Distributed Resource Allocation Mechanism for
SOA Service Level Agreements

Kostas Katsalis*, Leandros Tassiulas* and Yannis Viniotis'
*Department of Computer & Communication Engineering
University of Thessaly and CERTH-ITI. 37 Glavani - 28th October Str, Deligiorgi Building, 382 21 Volos - Greece.
TNorth Carolina State University, EB 1I, Room 3108, USA
Email: kkatsalis, leandros @inf.uth.gr, candice@ncsu.edu

Abstract—Enterprise computing facilities, such as data centers
or server farms typically employ service-oriented architectures
(SOA) to support multiple, XML-based Web Services. They are
typically architected in multiple computing tiers, in which one
tier is used for, say, offloading the CPU-intensive XML processing
onto a cluster of (potentially virtual) middle-ware appliances.
Service differentiation in enterprise networks addresses the issues
of managing the enterprise network resources in order to achieve
desired performance objectives. In this paper, we define a
dynamic algorithm that manages allocation of CPU time in the
appliance tier. We evaluate the service differentiation capabilities
of this algorithm via simulations.

Index Terms—Service Differentiation, SLA, Middleware, In-
ternet servers

I. INTRODUCTION

In modern enterprise computing, web services and other
SOA technologies experience exponential growth [1]; in such
environments, complex applications, developed with SOA
principles, are grouped in Service Domains (SD) that serve
requests from all over the internet. Service Level Management
(SLM) [2] is necessary, especially for business-critical or
delay-sensitive applications. For a variety of reasons, such
applications are architected in multiple computing tiers, in
which one tier is used for, say, offloading the CPU-intensive
XML processing onto a cluster of (potentially virtual) middle-
ware appliances. These appliances secure, accelerate and route
XML documents so enterprises can cost-effectively realize the
full potential of SOA. Frequently referred as SOA appliances
or middleware integrators, XML appliances implemented in
hardware or software can perform many of the tasks of a
typical SOA, such as an Enterprise Service Bus.

One major SLM issue is how to provide service differ-
entiation to the various SDs; for example, how to allocate
different amounts of CPU time to the SDs. Service dif-
ferentiation becomes complicated because requests arrive in
usually unpredictable traffic patterns and pose unpredictable
demands for computing resources. One way to capture such
unpredictability is to model system operation as a continuous
alternation between two modes: “underload” and “overload”
mode. Switching between these modes can happen at any arbi-
trary time. Service differentiation goals are typically expressed
separately for each mode.

In this paper, we model an enterprise computing center
as a three-tier architecture. In the first tier, we consider
a number of (http) routers; the routers collect traffic from
sources distributed all over the internet and forward it to the
second tier, which comprises a cluster of XML appliances.
After XML-related processing, the appliances route traffic to
servers in the third tier, where the final processing of the
requests is done. The service differentiation problem we study
focuses on providing different amounts of CPU time to each
SD in the XML appliance tier.

In this paper, we propose a new, dynamic, feedback-based
control mechanism that achieves such differentiation. The
mechanism is implemented as a software controller that con-
trols the arrival rates of the traffic that enters every appliance in
the cluster. The rates are controlled by performing open/close
port operations at the http routers. Because of the complexity
in the theoretical proof of the problem that we examine, in
this paper we evaluate the performance of the controller only
via simulations.

II. RELATED WORK

Service differentiation is a well studied issue in the liter-
ature with numerous mechanisms and algorithms presented
for server optimization. A very interesting approach can be
found in [3] where protection from overloads is also under
consideration. The management of the Server Capacity is made
by using entrance “tickets” and estimating new sessions for
each class. In [4], SAA/SDA algorithm provides unqualified
Service Differentiation, by activating each time one instance
for domains that are above the target CPU utilization target and
deactivating one instance for domains that are below the target.
Three server-side mechanisms are proposed in [5] where more
resource capacity is available for the high-priority processes
by slowing down a background pool for low-priority requests.
A combination of control theory and queueing modeling is
presented in [6]. Server resources are allocated to achieve a
specified average delay, given the currently observed average
request arrival rate. Of course service differentiation is a very
common problem also for DBMS systems, where request
classifing, scheduling and performance monitoring can be used
for providing differentiation [7].

