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Deterministic and Bayesian finite element (FE) model updating techniques are computationally very
demanding operations due to the large number of FE model re-analyses required. Component mode syn-
thesis techniques are proposed to carry out the re-analyses efficiently in a substantially reduced space of
generalized coordinates using exact component modes and characteristic interface modes computed only
once from a reference FE model. The re-assembling of the reduced-order system matrices from compo-
nents and interface modes is avoided. Theoretical and computational developments are demonstrated
with model updating and damage identification applications for a highway bridge using a high fidelity
model and simulated measurements.
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1. Introduction group. The Normal Boundary Intersection algorithm [11] is used to
Structural model updating methods (e.g. [1–3]) are used to rec-
oncile mathematical models, usually discretized finite element (FE)
models, with experimental data. Structural model parameter esti-
mation problems based on identified modal characteristics (modal
frequencies and mode shapes), are often formulated as weighted
least-squares problems (e.g. [2,4–8]) in which metrics, measuring
the residuals between measured and model predicted modal char-
acteristics, are build up into a single weighted residuals metric
formed as a weighted average of the multiple individual metrics
using weighting factors. Standard optimization techniques are
then used to find the optimal values of the structural parameters
that minimize the single weighted residuals metric. Due to model
error and measurement noise, the results of the optimization are
affected by the values assumed for the weighting factors. The mod-
el updating problem has also been formulated as a multi-objective
optimization problem [9,10] that allows the simultaneous minimi-
zation of the multiple metrics, eliminating the need for using arbi-
trary weighting factors for weighting the relative importance of
each metric in the overall measure of fit. The multi-objective
parameter estimation methodology provides multiple Pareto opti-
mal structural models in the sense that the fit each Pareto optimal
model provides in a group of measured modal properties cannot be
improved without deteriorating the fit in at least one other modal
ll rights reserved.
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compute the Pareto optimal solutions.
Bayesian techniques [12,13] have also been proposed to quan-

tify the uncertainty in the parameters of a FE model, select the best
model class from a family of competitive model classes [14,15], as
well as propagate uncertainties for robust response and reliability
predictions [16]. Posterior probability density functions (PDFs) are
derived that quantify the uncertainty in the model parameters
based on the data. These PDFs are formulated in terms of the modal
residuals involved in the aforementioned single and multi objec-
tives deterministic methods. The Bayesian tools for identifying
uncertainty models as well as performing robust prediction analy-
ses are Laplace methods of asymptotic approximation and more
accurate stochastic simulation algorithms (SSA) such as Markov
Chain Monte Carlo (MCMC) [17], Transitional MCMC [18] and
Delayed Rejection Adaptive Metropolis [19]. Similar to the
deterministic FE model updating techniques, the asymptotic
approximations in the Bayesian framework involve solving an opti-
mization problem for finding the most probable model, as well as
estimating the Hessian of the logarithm of the posterior PDF at the
most probable model for describing the uncertainty in the model
parameters. The SSA algorithms involve generating samples for
tracing and then populating the important uncertainty region in
the parameter space, as well as evaluating integrals over high-
dimensional spaces of the uncertain model parameters.

The optimal structural models and their uncertainties resulting
from model updating methods can be used for improving the
model response and reliability predictions [16,20], for assessing
structural health and identifying structural damage [5–8,21–28]
and for improving effectiveness of structural control devices [29].

http://dx.doi.org/10.1016/j.compstruc.2012.10.018
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The aforementioned optimization and SSA algorithms require a
moderate to very large number of FE re-analyses to be performed
over the space of model parameters. Consequently, the computa-
tional demands depend highly on the number of FE re-analyses
and the time required for performing a FE analysis. In addition,
gradient-based optimization algorithms require the estimation of
the gradients of the residuals which may also add substantially
to the computational effort. For high fidelity FE models involving
hundreds of thousands or even million DOF, the computational de-
mands may be large or even excessive. The present work proposes
efficient methods based on dynamic reduction techniques to alle-
viate the computational burden involved in the implementation
of deterministic and probabilistic (Bayesian) techniques for FE
model updating.

Specifically, component mode synthesis (CMS) techniques [30–
32] are widely used to carry out system analyses in a significantly
reduced space of generalized coordinates. Such techniques have
been incorporated in methods for uncertainty management in
structural dynamics to efficiently handle the computational effort
in system re-analyses that arise from FE model variations caused
by variations in the values of the uncertain parameters [33,34].
Such variations in the values of the model parameters require that
the computation of the component and/or system modes be re-
peated in each re-analysis. As a result, a computational overhead
arises at component level which may be substantial. The main
objective in methods involving re-analyses of models with varying
properties is to avoid, to the extent possible, the re-computation of
the eigenproperties at the component or system level. Perturbation
techniques [35,36] provide accurate results locally for small varia-
tions of the model parameters about a reference structure. To im-
prove the accuracy of the approximations for large variation of the
model parameters, most efforts have been concentrated in approx-
imating the modes at the component or system level in terms of
the modes of a family of structures corresponding to support
points in the parameter space [33]. Linear and quadratic interpola-
tions of the structural mass and stiffness matrix and the matrix of
eigenvectors at the component and/or system level using support
points in the larger region in the parameter space have been pro-
posed in [37]. Such methods have been successfully used for model
updating of large-order models of structures [38,39], while similar
methods have been developed for damage detection at component
level [40]. Such techniques proved to be quite effective in substan-
tially reducing the computational demands in problems requiring
system re-analyses.

In this work, a framework is presented for integrating the
Craig–Bampton CMS [30,31] technique into existing FE model
updating formulations in order to reduce the time consuming
operations involved in re-analyses of large-order models of hun-
dreds of thousands or millions degrees of freedom. The proposed
method exploits the fact that in FE model parameterization
schemes the stiffness matrix of the structure often depends
linearly on the parameters of the model and also that a parameter
usually represents a global property (e.g. the modulus of elasticity)
of a substructure. The division of the structure into components is
then guided by the FE parameterization scheme so that the stiff-
ness matrix that arise for each one of the introduced components
to depend linearly on only one of the parameters to be estimated.
In this case the fixed-interface and constraint modes of the compo-
nents for any value of the model parameters can be obtained
exactly from the fixed-interface and constraint modes correspond-
ing to a single reference FE model, avoiding re-analyses at compo-
nent level. Additional substantial reductions in computational
effort are also proposed by reducing the number of interface DOF
using characteristic interface modes through a Ritz coordinate
transformation. The repeated solutions of the component and
interface eigen-problems are avoided, reducing drastically the
computational demands in FE formulations, without compromis-
ing the solution accuracy. It is also shown that the linear expan-
sions of the original mass and stiffness matrices in terms of the
structural parameters are preserved for the reduced mass and stiff-
ness matrices. Thus, the re-assembling of the reduced system
matrices from the original matrices is also avoided in the execution
of the system re-analyses. The only time consuming operation left
is the re-analysis of the eigenproblem of the reduced-order model.
It is finally demonstrated that the new developments are readily
accommodated in existing FE model updating formulations and
software with minimal modifications.

Deterministic and Bayesian FE model updating formulations
along with computational aspects are presented in Section 2. The
mathematical background for the Craig-Bampton CMS technique
and a technique to reduce the DOF in the interface between com-
ponents using characteristic interface modes, is outlined in Section
3. The integration of the CMS technique with model updating for-
mulations is given in Section 4. In Section 5 the effectiveness of the
proposed algorithms, in terms of computational efficiency and
accuracy, is demonstrated with applications on model updating
and damage identification of a bridge using simulated data and a
high fidelity model with hundreds of thousands of DOF. Conclu-
sions are summarized in Section 6.

2. Finite element model updating using modal characteristics

Consider a parameterized linear FE model class M of a structure
and let h 2 RNh be a vector of free structural model parameters to be
estimated using a set of modal properties identified from vibration
measurements. The identified modal properties consist of the
square of the modal frequencies, k̂r ¼ x̂2

r , and the mode shape
components /̂r 2 RN0 at N0 measured DOF, for r = 1, . . . ,m, where
m is the number of observed modes. The values of the parameter
vector h are estimated so that the modal frequencies
krðhÞ ¼ x2

r ðhÞ and modeshapes /rðhÞ 2 RN0 , predicted by the FE
model, best matches the experimentally obtained modal data D.
For this, the following modal frequency and mode shape residuals

J1ðhÞ ¼
Xm

r¼1

e2
kr
ðhÞ ¼

Xm

r¼1

krðhÞ � k̂r

h i2

k̂2
r

ð1Þ

and

J2ðhÞ ¼
Xm

r¼1

e2
/r
ðhÞ ¼

Xm

r¼1

brðhÞ/rðhÞ � /̂r

��� ���2

k/̂rk2 ¼
Xm

r¼1

1�MAC2
r ðhÞ

h i
ð2Þ

are introduced to measure the differences ekr and e/r for the modal

frequencies and mode shape components between the identified
modal data and the model predicted modal data, respectively,

where brðhÞ ¼ /̂T
r /rðhÞ=k/rðhÞk2 is a normalization constant that

guaranties that the measured mode shape /̂r at the measured

DOF is closest to the model mode shape br(h)/r (h) predicted by

the particular value of h MACr ¼ /T
r /̂rðk/rkk/̂rkÞ is the modal assur-

ance criterion between the experimentally identified and model

predicted mode shapes for the r-th mode, and kzk2 = zTz is the usual
Euclidian norm.

