
Service Differentiation in Multitier Data Centers

Kostas Katsalis
University of Thessaly, Greece

Email: kkatsalis@uth.gr

Georgios S. Paschos
LIDS Lab

MIT MA, USA
Email: gpasxos@mit.edu

Leandros Tassiulas
CERTH-ITI

University of Thessaly, Greece
Email: leandros@uth.gr

Yiannis Viniotis
Department of ECE

NCSU, USA
Email: candice@ncsu.edu

Abstract—In this paper, we study the problem of resource
allocation in the setting of multitier data centers. Our main
motivation and objective is to provide applications hosted in
the data center with different service levels. In such centers,
there are several mechanisms the designer can use to achieve
such objectives. We restrict our attention to CPU time at the
service tier as the resource; the objective we consider is service
differentiation, expressed as allocating prespecified percentages of
this resource to applications. Then, mechanisms at the designer’s
disposal to provide desired service differentiation include the
triplet of load balancing through the switch fabric, enqueueing at
a server and scheduling at a server. We focus on the enqueueing
component of control mechanisms. We provide, through analysis
and simulations “rules of thumb” for situations where simple
enqueueing policies can provide service differentiation.

Keywords—Data Centers, Service Differentiation, Resource Pro-
visioning

I. INTRODUCTION

Although the well known datacenter multitier architecture
still remains the basis of the datacenter network design,
Software Defined Networking (SDN) enforces a new approach
in the way we build datacenter networks or use virtualization
technologies. A main argument in SDNs is that every single
hardware or software component must be a service or a service
handler/receiver/producer and it was only recently that large
vendors decided to use powerful middleware [1] in order to
offer services optimization. In large scale deployments for
applications like banking transactions, specialized middleware
is now widely used as a service accelerator and optimizer.
For example the VECSS platform [2] was developed jointly
by VISA and IBM and is used to process over than 8,000
banking transactions per second, with over than 500 dif-
ferent transaction types. Specialized middleware can act as
the connecting link between SDNs and Application Delivery
Networks, having a central role in future datacenter designs.

In Figure 1, a typical multitier datacenter architecture is
presented. The key elements of this design, depicted as a three-
tier core-distribution-access architecture, are the switch fabric,
the preprocessing tier and the final processing tier [3] (depend-
ing on the application, not all requests require preprocessing).
Core router/switches accept external traffic through the Internet
or a VPN and they route this traffic through the fabric to
one of several servers in the preprocessing tier. Servers in the
preprocessing tier are typically specialized middleware devices
that prepare requests for processing in the servers housed at
the final processing tier. Typical functions at the preprocessing
tier may include XML/XSLT transformations, logging and
security/authentication services. After preprocessing, requests
are forwarded for service at a server in the final processing tier.
This is the place where the “main business logic” is executed.

The datacenter hosts several applications/services and the
traffic entering the datacenter is naturally classified into classes
- called Service Domains (SD). How CPU time is allocated
to these domains clearly affects the performance seen by
the application requests. In typical Service Level Agreements
(SLAs), metrics regarding this performance are included and
expressed in various ways. In this paper, we focus on CPU
utilization as one of these metrics. For simplicity and clarity
of presentation, we consider CPU utilization of the servers in
the preprocessing tier only. As an example, an SLA with CPU
utilization metrics can be described as follows: guarantee 20%
of total (preprocessing tier) CPU power to domain A and 80%
to domain B.

Three elements have an effect on how CPU time is allo-
cated to requests of a domain and thus can determine whether
the SLA can be honored or not. An administrator can control
them in order to provide service differentiation to the various
domains. In Figure 1, we label the main available control
actions that an administrator can use: First, an arriving request
must be routed through the fabric to one of the servers; we
call this the load balancing control. Once it is sent to a server,
a request must be enqueued in a buffer; we call the design of
the buffering scheme the enqueueing policy. This is the second
control at the disposal of the administrator. The third control
is the CPU scheduling inside the servers, i.e., deciding from
which queue to forward a request for processing.

