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ABSTRACT 

A Bayesian uncertainty quantification and propagation (UQ&P) framework is presented for identifying nonlinear models of 
dynamic systems using vibration measurements of their components. The measurements are taken to be either response time 
histories or frequency response functions of linear and nonlinear components of the system. For such nonlinear models, 
stochastic simulation algorithms are suitable Bayesian tools to be used for identifying system and uncertainty models as well 
as perform robust prediction analyses. The UQ&P framework is applied to a small scale experimental model of a vehicle with 
nonlinear wheel and suspension components. Uncertainty models of the nonlinear wheel and suspension components are 
identified using the experimentally obtained response spectra for each of the components tested separately. These 
uncertainties, integrated with uncertainties in the body of the experimental vehicle, are propagated to estimate the 
uncertainties of output quantities of interest for the combined wheel-suspension-frame system. The computational challenges 
are outlined and the effectiveness of the Bayesian UQ&P framework on the specific example structure is demonstrated. 
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1. Introduction 

Structural model updating methods (e.g. [1]) are used to reconcile linear and nonlinear mathematical models of a mechanical 
system with available experimental data from component or system tests. For complex structural dynamics models it is often 
the case that these models are usually discretized linear finite element (FE) models for a large part of the structure with 
localized nonlinearities in isolated structural parts. Examples include vehicle models that consist of linear structural 
components, such as the body of the vehicle, and nonlinear structural components, such as the suspension and the wheel 
components, which may exhibit strongly nonlinear behaviour. To build high fidelity models for such complex structures with 
localized nonlinearities, one should reconcile linear and nonlinear structural models with experimental data available at both 
the component and system level. This work presents the challenges of Bayesian uncertainty quantification and propagation of 
complex nonlinear structural dynamics models and results of identification of nonlinear models of a small scale experimental 
vehicle consisting of linear and nonlinear components. The goal is to build high fidelity models of the components to 
simulate the behaviour of the combined system. 

Bayesian techniques [2-3] have been proposed to quantify the uncertainty in the parameters of a structural model, select the 
best model class from a family of competitive model classes [4-5], as well as propagate uncertainties for robust response and 
reliability predictions [6]. Posterior probability density functions (PDFs) are derived that quantify the uncertainty in the 
model parameters based on the data. For nonlinear structural models, the measurements are taken to be either response time 
histories or frequency response functions of nonlinear systems. Computationally intensive stochastic simulation algorithms 
(e.g., Transitional MCMC [7]) are suitable tools for identifying system and uncertainty models as well as for performing 
robust prediction analyses. These algorithms require a large number of system analyses to be performed over the space of 
uncertain parameters. However, for relatively large order FE models involving hundreds of thousands or even million degrees 
of freedom and localized nonlinear actions activated during system operation, such re-analyses may require excessive 



computational time. Methods for drastically reducing the computational demands at the system, algorithm and hardware 
levels involved in the implementation of Bayesian framework have recently been developed. At the system level, efficient 
computing techniques can be integrated with the Bayesian framework to handle large order models and localized nonlinear 
action. Specifically, component mode synthesis and multilevel substructuring techniques can achieve substantial reductions 
in computational effort. 

At the system level, efficient computing techniques are integrated with Bayesian techniques to efficiently handle large order 
models of hundreds of thousands or millions degrees of freedom (DOF) and localized nonlinear actions activated during 
system operation. Specifically, fast and accurate component mode synthesis (CMS) techniques have recently been proposed 
[8], consistent with the FE model parameterization, to achieve drastic reductions in computational effort. In addition, 
automated multilevel substructuring techniques [9] are used to achieve substantial reductions in computational effort in the 
re-analysis of linear substructures. At the level of the Transitional MCMC (TMCMC) algorithm, surrogate models are 
adopted to drastically reduce the number of computationally expensive full model runs [10]. At the computer hardware level, 
parallel computing algorithms are proposed to efficiently distribute the computations in available multi-core CPUs [10]. 

In this work the Bayesian UQ&P framework is applied to identify models of linear and nonlinear components of a small scale 
experimental model of a vehicle. The identification of the uncertainty models of the nonlinear wheel and suspension 
components is investigated using the experimentally obtained response spectra. The uncertainty models for the vehicle frame 
are also obtained using experimental data. The uncertainty is propagated to output quantities of interest for the combined 
wheel-suspension-frame system. The computational challenges and efficiency of the Bayesian UQ&P framework are 
outlined. The effectiveness of the framework on the specific example structure is discussed. 

