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Abstract. A Bayesian uncertainty quantification and propagation (UQ&P) framework is de-

veloped to handle nonlinear models of dynamic systems. The measurements are taken to be 

either response time histories or frequency response function from the linear and nonlinear 

components and full system tests. The effect of correlation in the prediction error models pos-

tulated in the Bayesian model selection and parameter estimation technique is investigated. 

Computationally intensive stochastic simulation algorithms (e.g. Transitional MCMC) are 

well suited tools for identifying uncertainty models at the component and system levels as well 

as performing robust prediction analyses. They require a very large number of system anal-

yses to be performed over the space of uncertain parameters which may lead to excessive 

computational time. Efficient computing techniques are integrated with the Bayesian frame-

work to handle large-order models and localized nonlinear actions. Component mode synthe-

sis are proposed to achieve substantial reductions in computational effort, surrogate models 

are adopted to reduce the number of full system runs, and parallel computing algorithms are 

used to efficiently distribute the computations in available multi-core CPUs. The effectiveness 

of the UQ&P framework is demonstrated by applying it to a small-scale experimental model 

of a vehicle with nonlinear suspensions and linear body frame.  
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1 INTRODUCTION 

Structural model updating methods (e.g. [1]) are used to reconcile linear and nonlinear 

mathematical models of a mechanical system with available experimental data from compo-

nent or system tests. For complex structural dynamics models it is often the case that these 

models are usually discretized linear finite element (FE) models for a large part of the struc-

ture with localized nonlinearities in isolated structural parts. Examples include vehicle models 

that consist of linear structural components, such as the body of the vehicle, and nonlinear 

structural components, such as the suspension and the wheel components, which may exhibit 

strongly nonlinear behaviour. To build high fidelity models for such complex structures with 

localized nonlinearities, one should reconcile linear and nonlinear structural models with ex-

perimental data available at both the component and system level. This work presents the 

challenges of Bayesian uncertainty quantification and propagation of complex nonlinear 

structural dynamics models and results of identification of nonlinear models of a small scale 

experimental vehicle consisting of linear and nonlinear components. The goal is to build high 

fidelity models of the components to simulate the behaviour of the combined system. 

Bayesian techniques [2-3] have been proposed to quantify the uncertainty in the parameters 

of a structural model, select the best model class from a family of competitive model classes 

[4-5], as well as propagate uncertainties for robust response and reliability predictions [6]. 

Posterior probability density functions (PDFs) are derived that quantify the uncertainty in the 

model parameters based on the data. For nonlinear structural models, the measurements are 

taken to be either response time histories or frequency response functions of nonlinear sys-

tems. Computationally intensive stochastic simulation algorithms (e.g., Transitional MCMC 

[7]) are suitable tools for identifying system and uncertainty models as well as for performing 

robust prediction analyses. These algorithms require a large number of system analyses to be 

performed over the space of uncertain parameters. However, for relatively large order FE 

models involving hundreds of thousands or even million degrees of freedom and localized 

nonlinear actions activated during system operation, such re-analyses may require excessive 

computational time. Methods for drastically reducing the computational demands at the sys-

tem, algorithm and hardware levels involved in the implementation of Bayesian framework 

have recently been developed. At the system level, efficient computing techniques can be in-

tegrated with the Bayesian framework to handle large order models and localized nonlinear 

action. Specifically, component mode synthesis and multilevel substructuring techniques can 

achieve substantial reductions in computational effort. 

At the system level, efficient computing techniques are integrated with Bayesian tech-

niques to efficiently handle large order models of hundreds of thousands or millions degrees 

of freedom (DOF) and localized nonlinear actions activated during system operation. Specifi-

cally, fast and accurate component mode synthesis (CMS) techniques have recently been pro-

posed [8], consistent with the FE model parameterization, to achieve drastic reductions in 

computational effort. In addition, automated multilevel substructuring techniques [9] are used 

to achieve substantial reductions in computational effort in the re-analysis of linear substruc-

tures. At the level of the Transitional MCMC (TMCMC) algorithm, surrogate models are 

adopted to drastically reduce the number of computationally expensive full model runs [10]. 