Note that the controls are distributed: two controls are
implemented in the server (but we have many of them in
the tier) and one is implemented in the switch fabric (at
one or more tiers therein). Clearly all three controls have an
effect on what percentage of the CPU time in the cluster
of servers a given domain can have. Design/analysis of a
distributed, end-to-end control policy is out of the scope of
this study. In this paper, we consider fixed load balancing and
scheduling policies and focus on the effect of the enqueueing
part of the triplet. Our contribution is twofold (a) we propose a
simple design for the enqueueing policy that is geared towards
distributed implementation: it has low communication and
processing overhead, and, (b) we provide “rules of thumb”
for when the design can achieve the SLA. We base these rules
on both analysis and simulation.

In Section II, we present the motivation for this study and
related work. In Section III, we define the system model and
state the SLA and the problem formally. In Section IV, we
present the proposed policies; we evaluate them in Section V
and provide rules of thumb in Section VI. We conclude the
paper in Section VII.

Servers & Databases

CPU

Internet

Load Balancing

Enqueueing Scheduling

After preprocessing requests
go to final processing

● Customer A: 20% CPU power
● Customer B: 30% CPU power
● Customer C: 50% CPU power

SLA Contract in Overload SLA Contract in Overload

Middleware
Services

Customer 1 2 ... K

A Yes Yes ... Yes

B Yes No ... No

C No Yes ... No

Preprocessing tier
Data Center switch fabric

Preprocessing Tier

Final processing Tier

Servers

Data center Infrastructure

Figure 1. Multitier Architecture

II. MOTIVATION AND RELATED WORK

In enterprise (data center) SLAs, performance objectives
are described in terms of several and varied metrics, such
as cost, response time, availability of resources, uptime, and
losses. Meeting such SLAs requires careful management of
data center resources and is a fine balancing act of policies for
short, medium and long-term resource allocation.

When an “overload” occurs, typical SLAs define a dif-
ferent, usually simplified set of performance objectives. For
example, under overload conditions, it is very difficult to
provide response time or loss guarantees. A common example
of an SLA in overload conditions is one that focuses on simply
stated CPU utilization metrics; we describe a specific one in
the next section. Such simplified SLAs have the additional
advantage of not requiring knowledge about the arrival and
service statistics of the domain.

In the field of load balancing policies, Bernoulli splitting
is a simple mechanism that has been studied under multiple
variations (e.g., [4]). Enqueueing mechanisms have been ex-
tensively used in the past for providing QoS guarantees [5],
while Multiclass-multiqueue systems studies have been studied
for token based systems [6].

Scheduling policies have been mainly used to control
response time metrics; work in this space typically assumes
arrival or service knowledge [7] or makes use of complex feed-
back mechanisms [8]. In prior work [9], we proved that static
scheduling policies fail to provide arbitrary percentages of
CPU utilization for every domain. Instead, dynamic Weighted
Round Robin scheduling can be efficiently used in overload
conditions to provide the desired differentiation given that an
ample number of queues is available - typically one queue per
service domain [9], [10].

III. PROBLEM STATEMENT

A. System model and assumptions

The system model is presented in Figure 2. We begin
by omitting the server tier and collapsing the datacenter
network fabric into a load balancer function. Modeling the
routing through the switch fabric as a single load balancer is
sufficient, since we focus on the enqueueing policies in this
study; which (core, aggregation or access) switch(es) were

responsible for forwarding the traffic to a preprocessing tier
server is irrelevant.

The load balancer is responsible for distributing incoming
traffic from a set D = {1, ..., d} of service domains into
a cluster of N = {1, ..., n} servers, each with a CPU of
capacity µ. Every middleware server is modeled as Multiclass-
multiqueue system (MCMQS), withM = {1, ...,m} the set of
queues that is same for all the servers. We assume that m < d,
i.e., there are not enough queues available to separate traffic
belonging to different service domains. This is a reasonable
assumption in data centers that offer SaaS, IaaS or PaaS
services.

Finally, we assume that the incoming traffic for domain i
follows a general arrival and service process with (unknown)
arrival rates λi and service rates 1/ESi, where ESi is the mean
service time of domain i. Also we assume non preemptive
service for the CPU operation. We assume that signaling
and feedback across the servers take negligible time, however
we note that the design of our control system is tailored to
minimize these effects.

B. Control policy definition

A control policy π is a rule according to which control
actions are taken at time t. We identify different control
policies regarding different control points inside the network.