Our work differs from existing solutions in that we consider
the underload/overload model of system operations, with dif-
ferent CPU utilization goals in each mode. The solution we
propose is intuitive, has low overhead and requires no manual
configuration.

III. PROBLEM STATEMENT

We consider a system that serves M SDs. The SLA problem
we want to study is the following: allocate a given percentile
P} of the CPU resources in the appliance tier to SD 4, when
the system is in underload mode; the percentile changes to P?,
when the system is in overload mode. The architecture of the
system we study can be seen in figure 1 . Multilayer switches
(or http routers) are used to spread traffic from various SDs
or service classes, in a cluster of XML appliances that is
responsible for XML preprocessing. After preprocessing is
done web requests are sent to a cluster of application servers
to handle final processing. Server tier is not examined in this
paper and we are only interested in the interaction between
the appliance tier and the multilayer switches.

A. Design Requirements

In order to properly set the model on which the controller
will operate, several requirements must be met by the appli-
ance operation.

o Each appliance is capable of managing which service
domain to serve and can accept configuration changes
in runtime.

« Each appliance has no knowledge of the state of the other
appliances and the service domains the other appliances
are servicing.

o When a request enters the appliance the CPU service time
it will need is unknown.

o We model each appliance as a G/G/1 queueing system,
served by a FIFO CPU scheduler.

The FIFO assumption is realistic in computing centers that
serve thousands or even millions of SDs. Even in less de-
manding situations, the FIFO scheduling assumption is a good
system approximation for appliances that server more service
domains than the internal queues the appliance supports.

Since we cannot rely on a CPU scheduler to allocate CPU
time to competing SDs, the (only) alternative we have is
to control the rate at which traffic enters an appliance. We
propose a feedback-based control mechanism that is used to
spread traffic from the router tier into the appliance cluster; the
feedback is based on appliance CPU utilization. In a nutshell,
this feedback is used at the router to increase/decrease the rate
of traffic from a specific SD sent to an appliance. This action
is known in the literature as a router-to-appliance “open or
close port operation”.

IV. CONTROLLER DESIGN

In our model the controller periodically takes a decision
every Ty seconds and every time a triggered change occurs
between underload and overload mode. At the time of decision
ty the controller gathers runtime statistics through feedback

Domain 1 -,
App 1 Server 1
L APP 2 e Server 2
Domaind ApP 3 i Server 3
Controller
Domain 1 - > Appn-1 - 5 Server m
> Appn -~ -
Http router
Server Tier
Appliances Tier
Fig. 1. System Architecture
!“‘ T(’ 1
L, I t ’
4 1 |
underload underload _—
A B [D E F e
T, T,
Fig. 2. Time model. In moment B the controller makes a decision because

period expires. The prediction it makes is for moment E. In time C the
controller detects that the system is in overload mode and makes a prediction
decision for time F.

from all the appliances in the cluster and then perform
calculations to make a prediction of the CPU utilization vector
the cluster must work from this time on. CPU utilization and
queue state in each appliance are the statistics of interest while
the prediction is made for an interval of ¢,, seconds. The output
of this calculations is utilization vector Upg.

Since we don’t know when the next mode change will occur,
the ¢,, interval for our prediction can be short (e.g., on the order
of one Ty interval) or long (e.g., on the order of the entire SLA
observation period). T, is the interval from the beginning of
the observation to the time at which we make the prediction.

After the utilization vector Uppg is calculated, we examine
how we will spread the load in each appliance per SD.
Load is spread probabilistically according to an instantiation
matrix created by a Port Allocation Heuristic Algorithm.
Also, because the system is distributed, each router in the
system can be connected to a different appliances set. For
this purpose each router holds a software agent that locally
adapts the controller instantiation matrix independently from
other routers, based on the appliances set that it is connected
and the SDs that is servicing.