The mode shape components /rðhÞ ¼ LurðhÞ 2 RN0 at the N0

measured DOF involved in (2) are computed from the full mode
shapes urðhÞ 2 Rn that satisfy the eigenvalue problem

½KðhÞ � krðhÞMðhÞ�urðhÞ ¼ 0 ð3Þ

where KðhÞ 2 Rn�n and MðhÞ 2 Rn�n are respectively the stiffness and
mass matrices of the FE model of the structure, n is the number of
model DOF, and L 2 RN0�n is an observation matrix, usually



C. Papadimitriou, D.-C. Papadioti / Computers and Structures 126 (2013) 15–28 17
comprised of zeros and ones, that maps the n model DOF to the N0

observed DOF. For a model with large number of DOF, N0� n.

2.1. Formulation as single- and multi-objective optimization problems

The estimation of the model parameters is traditionally formu-
lated as a minimization of the weighted residuals

Jðh; wÞ ¼ J1ðhÞ þwJ2ðhÞ ð4Þ

where w 2 [0,1). The results of the identification depend on the
weight value used. The parameter estimation problem can also be
formulated as a multi-objective optimization problem [9,10] of
finding the values of h that simultaneously minimizes the objectives

JðhÞ ¼ ðJ1ðhÞ; J2ðhÞÞ ð5Þ

where J(h) is the objective vector defined over the two-dimensional
objective space. For conflicting objectives J1(h) and J2(h), there is no
single optimal solution, but rather a set of alternative solutions,
known as Pareto optimal solutions, that are optimal in the sense
that no other solutions in the parameter space are superior to them
when both objectives are considered. The set of objective vectors
J(h) corresponding to the set of Pareto optimal solutions h is called
Pareto optimal front. The multiple Pareto optimal solutions are due
to modeling and measurement errors. The solution obtained by
optimizing (4) for any weight value is a Pareto optimal solution
[10]. However, in order to adequately describe the Pareto optimal
solutions by uniformly spaced points along the solution manifold
in the parameter space, the multi-objective optimization problem
is preferred since varying the weight value in (4) may miss signifi-
cant portions of the Pareto optimal solutions in the objective and
parameter space.

2.2. Bayesian formulation

Bayesian methods are used to quantify the uncertainty in the FE
model parameters as well as select the most probable FE model
class among a family of competitive model classes based on the
measured modal data. The structural model class M is augmented
to include the prediction error model class that postulates zero-
mean Gaussian models for the modal frequency and mode shape
error terms ekr and e/r in (1) and (2), respectively, with equal vari-
ances r2 for all modal frequency errors ekr and equal variances r2/
w for all mode shape errors e/r . Using PDFs to quantify uncertainty
and following the Bayesian formulation (e.g. [5,12,21]), the poster-
ior PDF p(h,rjD,M) of the structural model parameters h and the
prediction error parameter r given the data D and the model class
M can be obtained in the form

pðh;rjD;MÞ ¼ ½pðDjMÞ��1

ffiffiffiffiffiffiffi
2p
p

r
� �mðN0þ1Þ exp � 1

2r2 Jðh; wÞ
� �

pðh;rjMÞ ð6Þ

where the distribution p(h,rjM) is the prior PDF of the structural
model parameters h and the prediction error parameter model r,
and p(DjM) is the evidence of the model class M.

For large enough number of experimental data, and assuming
for simplicity a single dominant most probable model, the poster-
ior distribution of the model parameters can be asymptotically
approximated by the multi-dimensional Gaussian distribution
[12] centered at the most probable value ðĥ; r̂Þ of the model
parameters that minimizes the function

gðh;r; MÞ ¼ � ln pðh;rjD;MÞ
¼ 0:5r�2Jðh; wÞ þ 0:5mðN0 þ 1Þ lnr2 � ln pðh;rjMÞ ð7Þ

with covariance equal to the inverse of the Hessian h(h,r) of the
function g(h,r;M) evaluated at the most probable value. For a
uniform prior distribution, the most probable value of the FE
model parameters h coincides with the estimate obtained by min-
imizing the weighted residuals in (4). An asymptotic approxima-
tion based on Laplace’s method is also available to give an
estimate of the model evidence p(DjM) in (6) [14,41]. The esti-
mate is also based on the most probable value of the model
parameters and the value of the Hessian h(h,r) evaluated at the
most probable value.

The Bayesian probabilistic framework is also used to compare
two or more competing model classes and select the optimal mod-
el class based on the available data. Consider a family MFam = {Mi,
i = 1, . . . ,l}, of l alternative, competing, parameterized FE and pre-
diction error model classes, and let hi 2 RNhi be the free parameters
of the model class Mi. The posterior probabilities P(MijD) of the var-
ious model classes given the data D is [14]

PðMijDÞ ¼
pðDjMiÞPðMiÞ

pðDjMFamÞ
ð8Þ

where P(Mi) is the prior probability and p(DjMi) is the evidence of
the model class Mi. The optimal model class Mbest is selected as
the one that maximizes P(MijD) given by (8). For the case where
no prior information is available, the prior probabilities are as-
sumed to be equal, P(Mi) = 1/l, so the selection among the model
classes is based solely on their evidence values.

The asymptotic approximations may fail to give a good repre-
sentation of the posterior PDF in the case of multimodal distribu-
tions or for un-identifiable cases manifested for relatively large
number of model parameters in relation to the information con-
tained in the data. For more accurate estimates, one should use
SSA to generate samples that populate the posterior PDF in (6).
Among the SSA available, the TMCMC algorithm [18] is one of
the most promising algorithms for selecting the most probable
model class among competitive ones, as well as finding and popu-
lating with samples the importance region of interest of the poster-
ior PDF, even in the unidentifiable cases and multi-modal posterior
probability distributions. In addition, the TMCMC samples can be
used to yield an estimate of the evidence p(DjMi) in (8) required
for model class selection [18,42]. The samples generated at the fi-
nal stage of the algorithm can further be used for estimating the
probability integrals encountered in robust prediction of various
performance quantities of interest.
2.3. Computational aspects for linear FE models with large number of
DOF

The computational demands in the aforementioned FE model
updating methodologies depend highly on the number of FE anal-
yses and the time required for performing a FE analysis. The opti-
mal model in the proposed single-objective optimization, the
Pareto models in the multi-objective optimization and the most
probable model in the Bayesian asymptotic formulation can be
estimated using available optimization algorithms. In particular,
the optimization of J(h;w) in (4) or g(h,r;w) in (7) can readily be
carried out numerically using any available gradient-based algo-
rithm for optimizing a nonlinear function of several variables. In
addition, the set of Pareto optimal solutions can be obtained using
the Normal-Boundary Intersection (NBI) method [11] which is a
very efficient algorithm for solving the multi-objective optimiza-
tion problem defined in (5). Each Pareto optimal solution is ob-
tained by solving a single-objective optimization problem using
gradient-based constrained optimization algorithms [10]. The
computational time is of the order of the number of points used
to represent the Pareto front multiplied by the computational time
required to solve a single-objective optimization problem for com-
puting each point on the front.
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The gradient-based optimization algorithms require the esti-
mation of the gradients of the residuals J1(h) and J2(h) defined
in (1) and (2). This also contributes significantly to the time
required to complete an iteration. Herein, Nelson method [43] is
used to compute the gradients of the modal frequencies and
mode shapes. The advantage of the Nelson’s method compared
to other methods (e.g. [44]) is that the gradients of the modal fre-
quency and mode shape of a mode are computed from the modal
frequency and mode shape of the same mode and there is no need
to compute the modal frequencies and mode shapes from other
modes. Using adjoint formulations [45], the computational
demands for estimating the gradients of J1(h) and J2 (h) are inde-
pendent of the number of parameters involved in the vector h.
The most time consuming operation arises from the solution of
a linear system with the matrix of coefficients to be a slightly
modified version of the symmetric, non-positive definite, matrix
K � krM. This requires the factorization for the modified K � krM
matrices of the lowest r = 1, . . . ,m modes involved in the residuals,
contributing significantly to the overall computational effort at
each iteration.