1) Load balancing policy πr that defines a forwarding
action r(tr). Say tr is the time instant that the load
balancer must forward an incoming request to the
cluster of dedicated servers. The action space is the
set N = {1, ..., n} of all the servers and r(tr) = i ∈
N at time tr if server i is selected.

2) Enqueueing policy πq that defines Enqueueing Action
q(tq). Say tq is the time instant that a server accepts a
request from the load balancer. An enqueueing action
determines the queue to which the request is for-
warded. The action space is the set M = {1, ...,m}
of all the available queues and q(tq) = i ∈M at time
tq if queue i is selected.

3) Scheduling policy πs that defines Scheduling Action
a(ts). Say ts is the time instant that a server CPU
finishes request execution and is ready to accept a
new request for service. The action space is the set

1
…

d

Cluster of Preprocessing Servers

Router

Service Domains Requests

Load
Balancer

Enqueueing(Πq) Scheduling (πs)

Queue 1

CPU

Load balancing (πr)

Queue 2

Queue m

...

Queue 1

CPU
Queue 2

Queue m

...

1

n Enqueueing(πq)

Enqueueing(πq)

Scheduling (πs)...

Figure 2. System Model

M = {1, ...,m} of all the available queues and so
a(ts) = i ∈M at time ts if queue i is selected.

The vector (πr, πq, πs) is collectively referred to as the
control policy π.

For server j, we define the function f ji (t, π) as the amount
of time in [0, t) that the server CPU was allocated to domain
i, under policy π. Then for the total CPU power of the cluster
of servers, we define the total utilization for domain i under
policy π as:

ui(π)
∆
= lim inf

t→∞

∑n
j=1 f

j
i (t, π)

n · t
(1)

In the above definition we use liminf since we don’t know
a priori that the policy will reach steady state.

C. Problem Statement

The formal definition of the objective we study is the
following: Let 0 ≤ pi ≤ 1 be CPU utilization percentages
defined in the SLA for every domain i. Design a policy π that
will achieve the following objective:

ui(π) = min{λi · ESi, pi},∀i ∈ D (2)

Roughly speaking, the SLA in Equation 2 states that each
domain must be given a predetermined CPU time percentage
over a large time period, unless the request rate is not sufficient
for this, in which case it is enough to serve all requested traffic
from that domain.

IV. PROPOSED POLICIES

A thorough investigation of what policy π achieves the
SLA in Equation 2 is out of the scope of this paper. The reason
is twofold. First, because of the joint control definition, the
three control actions depend greatly on each other. For example
the performance space of a dynamic Weighted Round Robin
scheme used as the scheduling policy πs is in correlation with
the queueing dynamics that are dictated by the enqueueing
policy πq . The second reason is there is a large set of system
configurable parameters like the number of queues, or the
number of service domains that greatly affect the performance
space.

For these reasons, in this paper we focus only on the
enqueueing policy πq . We investigate the single server case
(n = 1) and we gain the insights into the queueing dy-
namics effects in the system performance. The accompanying
scheduling policy will be plain Round Robin. The aim is to
avoid feedback signals analysis between different tiers in the
data center and feedback signals for centralized control of the

m

2

... qc

Simple Round
Robin Schemes

Bucket queue

Queue
Threshold

CPU

Figure 3. Queue Structure

cluster of servers. In addition, with simple scheduling we avoid
designing scheduling algorithms that require knowledge of
traffic statistics and we avoid the correlation analysis between
enqueuing and scheduling decisions.

A. Proposed enqueueing policy: BQS (Bucket Queue System)

Queueing configuration: The server is configured to ac-
cept traffic from all the domains in a set of M queues. Set
for all queues i : 2 < i < m a queue limit qc. We will use
this threshold to limit the corresponding queue sizes, while
queue i = 1 is allowed to grow without constraints. We call
this queue the bucket queue (B queue); the configuration can
be seen in Figure 3.

Operation: In the case where an incoming request from
domain i must be enqueued because the CPU is busy upon
its arrival, the following actions take place: If the domain is
underutilized and the minimum queue size does not exceed
the limit qc, the policy forwards the request to the queue
with the minimum queue size. In all other cases the request
is forwarded to the bucket queue. The algorithm operation is
formally described as Algorithm 1.