V. CONTROLLER OPERATION ALGORITHM

1) The system is continuously monitored for mode change
or controller decision period expired events. When such
events occur, the controller detects the mode of operation
(underload/overload) and collects runtime statistics from
the appliance tier.

2) The utilization vectors UJ” U j" if overload) are calcu-
lated for all SDs. U}* is the CPU utilization domain j
received until that moment for underload operation.

3) Let g;; denote the number of requests in the FIFO queue
of appliance ¢ for service domain j. In this step, we
calculate the number of all the domain requests that are
queued in all the appliance queues: > > ¢;; and the

i=0;=0
number of requests for service domain j in the virtual
queue: . g;;.
i=0

4) Then the desired utilization for domain 7 is calculated

according to the equation:

Teftp*

— s (U U)W
P

T
U;Rj:?e*PJy_ qj
P
5) The output Upg vector is used to produce an instan-
tiation matrix with all appliance/SD pairs. In this step
the controller “translates” the percentages to ports that
routers must open for every appliance/domain pair.

A. Why and how we use the Queue term

In Eq. 1, the controller’s prediction of the utilization is not
based solely on the utilization domains had at the moment of
decision t4. The term U(?j is an estimate of and accounts for
utilization a SD receives due to already queued requests.

Z%)Qij
max | 0.5, ———<—
D0 i

i=0j=0

U = xUY)

The intuition behind this estimation term can be explained as
follows: suppose that we have a large number of requests in the
cluster queues and all requests belong to SD 1; suppose further
that at the moment of decision we are “in” target for this
domain then we must intuitively use this “future” cpu cycles
usage as already taken to perform our prediction calculations.
Ug; doesn’t depend on average service time measurements,
but only on straightforward queue state measurements. In Eq.
2, the first term is used to control how much important we
consider the queue state at decision time, as an additional
percentage to utilization U}* (or U7).

B. How we calculate CPU utilization in the cluster

In Eq. 1, P} is the target underload percentage for service
domain j; in order to calculate the CPU utilization every
domain got until the time of decision we use the formula:

Ui(ta) = ax (UL + Uy + ... + U%) /N-l—(l—a)*U]’-‘(td,(;;
In Eq. 3, Uj(tq) is the utilization that domain j achieved
during underload periods (until time t4); similarly, U?(tq) is
the utilization achieved during overload periods. 43— is the
time the previous decision was made and variable a is the
percentage of the total time the system worked for this mode.
For example for underload: a = m%. Finally,

1=1,...,N, where N is the total number of appliances in
the cluster.

TABLE I
INSTANTIATION MATRIX

SD 1 SD 2 SD M
App1l | pn P12 P1M
App2 | p21 P22 P2M
App N | pn1 | PN2 PNM

C. Instantiation matrix creation

Instantiation matrix is created by translating the utilization
vector Upg to number of ports that must be open per appli-
ance and per SD. For each SD the following calculation is
performed: p; = R * Upgr; where p; is the number of ports
the router will open for SD j. The creation of the instantiation
matrix is based on an iterative heuristic where we try to hold
the same allocation as possible as in the previous step, in
order to have the minimum port open/close operations. Also
heuristic tries to have same number of open ports in all the
appliances in order to eliminate idle state.

D. Agents operation

After the controller computes a global instantiation matrix
for all service domain-appliances pairs, all local agents in
each router are updated with this information. These agents
manipulate the “global” matrix locally and independently from
other routers. Then this agent in each router is used to perform
two operations, Scheduling and Routing.

Scheduling Algorithm used: The router will probabilistically
select domain j to schedule traffic to an appliance in the cluster

Dij
with probability P = ——— where R is the total number of
ports the router can handle and) p;; is the number of the
?

i

ports allocated for domain j.

Routing Algorithm used: A request will be sent to appliance
Pij

¢ with probability F;; calculated as: P = j - In doing

so, we also provide a form of load balancing because traffic

is probabilistically distributed among the appliances.