For objective functions in (4) or (7) involving multiple local/
global optima, gradient based optimization algorithms may fail
to converge to the global optimum. Stochastic optimization
algorithms (e.g. [46–48]) are convenient tools for estimating the
global optimum, avoiding premature convergence to a local one.
These non-gradient based stochastic optimization algorithms
require a significantly larger number of FE model re-analyses to
be performed compared to the FE model analyses involved in
gradient-based optimization algorithms, substantially increasing
the computational demands.

Furthermore, Bayesian FE model updating techniques, based on
SSA such as the efficient TMCMC algorithm, involve drawing a
large number of samples for tracing and then populating the
important region in the uncertain parameter space. Compared to
the previous algorithms, TMCMC require a substantially larger
number of FE model analyses since one FE analysis is required
for each sample generated in the TMCMC algorithm. Conse-
quently, the computational demands can become excessive when
the computational time for performing a FE analysis is not
negligible.

For FE models involving hundreds of thousands or even million
DOF the computational demands for repeatedly solving the large-
scale eigen-problems may be excessive. The objective of this work
is to examine the conditions under which substantial reductions in
the computational effort can be achieved by integrating dynamic
reduction techniques into the FE formulations, aiming at reducing
the sizes of the stiffness and mass matrices and eliminating the
expensive re-analyses of components eigenproblems due to the
variations of the system parameters, without compromising the
solution accuracy.

We limit the formulation to the case for which the stiffness and
mass matrices depend linearly on the model parameters h. Specif-
ically, it is assumed that the mass and stiffness matrix takes the
form

KðhÞ ¼ K0 þ
XNh

i¼1

K ;jhj

MðhÞ ¼ M0 þ
XNh

j¼1

M;jhj

ð9Þ

where M0, K0, M,j and K,j, j = 1, . . . ,Nh, are constant matrices inde-
pendent of h. Also, we assume that each parameter in the vector h
is associated to the stiffness property of the substructure. This is a
case that is often encountered in practical applications of model
updating and damage detection techniques.
3. Component mode synthesis

3.1. Formulation using fixed-interface modes

In CMS techniques [30,31], a structure is divided into several
components. For each component, the unconstrained DOF are par-
titioned into the boundary DOF, denoted by the subscript b and the
internal DOF, denoted by the subscript i. The boundary DOF of a
component include only those that are common with the boundary
DOF of adjacent components, while the internal DOF of a compo-
nent are not shared with any adjacent component. The stiffness
and mass matrices KðsÞ 2 RnðsÞ�nðsÞ and MðsÞ 2 RnðsÞ�nðsÞ of a component
s are partitioned to blocks related to the internal and boundary
DOF as follows

MðsÞ ¼
MðsÞ

ii MðsÞ
ib

MðsÞ
bi MðsÞ

bb

" #
and KðsÞ ¼

KðsÞii KðsÞib

KðsÞbi KðsÞbb

" #
ð10Þ

where the indices i and b are sets containing the internal and
boundary DOF of the component. According to the Craig–Bampton
fixed-interface mode method, the Ritz coordinate transformation
uðsÞ ¼ uðsÞTi ;uðsÞTb

h iT
¼ WðsÞpðsÞ, where

WðsÞ ¼
UðsÞik WðsÞib

0ðsÞbk IðsÞbb

" #
ð11Þ

is used to relate the physical displacement coordinates uðsÞ 2 RnðsÞ of

the component to the generalized coordinates pðsÞ ¼ pðsÞTk ;pðsÞTb

h iT
2

Rn̂ðsÞ , n̂ðsÞ ¼ nðsÞk þ nðsÞb , using the kept fixed-interface normal modes

UðsÞik 2 RnðsÞ
i
�nðsÞ

k satisfying the eigen-problem

KðsÞii UðsÞik ¼ MðsÞ
ii UðsÞik KðsÞkk ð12Þ

and the interface constrained modes WðsÞib 2 RnðsÞ
i
�nðsÞ

b given by

WðsÞib ¼ � KðsÞii

h i�1
KðsÞib . The matrix KðsÞkk ¼ diag kðsÞ1 ; . . . ; kðsÞ

nðsÞ
k

� 	
2 RnðsÞ

k
�nðsÞ

k

is diagonal containing the eigenvalues kðsÞj ; j ¼ 1; . . . ;nðsÞk , of the kept

fixed-interface normal modes. The fixed-interface modes UðsÞik are

considered to be mass normalized, satisfying UðsÞTik MðsÞ
ii UðsÞik ¼ IðsÞkk and

UðsÞTik KðsÞii UðsÞik ¼ KðsÞkk .

The component’s mass and stiffness matrices M̂ðsÞ 2 Rn̂ðsÞ�n̂ðsÞ and

K̂ðsÞ 2 Rn̂ðsÞ�n̂ðsÞ in the new reduced set of generalized coordinates p(s)

are transformed as follows

M̂ðsÞ ¼ WðsÞT MðsÞWðsÞ and K̂ðsÞ ¼ WðsÞT KðsÞWðsÞ ð13Þ

with the partitions for the component mass matrices M̂ðsÞ
kk 2 RnðsÞ

k
�nðsÞ

k ,

M̂ðsÞ
kb 2 RnðsÞ

k
�nðsÞ

b , M̂ðsÞ
bb 2 RnðsÞ

b
�nðsÞ

b and stiffness matrices K̂ðsÞkk 2 RnðsÞ
k
�nðsÞ

k ,

K̂ðsÞkb 2 RnðsÞ
k
�nðsÞ

b and K̂ðsÞbb 2 RnðsÞ
b
�nðsÞ

b given respectively by

M̂ðsÞ
kk ¼ IðsÞkk

M̂ðsÞ
kb ¼ M̂ðsÞT

bk ¼ UðsÞTik MðsÞ
ii WðsÞib þUðsÞTik MðsÞ

ib

M̂ðsÞ
bb ¼ WðsÞTib MðsÞ

ii þMðsÞ
bi

� �
WðsÞib þWðsÞTib MðsÞ

ib þMðsÞ
bb

ð14Þ

and

K̂ðsÞkk ¼ KðsÞkk

K̂ðsÞkb ¼ K̂ðsÞTbk ¼ 0ðsÞkb

K̂ðsÞbb ¼ KðsÞbb � KðsÞbi KðsÞii

h i�1
KðsÞib ¼ KðsÞbb þWðsÞTib KðsÞib

ð15Þ

For convenience, the relationships (14) and (15) between the re-
duced and the original stiffness and mass matrices of a component,
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with KðsÞkk and UðsÞik given by (12), can be written in compact form as

½K̂ðsÞ; M̂ðsÞ� ¼ G½KðsÞ;MðsÞ� using the operator G.
In the substructure assembly process, the vector

p ¼ ½pð1ÞT ; . . . ; pðNcÞT �T 2 Rnp , np ¼
PNc

s¼1n̂ðsÞ, of the generalized coordi-
nates for all Nc components is introduced. Letting

q ¼ pð1ÞTk ; . . . ; pðNcÞT
k ;uT

b

h iT
2 Rnq be the vector that contains the inde-

pendent generalized coordinates consisting of the fixed-interface

modal coordinates pðsÞk for each component and the physical coor-

dinates uT
b ¼ uð1ÞTb ; . . . ;uðNbÞT

b

h iT
at the Nb interfaces, where uð‘Þb con-

tains the displacements at the DOF of the interface ‘, the
following transformation is introduced

p ¼ Sq ð16Þ

where the component coupling matrix S 2 Rnp�nq is a matrix of zeros
and ones that couples the independent generalized coordinates q of
the reduced system with the generalized coordinates of each
component.

The assembled Craig–Bampton stiffness matrix K̂CB 2 Rnq�nq and
mass matrix M̂CB 2 Rnq�nq for the reduced vector q of generalized
coordinates are given by

K̂CB ¼ ST

K̂ð1Þ 0 0

0 . .
.

0
0 0 K̂ðNcÞ

2
664

3
775S ¼

XNc

s¼1

Fs½K̂ðsÞ� ð17Þ
M̂CB ¼ ST

M̂ð1Þ 0 0

0 . .
.

0
0 0 M̂ðNcÞ

2
664

3
775S ¼

XNc

s¼1

Fs½M̂ðsÞ� ð18Þ

where the new mathematical operator Fs½K̂ðsÞ� is conveniently intro-
duced by the second part of equation (17) as

Fs½K̂ðsÞ� ¼ ST blockdiag 0n̂ð1Þ n̂ð1Þ ; . . . ;0n̂ðs�1Þ n̂ðs�1Þ ; K̂ ðsÞ;0n̂ðsþ1Þ n̂ðsþ1Þ ; . . . ;0n̂ðNc Þ n̂ðNc Þ

h i
S

ð19Þ

where 0ij 2 Ri�j denotes a matrix of zeroes, and blockdiag½K̂ð1Þ; . . . ;

K̂ðNcÞ� 2 Rnp�np denotes a block diagonal matrix having as diagonal

blocks the matrices K̂ðsÞ; s ¼ 1; . . . ;Nc . The operator Fs will be used
later to simplify the integration of the CMS into the FE formulation.