At the computer hardware level, parallel computing algorithms are proposed to efficiently dis-

tribute the computations in available multi-core CPUs [10]. 

In this work the Bayesian UQ&P framework is applied to identify models of linear and 

nonlinear components of a small scale experimental model of a vehicle. The identification of 

the uncertainty models of the nonlinear wheel and suspension components is investigated us-

ing the experimentally obtained response spectra. The uncertainty models for the vehicle 
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frame are also obtained using experimental data. The uncertainty is propagated to output 

quantities of interest for the combined wheel-suspension-frame system. The computational 

challenges and efficiency of the Bayesian UQ&P framework are outlined. The effectiveness 

of the framework on the specific example structure is discussed. 

2 REVIEW OF BAYESIAN FORMULATION FOR PARAMETER ESTIMATION 

AND MODEL CLASS SELECTION 

Consider a parameterized FE model class Μ  of a nonlinear structure and let N
m R  be 

the structural model parameters to be estimated using a set of measured response quantities. In 

nonlinear structural dynamics, the measured quantities may consist of full response time his-

tories 0ˆ{ , 1, , }
N

kD y R k N  at 0N  DOF and at different time instants t k t  , where 

k  is the time index and N  is the number of sampled data with sampling period t , or re-

sponse spectra 0ˆ{ , 1, , }
N

kD y R k N  at different frequencies k , where k  is a fre-

quency domain index. In addition, let 0{ ( ) , 1, , }
N

mky R k N  be the model response 

predictions (response time histories or response spectra), corresponding to the DOFs where 

measurements are available, given the model class Μ  and the parameter set N
m R . It is 

assumed that the observation data and the model predictions satisfy the prediction error equa-

tion  

 ˆ ( | )m mk k ky y eΜ  (1) 

where the error term ~ ( , ( ))eke N  is a Gaussian vector with mean zero and covariance 

( )e . It is assumed that the error terms , 1, ,ke k N  are independent. This assumption 

may be reasonable for the case where the measured quantities are the response spectra. How-

ever, for measured response time histories this assumption is expected to be violated for small 

sampling periods. The effect of correlation in the prediction error models is not considered in 

this study. The notation ( )e  is used to denote that a model is postulated for the prediction 

error covariance matrix that depends on the parameter set e . 

Bayesian methods are used to quantify the uncertainty in the model parameters as well as 

select the most probable FE model class among a family of competitive model classes based 

on the measured data. The structural model class Μ  is augmented to include the prediction 

error model class that postulates zero-mean Gaussian models. As a result, the parameter set is 

augmented to include the prediction error parameters e . Using PDFs to quantify uncertainty 

and following the Bayesian formulation (e.g. [2-3, 11]), the posterior PDF ( | , )p D Μ  of the 

structural model and the prediction error parameters ( , )m e    given the data D  and the 

model class Μ  can be obtained in the form 

 
  0

1

/2

[ ( | )] 1
( | , ) exp ( )  ( | )

22 det ( )
NN

e

p D
p D J   
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 
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is the weighted measure of fit between the measured and model predicted quantities, 

( | )  Μ  is the prior PDF of the model parameters   and ( | )p D Μ  is the evidence of the 

model class Μ . 

For a large enough number of experimental data, and assuming for simplicity a single 

dominant most probable model, the posterior distribution of the model parameters can be as-

ymptotically approximated by the multi-dimensional Gaussian distribution [2, 11] centered at 

the most probable value ˆ  of the model parameters that minimizes the func-

tion ( ; ) ln ( | , )g p D  Μ Μ  with covariance equal to the inverse of the Hessian ( )h   of the 

function ( ; )g  Μ  evaluated at the most probable value. For a uniform prior distribution, the 

most probable value of the FE model parameters   coincides with the estimate obtained by 

minimizing the weighted residuals in Equation (3). An asymptotic approximation based on 

Laplace’s method is also available to give an estimate of the model evidence ( | )p D Μ  [11]. 