Focus on the server CPU operation and let tk denote the
time instant that the CPU finished servicing a request and that
the next request it will receive service comes from domain
i. We define ui(tk, BQS) to be the CPU utilization domain
i received up to time tk under policy BQS. Between two
successive service events tk and tk+1 the following is true:
tk+1 = Lk + Zki + tk, where Lk ∈ R is a rv denoting the
CPU idle time between the service events and Zki is a rv of
the service time the request of domain i received within this
interval, while Zkj 6=i = 0. The CPU utilization performance
now can be expressed with the following closed recurrent form:
ui(tk+1, BQS) =

tk
tk+1

ui(tk, BQS) +
Zki
tk+1

, ∀i ∈ D. Clearly
BQS policy and the accompanying scheduling policy that will
be adopted (Round Robin in our case), at any instant tk affect
the Zki rv and so the utilization every domain will receive.

Intuition: For overload conditions, when
∑d
i=1 λi/µ ≥ 1,

the B queue is unstable while the remaining m − 1 queues
remain stable. This way, traffic injected to the stable queues
receives guaranteed throughput while traffic injected to the B
queue only receives a proportion of throughput in relation
to what is injected. The policy is using a simple control
mechanism to improve the utilization of domains that are left
behind their goals while penalizing those that have received
more service than agreed.

V. POLICY EVALUATION

With respect to simplicity of implementation, we examine
the triplet {RR,BQS,RR} i.e., load balancing and CPU
scheduling are round robin and enqueueing is BQS. Although,
since we have 1 server, load balancing has no meaning.

Algorithm 1 BQS Algorithm
tk : enqueueing decision instance
Qj(tk) : the queue size of queue j in time.
Calculate ui(tk, BQS) < pi, Qj(tk)
if ui(tk, BQS) < pi, Qj(tk) ≤ qc then

q(tk) = argminj Qj(tk)
else

q(tk) = 1
end if

A. Theoretical considerations

1) Setup: We will consider a single server with m queues
served by a CPU of capacity µ in a round robin fashion, such
that each queue receives service with rate µ/m. The m − 1
queues are bounded (a job is routed to them only if their
backlog is below the threshold qc) and one is unbounded.
We will study the case of two service domains in order to
derive the conditions for SLA achievability, i.e. the set of
(p1, p2) targets for which the SLA is achievable under given
-but unknown- conditions (µ, λ1, λ2). Generalizations to many
domains and many servers are left for future work.

Let u1, u2 denote the utilizations and T1, T2 the through-
puts, which are related in the following way ui =

Ti
µ . Also,

let a1, a2 ∈ [0, 1] be the long-term average traffic splits of
the arrivals, i.e. a1λ1 is the traffic directed to the B queue
and (1 − a1)λ1 the traffic directed to the m − 1 queues for
the service domain 1. In what follows, we will attempt a fluid
analysis omitting the details regarding the arrival processes and
avoiding the complications of a discrete time analysis.

2) Analysis: We derive necessary and sufficient conditions
for the feasibility of the SLA target, under the condition that
the queues are configured as explained above. However, we
do not show that the algorithm indeed converges to the proper
routing coefficients. The fact that the algorithm can achieve
this feasibility region will be shown by simulations. We have
two cases that regard the comparison λ1 + λ2 ≶ µ.

When the system is stable (i.e. λ1+λ2 ≤ µ), the SLAs are
always achieved since the throughput of each user equals what
is injected into the system, thus the first term of the minimum
function in eq. (2) is always achieved.

When the system is unstable, (i.e. λ1 + λ2 > µ), the B
queue is unstable but the m − 1 queues remain stable. We
will inspect two further cases, a) when both domains request
more traffic than their corresponding target λi > µpi and b)
when one of the two requests more, but the other less. We
also omit c) the symmetric to b and d) the case where none
requires more than the target, which contradicts the instability
condition.