Solving the reduced eigen-problem

K̂CBQ ¼ M̂CBQK ð20Þ

associated with the reduced mass and stiffness matrices M̂CB and

K̂CB, respectively, one obtains the modal frequencies in
K ¼ diag x2

i


 �
2 Rnq�nq and the corresponding mode shape matrix

Q ¼ ½q̂1; . . . ; q̂nq � 2 Rnq�nq of the reduced system.
Introducing the constant matrix Ŝ 2 RN0�np to map the vector

½uð1ÞT ; . . . ;uðNcÞT � of the physical coordinates for all structural com-
ponents to the physical coordinates u of the structure at the N0

measured DOF such that u ¼ Ŝp and using (16), the physical mode
shapes /r 2 RN0 of the original structure at the N0 measured DOF
are recovered from the mode shapes q̂r 2 Rnq of the reduced system
as follows

/r ¼ ŜWSq̂r ¼ L̂q̂r ð21Þ

where L̂ ¼ ŜWS 2 RN0�nq and W ¼ blockdiag½Wð1Þ; . . . ;WðNcÞ� 2 Rnp�np .
3.2. Reduction of the interface DOF using characteristic interface
modes

Further reduction in the generalized coordinates can be
achieved by replacing the interface DOF by a reduced number of
characteristic interface modes [49]. For this, the physical displace-

ment coordinates uð‘Þb 2 Rmð‘Þ
b at an interface ‘ between two compo-

nents are represented in terms of the generalized coordinates

fð‘Þ 2 Rmð‘Þ
k of the interface by the Ritz coordinate transformation

uð‘Þb ¼ V ð‘Þfð‘Þ ð22Þ

‘ = 1, . . . ,Nb, where the columns of V ð‘Þ 2 Rmð‘Þ
b
�mð‘Þ

k form the reduced
basis of the mð‘Þb -dimensional space and mð‘Þk is the number of ele-
ments in the basis.

The following transformation from the CMS generalized coordi-

nates q to the reduced-order model generalized coordinates

t ¼ pð1ÞTk ; . . . ; pðNsÞT
k ; fð1ÞT ; . . . ; fðNbÞT

h iT
2 Rnr , nr ¼

PNc
s¼1nðsÞk þ

PNb
‘¼1mð‘Þk ,

that contains the kept fixed interface modes and the kept charac-
teristic interface modes, is introduced as

q ¼ Vt ð23Þ

where V ¼ blockdiagðInð1Þ
k
; . . . ; InðNc Þ

k
;V ð1Þ; . . . ;V ðNbÞÞ 2 Rnq�nr and In de-

notes the identity matrix of dimension n. Using (23), the final re-

duced mass and stiffness matrices take the form K̂ ¼ VT K̂CBV and

M̂ ¼ VT M̂CBV and the resulting eigenvalue problem at the reduced
system level becomes

K̂C ¼ M̂CK ð24Þ

where the diagonal matrix K contains the modal frequencies and
the matrix C 2 Rnr�nr contains the corresponding nr mode shapes
of the reduced system.

The kept characteristic interface modes of the matrix V(‘) satisfy
the eigen-problem

K̂CB
b̂‘ b̂‘

V ð‘Þ ¼ M̂CB
b̂‘ b̂‘

V ð‘ÞXð‘Þ ð25Þ

where b̂‘ is the index set denoting the positions of the generalized

coordinates uð‘Þb 2 Rmð‘Þ
b in the vector q corresponding to the interface

‘, while the stiffness and mass matrices K̂CB
b̂‘ b̂‘
2 Rmð‘Þ

b
�mð‘Þ

b and

M̂CB
b̂‘ b̂‘
2 Rmð‘Þ

b
�mð‘Þ

b in (25) are the partitions of the reduced stiffness

and mass matrices K̂CB and M̂CB associated with the coordinates

uð‘Þb at the ‘-th interface. These partitions are readily obtained from
the corresponding partitions of the stiffness and mass matrices of
the components connecting to the interface ‘ in the form

K̂CB
b̂‘ b̂‘
¼
X
s2C‘

K̂ðsÞb‘b‘
and M̂CB

b̂‘ b̂‘
¼
X
s2C‘

M̂ðsÞ
b‘b‘

ð26Þ

where C‘ is the integer set that contains the components that con-
nect to the interface ‘, and b‘ is the index set denoting the positions

of the uð‘Þb 2 Rmð‘Þ
b corresponding to the interface ‘ in the vector u(s) of

the component s. Note that the stiffness matrix K̂ of the reduced sys-

tem is diagonal, given by K̂ ¼ diag Kð1Þkk ; . . . ;KðNcÞ
kk ;Xð1Þkk ; . . . ;XðNbÞ

kk

� �
,

with diagonal elements the eigenvalues of each fixed interface and
characteristic interface mode.

The components of the mode shape matrix
Q ¼ ½q̂1; . . . ; q̂nq � 2 Rnq�nq of the eigenvalue problem (20) are related
to the components of the mode shape matrix
C ¼ ½c1; . . . ; cnr � 2 Rnr�nr of the eigenvalue problem (24) through
the relationship q̂r ¼ Vcr . Specifically, using (21), the mode shapes
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/r of the original structure at the N0 measured DOF are recovered
from the mode shapes cr of the reduced system as follows

/r ¼ ŜWSVcr ¼ L̂Vcr ¼ ~Lcr ð27Þ

where ~L ¼ L̂V ¼ ŜWSV 2 RN0�nr .

4. Model updating using CMS

The CMS procedure is next integrated into the FE model updat-
ing formulation. The linear dependence of the mass and stiffness
matrices on the parameter vector h given in (9) implies that at
the component level the mass and stiffness matrices as well as
their partitions admit a similar representation, that is

KðsÞ ¼ KðsÞ0 þ
XNh

j¼1

KðsÞ;j hj

MðsÞ ¼ MðsÞ
0 þ

XNh

j¼1

MðsÞ
;j hj

ð28Þ

Attention is focused on two special cases of the parameterization
(28) for a component s. In the first case it is assumed that the mass
and stiffness matrix of a component s do not depend on the model
parameters in h. In this case one has that KðsÞ ¼ KðsÞ0 and MðsÞ ¼ MðsÞ

0 .
The component fixed-interface and constrained modes are indepen-
dent of the parameter values. Only a single analysis is required to
estimate the fixed-interface and constrained modes for the particu-
lar component s. These component modes are computed once for a
reference model and are then used in the iterations or TMCMC
sampling schemes involved in model updating. The computational
savings arise from the fact that the eigenvalue problem to compute
the eigenvalues and mode shapes of the kept interface modes UðsÞik as
well as the solution of the linear system to compute the constrained
interface modes WðsÞib for a component s are not repeated at each
iteration or TMCMC sampling point.

In the second case the stiffness matrix of a structural compo-
nent s depends only on one model parameter, say hj, in the param-
eter vector h, while the mass matrix MðsÞ ¼ MðsÞ

0 is constant
independent of h. This case is enforced by dividing the structure
into components based on the parameters introduced in the FE
model for each physical substructure. Let Dj be the set of compo-
nents that depend on the j-th variable hj. The stiffness matrix of
a component s 2Dj takes the form

KðsÞ ¼ KðsÞhj ð29Þ

Equivalently, the relation (29) holds also for the partitions of the

stiffness matrix. Substituting the partitions KðsÞii ¼ KðsÞii hj and

MðsÞ
ii ¼ MðsÞ

0;ii in (12), it is readily derived that the matrix of the kept
eigenvalues and eigenvectors of the component fixed-interface
modes are given with respect to the parameter hj in the form

KðsÞ ¼ KðsÞhj and UðsÞik ¼ UðsÞik ð30Þ

where the matrices KðsÞ and UðsÞik are solutions of the following eigen-
problem

KðsÞii UðsÞik ¼ MðsÞ
0;iiU

ðsÞ
ik KðsÞkk ð31Þ

and thus they are independent of the values of hj or the FE model
variations at the component level due to changes in the model

parameter. Also using the stiffness matrix partitions KðsÞii ¼ KðsÞii hj

and KðsÞib ¼ KðsÞib hj, the constrained modes are given by the constant
matrix

WðsÞib ¼ � KðsÞii

h i�1
KðsÞib ¼ � KðsÞii

h i�1
KðsÞib ð32Þ
also independent of the values of the parameter hj or FE model vari-
ations at component level. Thus, a single component analysis is re-
quired to provide the exact estimate of the fixed-interface modes
from (30) and the constrained modes from (32) for any value of
the model parameter hj.

