by Wang et al. [128], over a double-layer anode that con-

sisted of one layer Pt3Sn and a second layer PtRu, and by

Jiang et al. [129], respectively. The best fuel cell perfor-

mance was observed in the case the Pt3Sn was the first layer

(close to the anode diffusion layer) and the PtRu (adjacent to

the Nafion) the second one.

As Tsiakaras and co-workers [4] pointed out, the best

performing PEM-DEFC compared to PEM-based DMFCs,

exhibited a maximum power density per square centimeter

of geometric area three times lower. On the other hand, it

has been demonstrated that with a Pd-based electrocatalyst,

the peak power density of an AEM-DEFC can be as high as

185 mW cm2 at 60 �C [107]. Recently, Zhao’s group [130]

demonstrated an alkaline–acidic DEFC (AA-DEFC) with a

thin membrane (25 lm) and peak power density as high as

360 mW cm2 at 60 �C, which is about two times higher

than the performance of the best performing AEM-DEFC,

and 3.42 times higher than the performance of the best

Fig. 3 DEFC operational

results: maximum DEFCs

power density (mW cm-2) at

60 �C of Pt-based and Pt-free

electrocatalysts in acidic and

alkaline environment

dependency on platinum or

palladium loading (lg cm-2);

(Troom: room temperature; T40:

40 �C; T80: 80 �C; T100: 100 �C;

T145: 145 �C; open triangle Pt-

containing PEM-DEFC, filled
triangle Pt-containing AEM-

DEFC, open square Pd-

containing PEM-DEFC, filled
square Pd-containing

AEM-DEFC, open circle
Pd or Pt-containing

alkaline-acid DEFC
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performing PEM-DEFC reported in the literature. Figure 4

hereafter depicts the polarization performances (in terms of

the power density) for the three best performing DEFCs

discussed above.

If we look now at the lines of constant maximum mass

specific power density (max-MSPD) in Fig. 3, the follow-

ing observations can be drawn:

(a) Three regions are distinguished: (I) with max-MSPD

values between 0.2 mW lg�1
Pt or Pd and 0.1 mW lg�1

Pt or Pd,

(II) with max-MSPD values between 0.1 mW lg�1
Pt or Pd

and 0.05 mW lg�1
Pt or Pd , and (III) with max-MSPD

values lower than 0.05 mW lg�1
Pt or Pd. Each line has been

drawn at the maximum MSPD of each catalyst’s category

that is reported in Fig. 3 (Pt-containing AEM, Pd-

containing PEM-DEFC, Pd-containing AEM-DEFC, Pt–

Pd-containing alkaline-acid DEFC)

(b) The best performing PEM-DEFC with low Pt-based

electrocatalysts is the one reported Fatih et al. [131]

with a max-MSPD of ca. 0.05 mW lg�1
Pttotal

(c) An AEM-based DEFC, also with low Pt-based

electrocatalysts, achieved a similar max-MSPD (0.04

mW lg�1
Pttotal

), representing the best performing AEM-

based low-Pt DEFC, operating at room temperature,

reported in the literature [132]. All other Pt-based PEMs

[78, 125, 127–129, 133–151] and AEM-DEFC studies

[104, 152, 153] found in the open literature reported

lower max-MSPD values, as it can be also seen from

Fig. 3

(d) Pd-based AEM-DEFCs exhibited a power output per

unit mass of Pd as high as 0.16 mW lgPd total
-1 [90],

whereas all other Pd-based AEM-DEFC studies [103,

105, 106] found in the open literature reported lower

max-MSPD values

(e) AA-DEFCs exhibited a power output per unit mass of

metal as high as 0.2 mW lgPd total
-1 [154], whereas all

other AA-DEFC studies [130, 155] found in the open

literature, reported lower max-MSPD values

According to Fig. 3, the AEM-DEFCs, in most of the

cases not only present higher activity than PEM-DEFCs

mainly due to the lower ethanol’s crossover effect, but

also provide the possibility of using non-Pt cheap elect-

rocatalysts. Moreover, the most interesting thing about the

AEM-DEFCs is that they operate at lower temperature

values (60 �C) than the one’s of PEM-DEFCs’ (80 �C).

Finally, a new interesting approach is the development of

alkaline-acid fuel cells. Those also exhibit very high and

comparable polarization performance to Pt-based PEM-

DEFCs and Pd-based AEM-DEFCs. However, they are

still questioned since the number of works in the litera-

ture is very limited and much further investigation is

necessary.