Case a: Assume λ1 > µp1 and λ2 > µp2. Note that the
flow is conserved in the m− 1 queues, which gives

(1− a1)λ1 + (1− a2)λ2 =
m− 1

m
µ. (3)

The service in B queue is proportionally allocated to the
two domains:

µ1 =
a1λ1

a1λ1 + a2λ2
, µ2 =

a2λ2

a1λ1 + a2λ2

and the utilization of domain i should be

ui =
(1− ai)λi + aiλi

a1λ1+a2λ2

µ
m

µ

(3)
=

(1− ai)λi(λ1 + λ2 − µ) + λi
µ
m

µ(λ1 + λ2 − m−1
m µ)

, i = 1, 2. (4)

The following are a set of necessary and sufficient condi-
tions for the SLA to be satisfied under the stated conditions
(instability and both users providing sufficient arrivals):{

p1 = u1

p2 = u2

(3)

Dividing the first two, and using (4) and p2 = 1− p1

p2

p1
=

µ(λ1 + λ2 − m−1
m µ)

(1− a1)λ1(λ1 + λ2 − µ) + λ1
µ
m

− 1, a1 ∈ [0, 1].

Denote M .
= maxa1∈[0,1]

p2
p1

. Clearly this is achieved by
a1 = 1, in which case

M =
µ+m(λ1 + λ2 − µ)

λ1
. (5)

Note that M is the maximum achievable ratio of target
utilizations under the conditions above, and it can be achieved
by an omniscient randomized enqueueing policy which selects
properly a1, a2.

Case b: W.l.o.g. assume λ1 < µp1 and λ2 > µp2, thus
an SLA-satisfying enqueueing solution will yield (u1, u2) =
(λ1/µ, p2). Note, that if non-negligible fluid from domain 1 is
routed to the bucket, then the throughput of domain 1 will be
less than what sent, in which case the SLA has failed. Thus,
a1 = 0 and we obtain a first condition:

λ1 ≤
m− 1

m
µ.

The domain 2 will receive the remaining CPU allocation, thus
the SLA is satisfied if p2 ≤ µ−λ1

µ , from which we conclude

p2

p1
≤

1− λ1

µ

λ1

µ

=
µ− λ1

λ1
=M (6)

which does not depend on m.

B. Verification of the theoretical considerations

In Figure 4 we present the maximum ratio of p1/p2 for
which the SLA is satisfied, in the following scenario: a single
server receives traffic from two domains. The service rate
of the server CPU is set equal to µ = 200 requests per
time unit (we assume that time is a dimensionless quantity).
The criterion we apply in order to note SLA success is
ui(π) ≥ 0.95min{λi/µ, pi},∀i ∈ D which is the objective
defined in equation 2 plus a ±0.05% tolerance interval. In
Figures 4(a), 4(b) and 4(c) we present how the SLA success
region is affected by increasing the number of queues. The
main outcome is that when m, the number of queues, is
sufficiently large the algorithm is able to achieve the SLA
even for extreme CPU differentiation goals (e.g., 90-10%). The

λ1=λ2=300 - SLA Success Region

N
u

m
b

er
 o

f
Q

u
eu

es

0

3

6

9

12

15

18

21

24

27

30

pA/pB
0 10 20 30 40 50 60 70 80 90 100

(a) SLA success region

λ1=300,λ2=150 - SLA Success Region

N
u

m
b

er
 o

f
Q

u
eu

es

0

5

10

15

20

25

30

p1/p2
0 20 40 60 80 100

(b) SLA success region

λ1=150,λ2=300 - SLA Success Region

N
u

m
b

er
 o

f
Q

u
eu

es

0

3

6

9

12

15

18

21

24

27

30

p1/p2
0 20 40 60 80 100

(c) SLA success region

λ1=150,λ2=300 Splitting

a1
/a
2

0

0.5

1

1.5

2

2.5

3

p1/p2
0 1 2 3 4 5

(d) Splitting vs performance

Figure 4. BQS performance for domain requesting 0.7-0.3 of CPU Utilization - µ = 200 requests

Number of Domains Effect

SD
 1

 -
 U

ti
liz

at
io

n

0.05

0.1

0.15

0.2

0.25

0.3

Time
0 50 100 150 200

5
10
20
40

(a) A: Same λ = 40, different goals

10 Domains Effect
U

ti
liz

at
io

n

0.05

0.1

0.15

0.2

0.25

Time
0 50 100 150 200

SD 1
SD 2
SD 3
SD 4
SD 5
SD 7
SD 8
SD 9
SD 10

(b) A: Same λ = 40, different goals

10 Domains Effect (λ=20+i*5)

U
ti
liz

at
io
n

0.04

0.06

0.08

0.1

0.12

Time
0 50 100 150 200

λ1=20

λ1=20
λ2=25
λ3=30
λ4=35
λ5=40
λ7=50
λ8=55
λ9=60
λ10=65

(c) B: Different λ, same goal

10 Domains Effect

a
(s

p
lit

ti
n

g
 f

ac
to

r)