Substituting into the reduced mass and stiffness matrices (14)
and (15) the partitions of the stiffness matrix (29), the eigenprop-
erties (30) and the interface constraint modes (32) of the compo-
nent s, it is straightforward to verify that the reduced stiffness
matrix of component s takes the form

K̂ðsÞ ¼ K̂ðsÞhj ð33Þ

where the reduced matrix K̂ðsÞ and the reduced mass matrix M̂ðsÞ are
constant matrices given by ½K̂ðsÞ; M̂ðsÞ� ¼ G½KðsÞ;MðsÞ

0 �, independent of
the values of the model parameters h.

Introduce next the index set R to contain the structural compo-
nents s that depend on a parameter in the vector h. Then the set
R ¼ f1; . . . ;Ncg � R contains the component numbers for which
their properties are constant and independent on the values of
the parameter vector h. Substituting (33) into (17), the stiffness
matrix of the Craig–Bampton reduced system admits the
representation

K̂CB ¼ K̂CB
0 þ

XNh

j¼1

K̂CB
;j hj ð34Þ

and the mass matrix is given by M̂CB ¼ M̂CB
0 , where the coefficient

matrices K̂CB
0 and K̂CB

;j in the expansion (34) are assembled from
the component stiffness matrices, defined in (33), by

K̂CB
0 ¼

X
s2R

Fs½K̂ðsÞ� and K̂CB
;j ¼

X
s2Dj

Fs½K̂ðsÞ� ð35Þ

The sum in the second of (35) takes into account that more than one
components s 2 Dj may depend on the parameter hj.

It is important to note that the assembled matrices K̂CB
0 and K̂CB

;j

of the Craig–Bampton reduced system in the expansion (34) are
independent of the values of h. In order to save computational
time, these constant matrices are computed and assembled once
and, therefore, there is no need this computation to be repeated
during the iterations involved in optimization or TMCMC sampling
algorithms for model updating due to the changes in the values of
the parameter vector h. This aforementioned procedure results in
substantial computational savings since it avoids (a) re-computing
the fixed-interface and constrained modes for each component,
and (b) assembling the reduced matrices from these components.
The formulation guarantees that the reduced system is based on
the exact component modes for all values of the model parameters.
In addition, using (21) and the fact that W(s) and thus W are inde-
pendent of h, the observation matrix L̂ ¼ ŜWS in (21) is constant,
independent of the parameter vector h.

The modal frequency and mode shape residuals involved in the
objective J(h;w) have the same exactly form as in (1) and (2) with
ur (h) and the constant matrix L in /r (h) = Lur (h) be replaced by
q̂rðhÞ and the constant matrix L̂ ¼ ŜWS, respectively. Available mod-
el updating formulations and software can thus be readily used to
handle the parameter estimation by just replacing the eigenvalue
problem (3) of the original mass and stiffness matrices with the
eigenvalue problem (20) of the reduced system matrices with
K̂CBðhÞ given by (34) and M̂CBðhÞ ¼ M̂CB

0 , as well as replacing the con-
stant matrix L of zeros and ones by the constant matrix L̂ ¼ ŜWS.

Special attention should be given when the size of the reduced
mass and stiffness matrices are dominated by a large number of
interface DOF. In this case, the coordinate transformation (22)
can be used to further reduce the number of interface DOF for
one or more interfaces. Using (26), it is clear that the stiffness



Fig. 1. General view of Metsovo bridge.
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matrix of the eigenvalue problem involved in (25) depends on the
parameters associated with the components that connect to the
interface ‘. The variability of these parameters affects the charac-
teristic interface modes V(‘) which are functions of these parame-
ters. Exact estimates of the characteristic interface modes in
iterative or TMCMC sampling algorithms can only be obtained by
repeatedly solving (25) for each different value of the respective
parameters. For large number of DOF at the interface, such re-
analyses at the interface level may increase substantially the com-
putational demands. Interpolation schemes [37] can be used to
approximate the characteristic interface modes at the interface
level in terms of the characteristic interface modes at a number
of support points in a significantly reduced space of model param-
eters associated with the components that connect to the interface
‘.

Alternatively, selecting V(‘) in (22) to be constant, independent
of h, the formulation significantly simplifies, with the reduced stiff-
ness matrix to be given by

K̂ ¼ K̂0 þ
XNh

j¼1

K̂ ;jhj ð36Þ

where K̂0 ¼ VT K̂CB
0 V and K̂ ;j ¼ VT K̂CB

;j V are constant matrices, while
the reduced mass matrix be given by the constant matrix

M̂0 ¼ VT M̂CB
0 V . The modal frequency and mode shape residuals in-

volved in the objective function J(h;w) in the model updating for-

mulations have exactly the same form as in (1) and (2) with ur(h)

and the constant matrix L in /r(h) = Lur(h) be replaced by cr(h) de-

fined in (24) and the constant matrix ~L ¼ ŜWSV defined in (27),
respectively. The choice of constant V(‘) is critical in order to get
accurate results with the least number of characteristic interface
modes over the region of variation of the model parameters associ-
ated with the interface ‘. In FE model updating, the V(‘) can be cho-
sen as the eigenvectors of the lowest modes of the eigenvalue
problem (25) corresponding to a reference model of the structure,
avoiding the computational cost involved with the repetitive solu-
tion of (25) at each iteration or TMCMC sample. This, however,
may deteriorate the accuracy of the predictions for large variations
of the model parameters. To improve convergence and maintain the
accuracy of the final optimal estimate in iterative optimization
algorithms, the reduced basis forming V(‘) can be updated every
few iterations. Also, to maintain higher level of accuracy in the
TMCMC sampling algorithm, the reduced basis forming V(‘) can be
kept constant within a TMCMC stage, with this basis selected to cor-
respond to the most probable model predicted from the previous
TMCMC stage. Such technique is expected to give sufficiently accu-
rate results for the final TMCMC stage, especially for the cases
where the posterior PDF is isolated in a relative small region in
the parameter space. The computational efficiency and accuracy
of reducing the interface DOF using constant V(‘) will be demon-
strated in the application section.

It should be pointed out that the significant savings arising
partly from the reduction of the size of the eigenvalue problem
from n to nr in the proposed model reduction technique and partly
from the fact that the estimation of the the component fixed-inter-
face modes and the characteristic interface modes need not to be
repeated for each iteration involved in the optimization or TMCMC
sampling algorithms. Moreover, for gradient-based optimization
algorithms required in model updating schemes, further computa-
tional savings are obtained due to the reduction of the size of the
matrix of the linear system that needs to be factorized in the ad-
joint formulation [45], from the size n for the full matrices K � krM
to the size nr for the reduced-order matrices K̂ � krM̂.

Attention should also be paid on the optimal number of compo-
nents that should be used to represent a substructure with
stiffness that depends linearly on a single parameter. More compo-
nents within such substructure introduce extra interface DOFs or
characteristic interface modes which increase the size and affect
the sparsity structure of the reduced matrices K̂ and M̂. The total
size of the reduced matrices is also affected by the number of the
fixed interface modes for all components introduced for the sub-
structure. From the computational point of view, the optimal
choice of components for such a substructure would be to select
the number of components and the optimal spatial division which
will result in a reduced system that requires the least computa-
tional time for analysis. However, as the number of interface DOFs
or characteristic interface modes increases by the introduction of
more components per substructure, it is unlikely that the resulting
increase in the size of the reduced matrices be effectively compen-
sated by a decrease in the total number of fixed interface modes
arising from the multiple components that represent the single
substructure. Thus, in case where detailed optimal component
selection studies are not available, the wisest choice is to select a
single component per substructure.