2. Review of Bayesian Formulation for Parameter Estimation and Model Class Selection 
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m R qq Î  be the structural model parameters to 

be estimated using a set of measured response quantities. In nonlinear structural dynamics, the measured quantities may 

consist of full response time histories 0ˆ{ , 1, ,
N

k
D y R k N= Î = }

0
N at  DOF and at different time instants t k , where  is 

the time index and  is the number of sampled data with sampling period , or response spectra 

t  k

N t
0ˆ{ , 1, , N}N

k
RD y k Î= =  at different frequencies 

k
 , where  is a frequency domain index. In addition, let k

0{ , 1, , }( ) N

k my R k Nq Î =  be the model response predictions (response time histories or response spectra), corresponding 

to the DOFs where measurements are available, given the model class Μ  and the parameter set Nq

m Rq Î . It is assumed that 

the observation data and the model predictions satisfy the prediction error equation  

ˆ ( | )
k k m m

y y q= +Μ
k

e  (1) 

where the error term ~ ( , ( ))
k

e N m qS
e

 is a Gaussian vector with mean zero and covariance ( )
e
qS . It is assumed that the error 

terms 
k

e ,  are independent. This assumption may be reasonable for the case where the measured quantities are 

the response spectra. However, for measured response time histories this assumption is expected to be violated for small 

sampling periods. The effect of correlation in the prediction error models is not considered in this study. The notation 

1, ,k   N

( )
e
qS  

is used to denote that a model is postulated for the prediction error covariance matrix that depends on the parameter set 
e
q . 

Bayesian methods are used to quantify the uncertainty in the model parameters as well as select the most probable FE model 
class among a family of competitive model classes based on the measured data. The structural model class Μ  is augmented 
to include the prediction error model class that postulates zero-mean Gaussian models. As a result, the parameter set is 

augmented to include the prediction error parameters 
e
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is the weighted measure of fit between the measured and model predicted quantities, ( | )  Μ  is the prior PDF of the model 

parameters   and  is the evidence of the model class Μ . ( | )p D Μ

For a large enough number of experimental data, and assuming for simplicity a single dominant most probable model, the 
posterior distribution of the model parameters can be asymptotically approximated by the multi-dimensional Gaussian 
distribution [2, 11] centered at the most probable value q̂  of the model parameters that minimizes the function 

( ; ) ln ( | , )g p D  Μ Μ  with covariance equal to the inverse of the Hessian ( )h   of the function ( ; )g  Μ  evaluated at 

the most probable value. For a uniform prior distribution, the most probable value of the FE model parameters   coincides 

with the estimate obtained by minimizing the weighted residuals in (3). An asymptotic approximation based on Laplace’s 
method is also available to give an estimate of the model evidence  [11]. The estimate is also based on the most 

probable value of the model parameters and the value of the Hessian 
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where  is the prior probability and  is the evidence of the model class Μ . The optimal model class  is 

selected as the one that maximizes P  given by (4). For the case where no prior information is available, the prior 

probabilities are assumed to be P , so the model class selection is based solely on the evidence values. 
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The asymptotic approximations may fail to give a good representation of the posterior PDF in the case of multimodal 
distributions or for unidentifiable cases manifested for relatively large number of model parameters in relation to the 
information contained in the data. For more accurate estimates, one should use SSA to generate samples that populate the 
posterior PDF in (2). Among the SSA available, the TMCMC algorithm [7] is one of the most promising algorithms for 
selecting the most probable model class among competitive ones, as well as finding and populating with samples the 
importance region of interest of the posterior PDF, even in the unidentifiable cases and multi-modal posterior probability 

distributions. In addition, the TMCMC samples ( )i , 1, ,
s

i   N  drawn from the posterior distribution can be used to yield 

an estimate of the evidence  required for model class selection [7, 12-13]. The TMCMC samples can further be 

used for estimating the probability integrals encountered in robust prediction of various performance quantities of interest [6]. 
In particular, if 
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3. Application to a Small Scale Laboratory Vehicle Model 

In order to simulate the response of a ground vehicle an experimental device was selected and set up [14]. More specifically, 
the selected frame structure comprises a frame substructure with predominantly linear response and high modal density plus 
four supporting substructures with strongly nonlinear action. First, Figure 1a shows a picture with an overview of the 
experimental set up. In particular, the mechanical system tested consists of a frame substructure (parts with red, gray and 
black color), simulating the frame of a vehicle, supported on four identical substructures. These supporting substructures 
consist of a lower set of discrete spring and damper units, connected to a concentrated (yellow color) mass, simulating the 
wheel subsystems, as well as of an upper set of a discrete spring and damper units connected to the frame and simulating the 
action of the vehicle suspension. Also, Figure 1b presents more details and the geometrical dimensions of the frame 
subsystem. Moreover, the measurement points indicated by 1-4 correspond to connection points between the frame and its 
supporting structures, while the other measurement points shown coincide with characteristic points of the frame. Finally, 
point E denotes the point where the electromagnetic shaker is applied. 