0

0.2

0.4

0.6

0.8

1

Service Domain
1 2 3 4 5 6 7 8 9 10

Scenario A
Scenario B

Scenario A
Scenario B

SD 1

rest of SDs

(d) Proportion of traffic routed to B
queue

Figure 5. Number of Domains effect (µ = 200 requests)

value of m that guarantees extreme targets depends also on the
relation between λi and µ, when the system is unstable. When
the system is stable, the targets are always achieved.

For example, as we can see in Figure 4(a), with 3 queues
the SLA is achieved for a ratio 1/6, meaning that an SLA
pi = {0.86, 0.14} can be satisfied, while with 9 queues this
ratio is 1/25 meaning pi = {0.96, 0.04} can be satisfied.

Figure 4(d) clearly validates the theoretical considerations
of the previous section. We present the ratio a1/a2 for the
two domains in the case where λ1 = 150 and λ2 = 300
requests per time unit (scenario of Figure 4(c)). As we can
see, domain 1 takes the maximum CPU share it can receive
and the maximum ratio is achieved, when domain 2 forwards
all its traffic in the B queue. All the above observations are
summarized as a Rule of Thumb 1 in Section VI.

C. Increasing the number of domains

A key advantage of BQS policy is that for a large number
of domains, a small number of queues is sufficient in order
to meet the objective of equation 2. We present simulation
evaluation for two scenarios that a service administrator faces
when the system is in overload conditions:

Scenario A: An increasing number of domains request
server resources. Service domain 1 is the most prominent client
and the administrator wants to guarantee that during overload
periods it receives 20% CPU share while the rest divide the
remaining 80% equally.

Configuration: λi = 40 and µ = 200 for every domain
i, while m = 5 is the number of queues (including the B
queue). In Figure 5(a) we increase the number of domains
and in Figure 5(b) we present in more detail the case where
d = 10. In both figures we can see that BQS clearly meets

the objective. Since we are in overload, regardless of the rela-
tionship between arrival and service rates and also regardless
of the range of desired percentiles, the enqueueing algorithm
satisfies the SLAs, i.e., domain 1 always receives the requested
20% while the remaining domains take their equal share. In
Figure 5(d) we can see that in scenario A (black bullets), a1

factor of domain 1 is approximately equal to zero, while for
the rest of domains it is almost equal to 0.9. This means that B
queue serves about 10% of domain 1 traffic and the majority
of other domains traffic.

Scenario B: Again an increasing number of domains
request server resources. The administrator wants to guarantee
fair allocation of CPU power to all the domains, despite any
arrival rate diversifications.

In Figure 5(c) BQS policy also meets the objective and
fair allocation is provided in the scenario where the arrival
rate of every domain is different. The simulation configuration
is λi = 20 + i ∗ 5 and µ = 200 domain while again there are
m = 5 queues. As we can see in figure 5(d) for the B scenario
case (red crosses), the mechanism to achieve the SLA is again
the operation of the B queue. If the traffic from a domain is
higher than the others, a higher percentage of its requests is
served by the B queue to keep allocating CPU cycles fairly.

Concluding remark: Besides the above paradigms, an ex-
tended set of simulations was performed, for various scenarios
with increasing number of domains, number of servers and
arrival and service rate variations. The main outcome of the
simulation procedure is that a small number of queues is suffi-
cient for the simple proposed control mechanism to be effective
in the sense that the majority of SLA configurations can be
achieved. In the above theoretical and practical considerations
analysis, we presented the performance of the algorithm for
the case where the number of servers is n = 1. Thorough
theoretical investigation for the case where the BQS is applied

in a cluster of servers will be presented in future work.