As a final note, it is worth mentioning the treatment of a com-
ponent in the CMS process for the general case for which the com-
ponent stiffness and mass matrices depends on two or more
parameters in the vector h. In these cases, in order to obtain exact
estimates of the component modes, the solution of the eigenvalue
problems for such a component is not avoided. The fixed-interface
and characteristic interface modes have to be recomputed in each
iteration or TMCMC sample involved in the model updating proce-
dure and used to form the reduced stiffness and mass matrices of
the components. This repeated computation, however, is usually
confined to a small number of components. Interpolation schemes
can also be adopted to avoid re-analyses at the component or inter-
face level by approximating the fixed interface modes and/or the
characteristic interface modes at various values of the model
parameters in terms of the corresponding modes of a family of
models defined at a number of support points in the parameter
space [37]. However, it should be pointed out that the use of inter-
polating schemes for approximating the fixed interface and the
characteristic interface modes is an open issue and further analy-
ses are required to evaluate the effectiveness of such techniques
in the general case.
5. Applications

The purpose of the application is to demonstrate the applicabil-
ity, computational efficiency and accuracy of the proposed model
reduction technique for FE model updating. For this, a model of
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the Metsovo bridge shown in Fig. 1 is updated. The bridge is the
highest reinforced concrete bridge of Egnatia Odos motorway lo-
cated in Greece, with the height of the taller pier P2 equal to
110 m. The total length of the bridge is 537 m. The bridge has 4
spans, of length 44.78 m, 117.87 m, 235.00 m, 140.00 m and three
piers of which pier P1, 45 m high, supports the boxbeam super-
structure through pot bearings (movable in both horizontal direc-
tions), while P2 and P3 piers (110 m and 35 m, respectively)
connect monolithically to the superstructure. The total width of
the deck is 13.95 m. The superstructure is prestressed of single
boxbeam section, of height varying from the maximum 13.5 m in
its support to pier P2 to the minimum 4.00 m in key section. Piers
P2 and P3 are founded on huge circular Ø12.0 m rock sockets in the
steep slopes of the Metsovitikos river, in a depth of 25 m and 15 m,
respectively.

The commercial software package COMSOL Multiphysics [50] is
used for developing the FE model of the bridge. For this, the struc-
ture was first designed in CAD environment and then imported in
COMSOL Multiphysics modeling environment. The models were
constructed based on the design plans, the geometric details and
the material properties of the structure. The following nominal val-
ues of the material properties of the concrete deck, piers and foun-
dations are considered. For the concrete deck, the nominal value of
the Young’s modulus is taken to be E = 37 Gpa, the Poison’s ratio
m = 0.2 and the density q = 2548 kg/m3. For the piers and the foun-
dation the nominal value of the Young’s modulus is taken to be
E = 34 GPa. A detailed FE model is created using three-dimensional
tetrahedron quadratic Lagrange finite elements to model the whole
bridge. An extra coarse mesh with quadratic Lagrange elements are
chosen to predict the lowest 20 modal frequencies and mode
shapes of the bridge. The selected model has 97,636 finite elements
and 562,101 DOF.

5.1. Effectiveness of CMS technique

For demonstration purposes, the bridge is divided into nine
physical components shown schematically in Fig. 2. Six compo-
nents are related to the four spans of the bridge deck, while three
components are related to the three piers. The eight interfaces be-
tween the components are also shown in Fig. 2. Each deck compo-
nent consists of several 4–5 m deck sections. A typical 5 m section
is shown in Fig. 3(a) along with its FE mesh. The tallest pier also
Fig. 2. Components of FE m
consists of several sections. A typical 4 m pier section is also shown
in Fig. 3(b) along with its FE mesh. It should be noted that the size
of the elements in the FE mesh is the maximum possible one that
can be considered, with typical element length of the order of the
thickness of the deck cross-section. The entire simulation for
assembling the mass and stiffness matrices of the structure or its
components is performed within the COMSOL Multiphysics model-
ing environment and exported in Matlab environment for further
processing using CMS techniques and FE model updating software.

The cut-off frequency xc is introduced to denote the highest
modal frequency value that is of interest in FE model updating.
In this study the cut-off frequency is selected to be equal to the
20th modal frequency of the nominal model. For the specific mod-
el, this frequency is obtained from modal analysis to be xc = 4.6 Hz.
The effectiveness of the CMS technique as a function of the number
of modes retained for each component is next evaluated. For each
component it is selected to retain all fixed interface modes that
have frequency less than xmax = qxc, a multiple of the cut-off fre-
quency xc, where the value of the multiplication factor q affects
computational efficiency and accuracy of the model reduction
technique. Representative values of q range from 2 to 10. The total
number of internal DOF and retained modes for q = 8, q = 5 and
q = 2 within all the components are reported in the second row
of Table 1. The total number of internal and boundary DOF of the
unreduced model are reported in the second column of Table 1
based on the components and interfaces shown in Fig. 2. The total
number of internal DOF per component and the number of modes
retained per component for different q values is shown in Fig. 4. It
is clear from the results in Table 1 and Fig. 4 that a more than three
orders of magnitude reduction in the number of DOF per compo-
nent is achieved using CMS. For the case q = 8, a total of 286 inter-
nal modes out of the 558,801 are retained for all 9 components.
Fig. 5 shows the fractional error between the modal frequencies
computed using the complete FE model and the modal frequencies
computed using the CMS technique as a function of the mode num-
ber for q = 2, 5 and 8. It can be seen that the fractional error for the
lowest 20 modes fall below 10�4 for q = 8, 10�3 for q = 5 and 10�2

for q = 2, which ensures high levels of accuracy.
The total number of DOF of the reduced model q = 8 is 3586

which consist of 286 fixed interface generalized coordinates and
3300 constraint interface DOF for all components. It is thus obvious
that a large number of generalized coordinates for the reduced
odel of Metsovo bridge.



Fig. 3. (a) A typical 5 m section of the deck with its FE mesh, (b) a typical 4 m section of the tallest pier with its FE mesh.

Table 1
Total number of internal and interface DOF for the full (unreduced) and reduced models.

Structure without reduction Retained modes q = 8, m = 200 Retained modes q = 5, m = 200 Retained modes q = 2, m = 200

Total internal DOF 558,801 286 100 31
Total interface DOF 3300 306 306 306
Total DOF 562,101 592 406 337
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Fig. 4. Number of DOF per component of the FE model of Metsovo bridge.
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Fig. 5. Fractional modal frequency error between the predictions of the full model
and the reduced model as a function of eigenmode number and for different values
of q and m.

Table 2
Information for each interface involved in the modeling with number of interface DOF
and retained modes for m = 200.

Interfaces Adjacent
components

Interface
DOF

Retained modes
m = 200

1 1–2 441 46
2 2–3 258 27
3 2–4 432 47
4 4–5 441 42
5 5–6 423 46
6 6–7 660 33
7 6–8 495 49
8 8–9 150 16
Total DOF or retained

modes
3300 306
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system arises from the interface DOF. A further reduction in the
number of generalized coordinates for the reduced system can be
achieved by retaining only a fraction of the constrained interface
modes. The number of DOF per interface is shown in the third col-
umn of Table 2. For each interface defined in Table 2, it is selected
to retain all modes that have frequency less than xmax = mxc, a
multiple of the cutoff frequency xc, where the multiplication factor
m is user and problem dependent. The number of modes retained
per interface for m = 200 is given in the last column of Table 2.
The number of retained interface modes is approximately 10% of
the interface DOF for each interface. Fig. 5 presents results for
the fractional error between the modal frequencies computed
using the CMS method with retained characteristic interface
modes for m = 200 for each interface and the modal frequencies
computed using the complete FE model as a function of the mode
number. It can be seen that the fractional error for most of the
lowest 20 modes of the structure fall well below 10�3 for m = 200
and q values as low as q = 5. Thus, the value of m = 200 gives accu-
rate results in this case, while the number of retained interface
modes for all interfaces is 306 which corresponds to 10% of the to-
tal number of interface DOF. The reduced system for q = 5 and
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m = 200 has 406 DOF from which 100 generalized coordinates are
fixed-interface modes for all components and the rest 306 general-
ized coordinates are characteristic interface modes for all 8 inter-
faces. Obviously the number of generalized coordinates is
drastically reduced by more than three orders of magnitude com-
pared to the number of DOF of the original unreduced FE model.
The significant reduction in number of generalized coordinates of
the reduced system and the increased accuracy of the results are
promising for using the proposed model reduction method in FE
model updating.
5.2. FE model updating using single- and multi-objective optimization

For demonstration purposes, the FE model is parameterized
using five parameters associated with the modulus of elasticity
of one or more structural components shown in Fig. 2. The param-
eterization is graphically depicted in Fig. 6(a). Specifically, the first
two parameters h1 and h2 account respectively for the modulus of
elasticity of the pier components 3 and 7 of the bridge. The param-
eter h3 accounts for the modulus of elasticity of the components 1
and 2 of the deck, the parameter h4 accounts for the components 4
and 5, while the parameter h5 accounts for the components 6 and
8. Note that for the three substructures parameterized by a single
parameter h3, h4 or h5, two components per substructure have been
introduced, demonstrating the flexibility of the proposed method-
ology. The component 9 is not parameterized. The parameters are
introduced to scale the nominal values of the properties that they
model so that the value of the parameters equal to one correspond
to the nominal value of the FE model. The nominal FE model corre-
sponds to values of h1 = � � � = h5 = 1.