 
 

Fig. 1   (a) Experimental set up of the structure tested, (b) Dimensions of the frame substructure and measurement points. 

(b) (a) 

In order to identify the parameters of the four supporting subsystems, which exhibit strongly nonlinear characteristics, a 
series of tests was performed. To investigate this further, the elements of the supporting units were disassembled and tested 
separately. First, Figure 2a shows a picture of the experimental setup and presents graphically the necessary details of the 
experimental device that was set up for measuring the stiffness and damping properties of the supports, while Figure 2b 
shows the equivalent mechanical model. 

  

Fig. 2   (a) Experimental set up for measuring the support stiffness and damping parameters, (b) Equivalent model. 

(a) (b) 

 
The experimental process was applied separately to both the lower and the upper spring and damper units of the supporting 
substructures and can be briefly described as follows. First, the system shown in Figure 2 is excited by harmonic forcing 
through the electromagnetic shaker up until it reaches a periodic steady state response. When this happens, both the history of 
the acceleration and the forcing signals are recorded at each forcing frequency. Some characteristic results obtained in this 
manner are presented in the following sequence of graphs. Next, Figure 3a presents the transmissibility function of the 
system tested, obtained experimentally for three different forcing levels. Specifically, this function is defined as the ratio of 



the root mean square value of the acceleration to the root mean square value of the forcing signal measured at each forcing 
frequency. The continuous, dashed and dotted lines correspond to the smallest, intermediate and largest forcing amplitude, 
respectively. Clearly, the deviations observed between the forcing levels indicate that the system examined possesses 
nonlinear properties. Moreover, neither the applied forcing is harmonic, especially within the frequency range below 

Hz10 . To illustrate this, Figure 3b shows two periods of the actual excitation force applied for the same three excitation 
levels in obtaining the results of Figure 3a, which were recorder at a fundamental forcing frequency of Hz4 . 

 

Fig. 3   (a) Transmissibility function of the support system, for three different forcing levels, (b) History of the external 
force applied with a fundamental harmonic frequency Hz4  

A number of models of the restoring and damping forces, say 
r

f  and 
d

f , respectively, were tried for modeling the action of 

the supports and compared with the experimental results. The classic linear dependence of the restoring force on the 
displacement and of the damping forces on the velocity of the support unit was first assumed. However, critical comparison 
with the experimental results using the Bayesian model selection framework demonstrated that the outcome was 
unacceptable in terms of accuracy. Eventually it was found that an acceptable form of the restoring forces is the one where 
they remain virtually in a linear relation with the extension of the spring, namely 

( )rf x k x  (6) 

while the damping force was best approximated by the following formula 
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As usual, the linear term in the last expression is related to internal friction at the support, while the nonlinear part is related 
to the existence and activation of dry friction. More specifically, in the limit , the second term in the right hand side of 

Equation (7) represents energy dissipation action corresponding to dry friction. On the other side, in the limit 

0c3

c3 , this 

term represents classical viscous action and can actually be absorbed in the first term. 

4. Results 

The value of the parameters appearing in the assumed models of the restoring and damping forces of the supports, like the 

coefficients , ,  and  in Equations (6) and (7), are determined by applying the Bayesian uncertainty quantification 

and calibration methodology. Results are obtained based on experimental response spectra values for both the displacement 
and acceleration of either the wheel or the suspension component. It is assumed that the prediction errors in the Bayesian 

formulation are uncorrelated with prediction error variance , where 
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respectively. The parameter space is six dimensional and includes 
1 2 3 1 2