VI. PRACTICAL CONSIDERATIONS

Due to the large number of parameters that affect the algo-
rithm performance and the large number of trade offs existing,
we summarize the evaluation procedure in the following rules
of thumb that can be used by a system administrator. Say d
is the number of domains, λi is the expected arrival rate of
domain i and µ is the service rate of the CPU:

Rule 1: What is the maximum ratio we can achieve and
how many queues are needed? The answer comes directly
from equations 5 and 6. An administrator can make a priori
an arrival and service rate estimation of the expected traffic
and apply these equations. These equations will show if
the desired utilizations defined in the SLA contract will be
satisfied. If the estimations are wrong, real time corrections
with adding/removing of queues can fix the ratio M to the
desired value. In the case where d > 2, the generalization
of equation 5 yields that the utilization domain i will receive
under overload is:

ui =
(1− ai)λi + aiλi∑

λi−m−1
mµ

µ

mµ
(7)

This is an upper bound that an administrator can use to jointly
design the SLA for all the domains. This way our formula
depends only on ai which is better, but not conclusive. The
administrator can use it as a parameter to bound ui by setting
ai = 1 or ai = 0.

Rule 2: What queue limit to set? In saturated conditions if
we don’t use the queue limit qc, all queues would be unstable
and thus no speeding up could be applied for the underutilized
customers. The queue limit qc can be set to any “small” value
an administrator chooses to avoid idle time.

With the above rules a system administrator is able to
provide predefined CPU percentages to every customer in cases
of overload without any scheduling or load balancing concerns
and without knowing a priori (or posteriori) any arrival or
service statistics. The main advantages of our approach are that
no requests are dropped and that a limited number of queues is
sufficient to provide utilization defined in enterprise SLAs. The
only necessary tool applied is CPU monitoring. Furthermore,
in actual systems with injective allocation of domain/queue,
BQS algorithm could be easily implemented if B queue was
added as a new software component without disrupting the
overall queue structure.

VII. CONCLUSIONS & FUTURE WORK

In this paper, we studied the problem of resource allo-
cation in the setting of multitier data centers. The objective
was to design enqueueing policies to provide desired service
differentiation in overload situations. The SLA was defined
in terms of CPU time. Through analysis and simulations
we provided “rules of thumb” for situations where BQS, a
simple enqueueing policy can provide service differentiation.
The BQS policy provides the ability to “increase/decrease the
priority” of traffic that received less/more service than the
goal in the SLA by diverting traffic to limited or unlimited
size queues. This diversion is done dynamically, based on the

current CPU utilizations. In future work, we plan to perform
further theoretical investigation of this policy and evaluate its
speed of convergence.

Acknowledgements

This work is financed by the European Union (European
Social Fund ESF) and Greek national funds through the
Operational Program Education and Lifelong Learning of the
National Strategic Reference Framework (NSRF) Research
Funding Program: Heracleitus II - Investing in knowledge
society through the European Social Fund.

REFERENCES

[1] IBM Redbooks, “DataPower Architectural Design Patterns: Integrating
and Securing Services Across Domains”, 2008

[2] IBM and VISA “Vecss platform”, Smarter planet, April 2011,
http://www.ibm.com/smarterplanet/banking

[3] Arregoces M. et al, “Data Center Fundamentals”, Cisco Press, 2004
[4] Hyyti E.; Virtamo J.; Aalto S.;Penttinen A., “M/M/1-PS queue and size-

aware task assignment”, Performance Evaluation, v.68, Issue 11, 2011
[5] Andelman N.; Mansour Y.;Zhu A.;, “Competitive queueing policies for

QoS switches”, In Proceedings of ACM-SIAM symposium on Discrete
algorithms (SODA ’03). Philadelphia, PA, USA, 761-770.

[6] Takagi H., “Queuing Analysis of Polling Models”, IBM Research, Tokyo
Research Laboratory, Japan, 1988

[7] Addad B. et al, “Analytic Calculus of Response Time in Networked
Automation Systems”, IEEE Trans. on Automation Science and Engi-
neering, vol.7, n.4, Oct. 2010

[8] Sha L.; Liu X.; Lu Y.; Abdelzaher T. , “Queueing model based network
server performance control”, IEEE RTSS Symposium, 2002

[9] Katsalis K.; Paschos G.; Tassiulas L.; Viniotis Y. , “Dynamic CPU
Scheduling for QoS Provisioning”, IFIP/IEEE Information Management
(IM), 2013

[10] Lieshout P.; Mandjes M.; Borst S.; , “GPS Scheduling : Selection
of Optimal Weights and Comparison with Strict Priorities”, SIGMet-
rics/Performance06, Saint Malo, France, 2006.