For the purpose of the present analysis, simulated, noise
contaminated, measured modal frequencies x̂2

r and mode shapes
ûr are generated by perturbing the values of the modal properties
x0,r and u0,r, corresponding to the nominal FE model for h = 1,
according to the expressions x̂2

r ¼ x2
0;rð1þ nrÞ and ûr ¼
Fig. 6. (a) FE model parameterization based on 5 param

Table 3
Accuracy and computational effort for FE model updating based on full and reduced orde

Cases FE models Total DOF Single-objective optim

Error (%) Fu

Full Full model 562,101 0.00 8
(a) q = 8 3586 0.03 14
(b) q = 5 3400 0.43 13
(c) q = 2 3331 0.17 13
(d) q = 8, m = 200 592 0.11 14
(e) q = 5, m = 200 406 0.46 13
(f) q = 2, m = 200 337 0.24 13
u0;r þ ku0;rker , where nr � N(0,s2) are samples from a zero-mean
normal distribution with variance s2, and er is a zero-mean normal
random vector with diagonal covariance matrix e2I. The standard
deviations s and e of the perturbed terms control mainly the size
of the model and measurement errors for the modal frequencies
and the mode shapes. The assumed constant noise level for the dif-
ferent modeshape components may not exactly reflect the actual
differences observed in real applications between the predictions
from a model and the actual behavior of the structure since model
error will cause dissimilar noise levels at different modeshape
components. However, for the purpose of this study, which is to
demonstrate the efficiency of the proposed CMS scheme, the addi-
tion of constant noise level to different modeshape components is
sufficient. Herein, the magnitudes of the error terms are chosen to
be s = 1% and e = 3%.

The FE model is updated using the simulated modal data for the
lowest 10 modes. A sensor configuration involving 36 sensors is
considered. The sensors are placed along the deck and the piers
at the locations and directions as shown in Fig. 6(b), measuring
along the longitudinal, transverse and vertical directions.

To investigate the accuracy and computational efficiency of the
proposed CMS formulation, the FE model updating is first
performed using the single objective optimization method by
selecting the weight in (4) to be w = 1. Results for the accuracy of
the model parameters and the computational effort are presented
in Table 3 for the following six cases involving different reduction
schemes in internal and boundary DOF: (a) q = 8, (b) q = 5, (c)
q = 2, (d) q = 8 and m = 200, (e) q = 5 and m = 200, and (f) q = 2
and m = 200. The initial values of the parameters used to carry
out the optimization are hi = 1.2, i = 1, . . . ,5. The errors in the fourth
column of the table are defined by the normffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðhest � hfullÞ=hfullk2=Nh

p
� 100 of the fractional errors of the opti-

mal model parameter estimates hest obtained from the CMS-

reduced FE model and the optimal estimates hfull obtained from
the full (non-reduced) FE model. The percentage difference of the
eters, (b) sensor configuration involving 36 sensors.

r models of Metsovo bridge.

ization Multi-objective optimization

nction evaluations Time (sec) Time (sec)

14,251 321,352
766 15,050
677 12,282
674 11,437
12 197
8 128
6 109
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Fig. 8. Comparison of Pareto models in the 2-d projection (h3 ,h5) of the 5-d
parameter space for the full and reduced-order FE models.
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optimal estimates for the full model from the values h = 1 of the

nominal model is (hfull � 1)T � 100 = (0.57,1.87,1.09,0.61,1.21)T

and it is due to the noisy data considered. The results in Table 3
clearly suggest that the error in the estimates of the model param-
eters is very small for the case of reducing the internal DOF using
q = 8, q = 5 and q = 2. The fluctuation in the values of the parame-
ters errors reported in Table 3 as a function of the q values should
not be surprising since, due to the noise added, the experimental
modal data do not coincide with the modal data predicted by the
unreduced model.

The number of function evaluations and the computational ef-
fort are also shown in Table 3. The computational time for carrying
out the optimization for the reduced-order models is 5% of the time
required for the full model. Consequently, significant gains in com-
putational effort are achieved without sacrificing the accuracy in
the model parameter estimates. A further reduction in the compu-
tational effort, close to two order of magnitude, is achieved by
reducing the interface degrees of freedom using m = 200, while
the accuracy is maintained to acceptable levels since the errors
are smaller than 0.46%. Overall, for q = 8 and m = 200, the computa-
tional effort is drastically reduced by three to four orders of mag-
nitude, without sacrificing in accuracy since the error norm is
0.11%.

Results are next presented for the multi-objective model updat-
ing framework. Figs. 7 and 8 present the Pareto front and the
Pareto optimal models, respectively, computed using the full FE
model and the six reduced-order models introduced before. The
Pareto front and optimal solutions are represented by 20 points
computed by the Normal Boundary Intersection algorithm [11]. It
is clear from Fig. 8, that the quality of the estimates provided is
excellent for the reduced-order models (a) and (d), very good for
the reduced-order models (b) and (e), and acceptable for the re-
duced-order models (c) and (f). The computational effort for per-
forming the FE model updating using the full and reduced-order
models is reported in the last column of Table 3. The computa-
tional time required to carry out the multi-objective optimization
for obtaining the Pareto optimal models using the full FE model
is of the order of 89 h (approximately four days). Compared to
the full model, the computational demands are substantially re-
duced by a factor of 20 for the reduced models (a) and (b), and
by more than three orders of magnitude for the reduced models
(d) and (e). Specifically, the computational time is 3–4 h when only
the internal DOF of each component are reduced and 2–3 min
when both internal and interface DOF are reduced. A drastic reduc-
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Fig. 7. Comparison of Pareto fronts for the full and reduced-order FE models.
tion in computational effort is thus achieved by using the reduced-
order models, without sacrificing in accuracy of the model param-
eter estimates as shown in Figs. 7 and 8.
5.3. Application to damage identification using the Bayesian
formulation

The proposed model reduction technique is well suited in dam-
age identification applications that are based on FE model updat-
ing. This is illustrated next using the Bayesian method for
structural damage identification proposed in Ntotsios et al. [22].
Specifically, a structure is divided into a number of substructures
and it is assumed that damage in the structure is confined in one
or more substructures, causing stiffness reduction in these dam-
aged substructures. In order to identify which substructure con-
tains the damage and predict the level of damage, a family of l
model classes M1, . . . ,Ml is introduced, and the damage identifica-
tion is accomplished by associating each model class to damage
contained within a substructure. For this, each model class Mi is
parameterized by a number of structural model parameters hi con-
trolling the stiffness in the substructure i, while all other substruc-
tures are assumed to have fixed stiffness values equal to those
corresponding to the undamaged structure. Damage in the sub-
structure i will cause stiffness reduction which will alter the mea-
sured modal characteristics of the structure. The model class Mi

that ‘‘contains’’ the damaged substructure i will be the most likely
model class to observe the modal data since the parameter values
hi can adjust to the modified stiffness distribution of the substruc-
ture i, while the other modal classes that do not contain the sub-
structure i are expected to provide a poor fit to the modal data.

Using the Bayesian model selection framework, the model clas-
ses are ranked according to the posterior probabilities based on the
modal data identified from measurements. The most probable
model class Mbest that maximizes P(MijD) in (8), through its associ-
ation with a damage scenario on a specific substructure, will be
indicative of the substructure that is damaged, while the posterior
PDF of the model parameters of the corresponding most probable
model class Mbest, compared to the parameter values of the undam-
aged structure, will be indicative of the severity of damage in the
identified damaged substructure.

To demonstrate the methodology, the Metsovo bridge is divided
into 15 substructures as shown in Fig. 9. A number of competitive
model classes M[i] and M[i,j] are introduced to monitor various



Fig. 9. Substructures of FE model of Metsovo bridge used for damage identification.
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probable damage scenarios for the bridge corresponding to single
and multiple damages at different substructures. The model class
M[i] contains one parameter related to the stiffness (modulus of
elasticity) of substructure i shown in Fig. 9. It can monitor damage
associated with the stiffness reduction in the i substructure. The
model class M[i,j] contains two parameters related to the stiffness
of substructures i and j in Fig. 9. It can monitor damage associated
with the stiffness reduction in either substructures i and j or simul-
taneously at both substructures. The five-parameter model shown
in Fig. 6(a) is also included in the family of model classes to mon-
itor simultaneous damages at five different substructures. This
five-parameter model class is denoted by M[5�par]. All model clas-
ses are generated from the updated FE model of the undamaged
structure. For each model class, CMS techniques are used to allevi-
ate the computational burden associated with the model updating
problems that needs to be solved. For this, two different cases of
reduced-order FE models are considered. The first case corresponds
to models obtained by reducing the internal DOF using q = 8, while
the second case corresponds to models obtained by reducing both
the internal and interface DOF using q = 8 and m = 200. The Ritz ba-
sis for reducing the interface DOF were selected to be the charac-
teristic interface modes obtained from Eq. (25) for the reference
values h = 1.
Table 4
Damage identification results, model DOF, number of FE simulations (NFES) and computa