VI. SIMULATIONS

There is no theoretical proof, that our controller will work.
We investigate through simulations three main questions:
(Q1) whether our proposed mechanism meets the CPU
utilization goals in both underload and overload occasions,
(Q2) we compare it with the static port allocation approach,
(Q3) we present how controller parameters such as decision
or prediction period etc affect our controller performance.
For our simulation purposes we built a custom, discrete-
event simulator in C# language. For the sake of simplicity
incoming traffic to service domain ¢ is modeled as a Poisson
process with arrival rate I;. In order to avoid side effects
as resource starvation, in all simulations presented, we use
a minimum number of ports for every SD no matter what the
instantiation matrix is in each cycle of measurements. In our
simulations this percentage is set equal to 10%. The rest of
the ports are distributed according to the controller operation

06

—— 3.0 &5 sd:1_—%— s0:2

05 +
04
0.3 &

02 f“‘

01

CPU Utilization

0.0

0 1000 20‘00 30}00 40'00 5000
Time
Fig. 3. Controller: P* = {50%, 30%, 20%}

0.5

—— s50:0 & sd: 1 —%— sd:2

04 +

[—

02

CPU Utilization

0.1

00 . ' +
0 1000 2000 3000 4000 5000

Time

Fig. 4. Controller: P° = {33%, 33%, 33%}

described above. Also we consider that there is always enough
traffic for each SD and that the SLA defined is feasible,
meaning that the traffic for all SDs is enough to meet the
target CPU utilization.

One switch is connected to 3 XML appliances that form
the cluster we investigate. The traffic arrived in http router
comes from 3 different domains while the SLA defines the
underload CPU utilization goal as P* = {50%, 30%, 20%}
and overload CPU utilization goal as P° = {33%, 33%, 33%}.
In order to properly evaluate the mechanism in a stressful
environment, we decided to choose different service rates and
different arrival rates for each domain while the instantiation
matrix is initialized with equal number of ports for all service
classes and all equally shared for all the appliances. The total
number of ports is set to 1000 while the prediction period in
this set of simulations is equal to the controller decision period
T,.

In figures 3-6, we provide an answer to questions Q1 and
Q2. The static allocation we simulated is different for the
underload and overload modes. This means, for example, that,
when the system is in underload mode, 1000 0.5 = 500 ports
are open for SD1 and 1000x0.333 = 333 ports are open when
the system is in overload mode.

As we can see in Figures 3 and 4, the SLA target is clearly
met while the system is in underload and in overload mode.
Also in comparison to the static allocation shown in Figures

06 +
05
c
]
® 04
N
E
2 03
=y
S lpees
02 oo O
0.1
0.0 - + -
0 1000 2000 3000 4000 5000
Time
Fig. 5. Static allocation: P* = {50%, 30%, 20%}
06
0.5 +
c 04
]
®
N
= 031
5
>
o
O o024
0.1
0.0 t
0 1000 2000 3000 4000 5000
Time
Fig. 6. Static allocation: P° = {33%, 33%, 33%}

5 and 6, our mechanism clearly performs better. In fact our
mechanism is even sensitive and adaptable in arrival rates that
change in time while the static allocation solution seems to
work better only in one occasion, where arrival rates are equal
and service rates are equal for all classes of traffic. Static
allocation fails to keep up with the fact that SLA defined for
overload conditions is different than in underload, it takes
no history of CPU utilization under consideration and its
performance is highly dependaple on the arrival and service
rates of the SDs.

700
£
©
E
o
a
[}
L
c
3
n
g
12}
T
o
o
0 ‘ ‘ ,
0 1000 2000 3000 4000 5000
Time
Fig. 7. Ports per Service Domain allocation

Two very interesting observations can be deduced by Fig.7

and Fig.8 where we can see the port allocation done in the
instantiation matrix per domain and per appliance. As we can
see the number of open ports for each SD changes each time
the controller must take a decision. Because of the 10% portion
of ports that all classes share, we can see that there is always a
minimum of ports open to deliver requests for every SD. The
iterative heuristic used for the Instantiation Matrix creation
tries to share equal number of requests to each appliance and
this load balancing behavior can be seen in Fig.8.