( , , , , , )k c c c   . Parameter estimation results are 

obtained using the parallelized and surrogate-based version [10] of the TMCMC algorithm [7] with 500 samples per stage. 
Eight computer workers were used to perform in parallel the computations involved in the TMCMC algorithm. The 
computational time required to run all 5500 samples for the 11 TMCMC stages, without surrogate approximation, for the 
SDOF model is approximately 7 hours. Surrogate modeling [10] reduces further this time by approximately one order of 
magnitude. For illustration purposes, results for the TMCMC samples projected in the two-dimensional parameter spaces 

 and  are shown in Figure 4 for the SDOF system, shown in Figure 2(b), corresponding to the suspension 

component. It is clear that the uncertainties in the damping parameters  and  are relatively high and  and  are highly 

correlated along certain directions in the parameter space.  
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Fig. 4   Model parameter uncertainty: projection of TMCMC samples in the two dimensional parameter spaces 

The parameter uncertainties are propagated through the SDOF model to estimate the uncertainties in the displacement and 
acceleration response spectra. The results are shown in Figures 5 and 6 for the displacement and acceleration response 
spectra, respectively and are compared to the experimental values of the response spectra. An adequate fit is observed. 
Discrepancies between the model predictions and the experimental measurements are mainly due to the model errors related 
to the selection of the particular forms of the restoring force curves in (6) and (7). The Bayesian model selection strategy 
based on equation (5) can be used to select among alternative restoring force models in an effort to improve the observed fit. 

  

Fig. 5   Uncertainty propagation: displacement response spectra uncertainty along with comparisons with the experimental 
data for the suspension component. (a) moderate excitation level, (b) strong excitation level 

The above procedure has been repeated for the wheel component to identify the uncertainties in the linear stiffness and 
nonlinear damping model. In addition, the uncertainties in nine stiffness-related parameters of the frame component were also 



estimated using the Bayesian methodology and the experimental values the first ten modal frequencies and the mode shape 
components at 72 locations of the frame [15]. The linear finite element model has 45564 DOFs. Due to excessive 
computational cost arising in stochastic simulation algorithms, the model was reduced using a recently developed CMS 
method for FE model updating [8]. The reduced model has 30 DOFs, resulting in substantial computational savings of more 
than two orders of magnitude. Due to space limitations, results of the parameter estimation are not shown here. 

  

Fig. 6   Uncertainty propagation: acceleration response spectra uncertainty along with comparisons with the experimental 
data for the suspension component. (a) moderate excitation level, (b) strong excitation level 

The estimates of the model parameter values and their uncertainties for each component are used to build the model for the 
combined wheel-suspension-frame structure. The number of DOFs of the nonlinear model of the combined structure is 
45568. The parametric uncertainties are then propagated to uncertainties in the response of the combined structure. The CMS 
was again used to reduce the number of DOFs to 34 and thus drastically reduce the computational effort that arises from the 
re-analyses due to the large number of TMCMC samples and the nonlinearity of the combined system. Selected uncertainty 
propagation results are next presented. Specifically, the parameters of the wheel model and the model of the frame structure 
are kept to their mean values and only the uncertainties in the model parameters of the suspension components are 
considered. Such uncertainties are propagated to uncertainties for the acceleration transmissibility function at a point on the 
wheel, the connection of the wheel with the frame and an internal point on the frame as shown in Figure 7. It is observed that 
a large uncertainty in the response spectra is obtained at the resonance region close to 3.4 Hz, which is dominated by local 
wheel body deflections. The response in the resonance regions close to 58 Hz and 68 Hz is mainly dominated by deflection of 
the frame structure. It is observed that the uncertainties in the suspension parameters do not significantly affect the response 
spectra at the resonance regions. As a result, response spectra obtained experimentally in these resonance regions for the 
complete vehicle model are not expected to be adequate to identify uncertainties in the parameters of the suspension model.  

   

Fig. 7   Uncertainty propagation: acceleration transmissibility function uncertainty for combined system. (a) wheel DOF, 
(b) DOF at connection between suspension and frame, (c) frame DOF. 

 



5. Conclusions  

A Bayesian UQ&P framework was presented for identifying nonlinear models of dynamic systems using vibration 
measurements of their components. The use of Bayesian tools, such as stochastic simulation algorithms (e.g., TMCMC 
algorithm), may often result in excessive computational demands. Drastic reduction in computational effort to manageable 
levels is achieved using component mode synthesis, surrogate models and parallel computing algorithms. The framework 
was demonstrated by identifying the linear and nonlinear components of a small-scale laboratory vehicle model using 
experimental response spectra available separately for each component. Such model uncertainty analyses for each component 
resulted in building a high fidelity model for the combined system to be used for performing reliable robust response 
predictions that properly take into account model uncertainties. The theoretical and computational developments in this work 
can be used to identify and propagate uncertainties in large order nonlinear dynamic systems that consist of a number of 
linear and nonlinear components. 
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