Model
class

Evidence q = 8
(log)

Evidence q = 8 m = 200
(log)

Dhi q = 8
(%)

Dhi q = 8 m = 2
(%)

M[2] 954.46 954.93 +27.9 +26.5
M[4] 954.99 955.08 �15.7 �15.2
M[5] 988.17 989.32 �47.8 �47.3
M[8] 1005.5 1006.4 �31.3 �30.8
M[10] 1723.1 1723.3 �29.2 �29.2
M[10,7] 1722.5 1723.1 �29.0 �29.0

+4.0 +3.9
M[10,8] 1718.7 1719.0 �29.0 �29.0

+1.9 +1.3
M[5�par] 1700.4 1698.2 �1.3 �0.5

�28.3 �28.5
+1.0 +0.9
+2.3 +1.5
+0.5 +0.5

Total
The number of components introduced for each model class de-
pends on the parameterization. Specifically, the model class M[i] is
divided into two, three or four components. One component is se-
lected to be the substructure i shown in Fig. 9, while the remaining
components are selected to be the parts of the remaining structure
that connect to the interfaces of component i. The model classes
M[1], M[10], M[14] and M[15] have one interface, the model classes
M[2], M[5] to M[8], M[11] and M[12] have two interfaces, while the
model classes M[3], M[9] and M[13] have three interfaces with the
remaining structure. A similar division into components is intro-
duced for the family of M[i,j] model classes. For example, model
class M[10,8] is divided into four components, the first two compo-
nents coincide with the physical substructures 10 and 8, the third
includes the physical substructures 9, 11 to 15 and the fourth in-
cludes the substructures 1 to 7. The components in the M[5�par]

model class are kept the same as the ones used in Section 5.2.
The reduced stiffness matrices K̂0 and K̂ ;j in the linear representa-
tion (36) and the mass matrix M̂0 are assembled once for each
model class and are stored in a database of model classes.

For investigating the computational efficiency and accuracy of
the reduced models, a simulated damage is introduced at the high-
est pier (substructure 10 in Fig. 9), manifested as a stiffness reduc-
tion of 30% the nominal stiffness value. Simulated, noise
tional effort (CE) in minutes for each model class.

00 DOF (NFES)
q = 8

DOF (NFES) q = 8
m = 200

CE q = 8
(min)

CE q = 8 m = 200
(min)

1724 (8000) 438 (8000) 123 3.5
989 (8000) 381 (8000) 42 3
1747 (9000) 441 (9000) 134 3.6
1824 (9000) 408 (9000) 170 0.5
1393 (12,000) 388 (12,000) 173 4.6
1829 (14,000) 425 (13,000) 245 5.4

2485 (14,000) 433 (13,000) 509 5.5

3,586 (19,000) 592 (19,000) 759 14

2155 40.1
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contaminated, measured modal frequencies and mode shapes are
generated for the damaged structure by adding a 1% and 3% Gauss-
ian noise to the modal frequencies and modeshape components
generated from the nominal non-reduced FE model with 30%
reduction of the stiffness in the highest pier. It is expected that
the proposed Bayesian damage identification methodology will
promote M[10], M[10,i] and M[5�par] as the most probable model
classes since these models classes monitor the stiffness of the
component that contains the actual damage.

The model class selection and the model updating is performed
using the stochastic simulation algorithm TMCMC with the follow-
ing settings of the TMCMC parameters: tolCov = 1.0, b = 0.2 and
1000 samples per TMCMC stage [18]. The results for the log
evidence for representative model classes and the corresponding
magnitude of damages Dhi predicted by each model class are
reported in Table 4 for the two cases of reduced-order models.
Herein, for demonstration purposes, the percentage change Dhi

between the mean estimates �h½i� (or �h½i;j�, �h½5�par�Þ of the model
parameters of each model class and the corresponding values
ĥ½i;und� (or ĥ½i;j;und�, ĥ½5�par;und�Þ of the reference (undamaged) structure
measures the severity (magnitude) of damage computed by each
model class M[i] (or M[i,j], M[5�par]).

Comparing the log evidence of each model class and also the
corresponding magnitude of damages Dhi predicted by each model
class in Table 4 it is evident that the proposed methodology
correctly predicts the location and magnitude of damage using
the reduced-order model classes. Specifically, based on the re-
duced-order models for q = 8, the most probable model class is
M[10] which predicts a mean 29.2% reduction in stiffness which is
very close to the inflicted 30%. Among all alternative model classes
M[10], M[10,7], M[10,8] and M[5�par] that contain the actual damage,
the proposed methodology favors the model class M[10] with the
least number of parameters and it predicts the five parameter
model class M[5�par] as the least probable model. This is consistent
with theoretical results for model class penalization for over
parameterization, available for Bayesian model class selection
[14]. The model classes that do not contain the damage are not fa-
vored by the proposed methodology. Based on the reduced-order
models for q = 8 and m = 200, the predictions of the location and
severity of damage are very close to the ones obtained from the re-
duced-order models for q = 8 for most model classes included in
Table 4. In particular, the most probable model class for q = 8
and m = 200 is also predicted to be M[10], while the mean damage
severity is predicted to correspond to 29.2% reduction in stiffness,
exactly the same as the one predicted with the reduced-order
models for q = 8.

The resulting number of FE model re-analyses and the compu-
tational demands in minutes for each model class are also is shown
in Table 4. The number of FE model runs for each model class de-
pends on the number of TMCMC stages which vary for each model
class from 8 for the one-parameter model class to 19 for the five-
parameter model class. The resulting variable number of stages
per model class was automatically obtained from the TMCMC algo-
rithm by keeping constant the value tolCov of the TMCMC param-
eter to tolCov = 1.0. This parameter controls the intermediate PDFs.
For more details, the reader is referred to the original publication of
the TMCMC algorithm [18]. The parallelization features of TMCMC
[51] were also exploited, taking advantage of the available four-
core multi-threaded computer unit to simultaneously run eight
TMCMC samples in parallel. For comparison purposes, the compu-
tational effort for solving the eigenvalue problem of the original
unreduced FE model is approximately 139 s. Multiplying this by
the number of TMCMC samples shown in Table 4 and considering
parallel implementation in a four-core multi-threaded computer
unit, the total computational effort for each model class is expected
to be of the order of 3 to 7 days for 8000 to 19,000 samples,
respectively. The results from the full FE model are not shown
due to the excessive computational time required to obtain results
for the model classes in the database. For all eight model classes
considered in Table 4, the total computational effort using the
unreduced models is estimated to be approximately one month
and seven days. In contrast, for the reduced-order models for
q = 8, the computational demands for running all model classes
are reduced to 30 h (2155 min as shown in the last row of Table
4), while for the reduced-order models for q = 8 and m = 200 these
computational demands are drastically reduced to 40 min. It is
thus evident that a drastic reduction in computational effort for
performing the structural identification based on a set of monitor-
ing data is achieved from approximately 37 days for the unreduced
model classes to 40 min for the reduced model classes correspond-
ing to q = 8 and m = 200, without compromising the predictive
capabilities of the proposed damage identification methodology.
This results in a drastic reduction in the computational effort of
more than three orders of magnitude.
6. Conclusions

Iterative optimization algorithms and stochastic simulation
algorithms involved in both deterministic and Bayesian FE model
updating formulations require a moderate to large number of FE
model re-analyses. For large size FE models with hundred of thou-
sands or even million DOF, the computational demands may be
excessive. Exploiting certain stiffness-related parameterization
schemes, often encountered in FE model updating formulations,
to guide the division of the structure into components results in
exact linear representations of the Craig–Bampton reduced stiff-
ness matrix as a function of the model parameters with coefficient
matrices computed and assembled once from a single CMS analysis
of a reference structure. Further significant reductions in the size of
the reduced system are shown to be possible using characteristic
interface modes estimated for each interface between components.
Re-analyses required in FE model updating formulations are asso-
ciated with the solution of the eigenproblem of the reduced-order
system, completely avoiding the re-analyses of the component
fixed-interface and characteristic interface modes as well as the
re-assembling of the reduced system matrices. FE model updating
and damage identification results using a solid model of a bridge
demonstrated the implementation, computational efficiency and
accuracy of the proposed model reduction methodology. The com-
putational effort was reduced drastically by more than three orders
of magnitude. In particular, for the application in damage identifi-
cation the computational time was reduced from approximately
one month to several minutes. Further computational savings
can be obtained by adopting surrogate modes to drastically reduce
the number of reduced-order system re-analyses and parallel com-
puting algorithms to efficiently distribute the computations in
available multi-core CPUs [51].
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