Figure 9 is used to answer question Q3, and in particular
to show how the prediction period affects the controller
performance. Long term predictions lead to goal aberrance
in both underload/overload modes. Our simulations showed
that controller meets the goal when predictions are made for
medium to short prediction periods while by reducing the
decision period by a factor of 4 the controller converges faster
to the desired goal.

In figure 10, we study a distributed environment where two
routers are connected to two different sets of three appliances
each, all servicing requests for three SDs. Again, different
arrival and service rates where selected for every SD. Here
underload mode is presented but goal is reached also in
overload conditions.

400

380 | 4
360 4
[} I
2 540 |
8 i
§ 320
3
2 300 H
[}
T 200 |
o
o
260 +|
240 |
220 t
0 5 10 15 20 25
Time (1013)
Fig. 8. Ports per appliance allocation.
0.7 T T
0.6
05
c
o
® 04]
N
=
2 0.3
>
o
o
0.2 1
0.1
0.0 + +
0 1000 2000 3000 4000 5000
Time
Fig. 9. Controller: P* = {50%, 30%, 20%}

Other parameters that affect controller operation is the use
of threshold-tolerance parameters, the queueing term presence

0.6

— sd:0 —8— sd:1_—e— sd:2

CPU Utilization

0.0

0 500 1000 1500 2000 2500 3000
Time

Fig. 10. Controller: P* = {50%, 30%, 20%}

in eq 1 and the formula used in eq 2 etc, but because of lack
of space this parameters will be presented in future work.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have studied a problem of providing
Service Differentiation to multiple Service Domains in dis-
tributed, multitiered SOA environments. The SLAs under
investigation were expressed in terms of CPU Utilization SLAs
in the appliance tier, where different utilization targets are
defined when the system enters underload/overload conditions.
We presented an intuitive, low-overhead controller that does
not rely on CPU schedulers to achieve the SLA goals. Instead,
it uses local agents in each router to increase/decrease the rate
of traffic that is sent to the appliances; moreover, it is based on
metrics that need no explicit knowledge of arrival or service
statistics. More complex SLAs and end-to-end performance
investigation of our approach are planned as our future work.

REFERENCES

[1] M.N. Huhns, M.P. Singh, “Service-oriented computing: key concepts and
principles”, pp. 75 - 81, Internet Computing IEEE, Volume: 9 Issue:l,
Jan-Feb 2005.

[2] L. Lewis, P. Ray, “Service level management definition, architecture, and
research challenges”, vol.3, pp. 1974 - 1978, GLOBECOM ’99

[3] D. E Garcia, J. Garcia et al, “A QoS Control Mechanism to Provide
Service Differentiation and Overload Protection to Internet Scalable
Servers”, IEEE Transactions on Services Computing, vol. 2, no. 1,
January-March 2009.

[4] M. Habib, Y. Viniotis, et al, “A Service Differentiation Algorithm for

Clusters of Middleware Appliances”, ICSOFT - International Conference

on Software and Data Technologies, Sofia,Bulgaria, 26-29 July 2009.

Lars Eggert and John Heidemann, “Application-level differentiated ser-

vices for Web servers”, World-Wide Web J., vol. 2, no. 3, pp. 133-142,

Aug. 1999.

[6] L. Sha, X. Liu, Y. Lu, and T. Abdelzaher, “Queueing Model Based

Network Server Performance Control”, Proc. 23rd IEEE Real-Time

Systems Symp. (RTSS ’02), pp. 81-90, Dec. 2002.

Yue and H. Wang, “Profit-Aware Admission Control for Overload Protec-

tion in E-Commerce Web Sites”, Proc. 15th IEEE Int’l Workshop Quality

of Service (IWQoS ’07), June 2007.

[5

—_

[7

—