5 Catalytic activity data

Further literature enhancement of the up-to-date developed

and examined Pt- and Pd-based electrocatalysts under CV’s

technique in alkaline and in acidic media is presented in

Fig. 5. Three distinct regions are shown: (I) where the

max-mass specific current density values are higher than

15 mA lg�1
Pt or Pd, (II) where the max-mass specific current

density values are between 15 mA lg�1
Pt or Pd and

0.5 mA lg�1
Pt or Pd , and (III) where the max-mass specific

current density values are lower than 0.5 mA lg�1
Pt or Pd.

(a) The best activity in acidic media with Pt-based

electrocatalysts is the one reported Li et al. [156] with

a max-mass specific current density of

15.4 mA lg�1
Pt . The rest of the catalysts [37, 55,

157–163] present much lower values

(b) The highest max-mass specific current density for Pt-

based electrocatalysts, 9 mA lg�1
Pt , in alkaline media

is reported by Tusi et al. [164]. The rest

electrocatalyst [75, 91, 152, 165–172] presented

lower max-mass specific current density

(c) In acidic media, Pt-free electrocatalysts [79, 173,

174] achieved very small mass specific current

density with the maximum value 0.7 mA lg�1
Pd

(d) In alkaline media, Pd-based electrocatalysts achieved

a very much higher max-mass specific current

density, 442 mA lg�1
Pd [175] and 45.7 mA lg�1

Pd

[176], reported in the literature. The rest of the

electrocatalysts [104, 105, 140, 177–196] exhibited
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lower values, however, higher than acidic

electrocatalysts

6 Conclusions

EtOH’s effective and efficient conversion into electricity

inside a fuel cell is a challenging target. Among the chal-

lenges, reducing the catalyst loading is perhaps the major

one. The development of PEM-based DEFCs and more

recently of solid AEM-based DEFCs brings new opportu-

nities to the use of EtOH in a direct fuel cell, working

either in acidic or alkaline environment.

PEM-DEFCs allow for power densities as high as 70–

100 mW cm-2 to be reached at a temperature of 90 �C,

with a PtSn/PtRu layered anode catalytic structure. The

most interesting issue in PEM-DEFC research is the

identification of a desirable electrocatalyst, which has the

ability to both: (i) contribute in breaking of the C–C bond

toward complete oxidation into CO2, thereby leading to an

increase of the fuel utilization and fuel cell efficiency, and

(ii) remove the adsorbed intermediate species. Pt is the

most active material for the EOR, however, it is easily

poisoned when it is used alone as an anode catalyst. Thus,

the research on EtOH electrooxidation catalysts was tar-

geted on doping Pt with a second or a third additive, such

as Sn, Ru, Rh, Ce, Ti, Ni, and W. PtSn catalysts were found

to exhibit the highest electrocatalytic activity toward EtOH

electrooxidation in acidic media so far. The need for Pt-

based catalysts, however, may prevent wider applications

for portable electronic devices. Furthermore, EtOH cross-

over adversely affects fuel efficiency (i.e., energy density)

due to the wasteful oxidation on the cathode side, leading

to a mixed potential formation.

The most important advantage of using a membrane

(AEM-based PEFCs), instead of a liquid electrolyte, which

is the case of the AFC (conventional aqueous KOH elec-

trolyte fuel cells), is the elimination of the negative effects

of CO2. Carbonate formation is eliminated, and the need to

frequently regenerate the electrolyte is not the case. In

AEM-PEFCs, the conducting species is now in a fixed solid

polymer; therefore, there will be some carbonates due to

the reaction of the OH- with CO2, but because there are no

mobile cations (K?), solid crystals of metal carbonate will

neither be formed to block the electrodes, nor liquid caustic

will be present. Thus, electrode weeping and corrosion will

be minimized.

The required faster kinetics of the EtOH oxidation and

especially for the ORR seem to be satisfied from one side

by the AEM-DEFCs and from the other by PEM-DEFCs

only if working at intermediate temperature values

([150 �C). While, however, a higher operating tempera-

ture promotes the EtOH electro-oxidation, it also increases

the crossover rate, thereby reducing the fuel efficiency and

the energy density of the fuel cell system. DEFCs operating

in alkaline (AEM) medium exhibit several advantages over

the ones operating in an acidic (PEM) medium. In addition

to the faster electrochemical kinetics under alkaline con-

ditions, non-precious metal catalysts (as Ag, Ni, and Pd)

can be used effectively: the activity of non-noble catalysts

for EOR and ORR is sufficient to reach power densities as

high as 60 mW cm-2 at room temperature. This opens up a

window of opportunity toward the development of AEM-

based DEFCs that are particularly efficient for portable

applications. Furthermore, it is known that water is pro-

duced at the anode and consumed at the cathode, thereby

implying a simplified water management. Additionally,

EtOH crossover is less severe in AEM-based DEFCs,

because the alcohol transport mechanism takes place in the

Fig. 5 Cyclic voltammetry

results: comparison of

maximum current density

(mA cm-2, 50 mV s-1, room

temperature) of Pt-based and

Pt-free electrocatalysts in acidic

and alkaline environment

dependency of metal loading

(lg cm-2). *Ni, r1:

100 mV s-1, r2: 10 mV s-1, r3:

1 mV s-1, t: 303 K). Inset
enlarged area, x: from 0 to

200 lg cm-2 and y: from 0 to

70 mA cm-2). Open triangle
Pt-containing PEM-DEFC,

filled triangle Pt-containing

AEM-DEFC, open square
Pd-containing PEM-DEFC,

filled square Pd-containing

AEM-DEFC
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opposite way to the OH- transport. There are, however,

some drawbacks which concern the formation of a pH

gradient between anode and cathode, and the need to

increase the operating temperature to enhance the con-

ductivity of the AEMs, which may be not useful for por-

table applications. The suppression of the crossover in the

AEMs would increase DEFC performance and fuel effi-

ciency (i.e., energy density).

Our review summarizes the following observations:

• The highest peak power density value, 360 mW cm-2

(mass specific power density, 0.092 mW lg�1
Pd ), and

the highest max-mass specific power density,

0.2 mW lg�1
Pd (peak power density, 200 mW cm-2) have

been performed by platinum-free alkaline-acid DEFCs.

• A high peak power density of 185 mW cm-2 (mass

specific power density, 0.15 mW lg�1
Pd ) and a high

max-mass specific power density 0.16 mW lg�1
Pd (peak

power density, 160 mW cm-2) have also been exhib-

ited by platinum-free, palladium-based AEM-DEFCs.

• The majority of the Pt-based and Pt-free PEM-

DEFCs presented peak power density values below

120 mW cm-2 and mass specific power density values

below 0.05 mW lg�1
Pt . The best power density value of

PEM-DEFCs of 110 mW cm-2 (mass specific power

density, 0.0275 mW lg�1
Pd , 145 �C operating tempera-

ture) was reported in 1999 by Arico and his co-workers,

over PtRu/C and Pt/C anode and cathode, respectively.

Concerning the cyclic voltammetry’s measurements, the

highest current density value (320 mA cm-2) and the

highest mass specific current density value (442 mA lg�1
Pd )

toward EOR have been observed in alkaline media over Pd-

based electrocatalysts. All the examined electrocatalysts in

acidic media have shown maximum current density values

lower than 64 mW cm-2 (about six times lower than that

obtained in alkaline media) and mass specific current density

values *0.9 mA lg�1
Pt , taking into account that all were Pt-

based. The current density peak on Pd-based electrocatalysts

in alkaline media has been found to be higher than that

obtained on Pt-based electrocatalysts in alkaline or in acidic

media, indicating the notable progress that is carried out to

partially overcome the cost barrier. The catalytic cost seems

to be potentially reduced two and a half times, if it is con-

sidered that palladium costs 19 euros per gram, while plat-

inum costs 44 euros per gram (cf. Table 1).

The differences among the different types of fuel cells is

not only observed with respect to the mass specific power

density values, where the AA-DEFCs and AEM-DEFCs

performances exceed over the ones of the PEM-DEFCs,

but also to the operating temperature values. The latter

ones operate usually at 80 �C, while the former at 60 �C,

providing additionally an energy cost advantage. Con-

cluding, we point out that key issues/challenges that must

be overcome for both PEM- and AEM-DEFCs to become

competitive are: water transport management, EtOH

crossover, and EOR kinetics on the anode. The appropriate

management of the water transport process is necessary so

as to avoid either cathode flooding (high water crossover)

or a high cathode activation loss (too low water crossover).

EtOH transport management is another key issue for both

PEM- and AEM-DEFCs. In AEM-DEFCs, as the cathode

catalyst (non-Pt) is generally tolerant to EtOH oxidation,

the mixed potential problem as a result of fuel crossover is

not as serious as in PEM-DEFCs. More active catalysts for

the EOR would enable a certain power density to be

achieved at higher cell voltages, and would hence directly

impact the energy efficiency of the DEFC, which translates

to the energy density if the amount of the fuel carried by a

DEFC system is fixed.
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