The estimate is also based on the most probable value of the model parameters and the value 

of the Hessian ( )h   evaluated at the most probable value. 

The Bayesian probabilistic framework is also used to compare two or more competing 

model classes and select the optimal model class based on the available data. Consider a fami-

ly 
i

Μ = {Μ , 1, , }i , of  alternative, competing, parameterized FE and prediction error 

model classes and let i
N

i R  be the free parameters of the model class 
i

Μ . The posterior 

probabilities Μ( | )iP D  of the various model classes given the data D  is Equation (4) 

 
( | ) ( )

( | )
( | )

i i

i
Fam

p D P
P D

p D

Μ Μ
Μ

Μ
 (4) 

where Μ( )iP  is the prior probability and Μ( | )ip D  is the evidence of the model class 
i

Μ . 

The optimal model class Mbest  is selected as the one that maximizes Μ( | )iP D  given by (4). 

For the case where no prior information is available, the prior probabilities are assumed to be 

M( ) 1/iP , so the model class selection is based solely on the evidence values. 

The asymptotic approximations may fail to give a good representation of the posterior PDF 

in the case of multimodal distributions or for unidentifiable cases manifested for relatively 

large number of model parameters in relation to the information contained in the data. For 

more accurate estimates, one should use SSA to generate samples that populate the posterior 

PDF in Equation (2). Among the SSA available, the TMCMC algorithm [7] is one of the most 

promising algorithms for selecting the most probable model class among competitive ones, as 

well as finding and populating with samples the importance region of interest of the posterior 

PDF, even in the unidentifiable cases and multi-modal posterior probability distributions. In 

addition, the TMCMC samples 
( )

, 1, ,
i

i N
s

   drawn from the posterior distribution can be 

used to yield an estimate of the evidence Μ( | )ip D  required for model class selection [7, 12-

13]. The TMCMC samples can further be used for estimating the probability integrals en-

countered in robust prediction of various performance quantities of interest [6]. In particular, 

if ( )q   is an output quantity of interest conditional on the value of the parameter set  , the 

posterior robust measure of q  given the data and taking into account the uncertainty in   is 

obtained from the sample estimate  
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 ( )

1

1
( | , ) ( ; )

N i
q

i
s

E q D
N

Μ Μ  (5) 

where Μ( )( ; )i
q  is the conditional mean value of ( )q   given the model class. 

 

3 APPLICATION TO A SMALL SCALE LABORATORY VEHICLE MODEL 

In order to simulate the response of a ground vehicle an experimental device was selected 

and set up [14]. More specifically, the selected frame structure comprises a frame substructure 

with predominantly linear response and high modal density plus four supporting substructures 

with strongly nonlinear action. First, Figure 1a shows a picture with an overview of the exper-

imental set up. In particular, the mechanical system tested consists of a frame substructure 

(parts with red, gray and black color), simulating the frame of a vehicle, supported on four 

identical substructures. These supporting substructures consist of a lower set of discrete 

spring and damper units, connected to a concentrated (yellow color) mass, simulating the 

wheel subsystems, as well as of an upper set of a discrete spring and damper units connected 

to the frame and simulating the action of the vehicle suspension. Also, Figure 1b presents 

more details and the geometrical dimensions of the frame subsystem. Moreover, the meas-

urement points indicated by 1-4 correspond to connection points between the frame and its 

supporting structures, while the other measurement points shown coincide with characteristic 

points of the frame. Finally, point E denotes the point where the electromagnetic shaker is ap-

plied. 

 

 

Figure 1: (a) Experimental set up of the structure tested, (b) Dimensions of the frame substructure and measure-

ment points. 

In order to identify the parameters of the four supporting subsystems, which exhibit strong-

ly nonlinear characteristics, a series of tests was performed. To investigate this further, the 

elements of the supporting units were disassembled and tested separately. First, Figure 2a 

shows a picture of the experimental setup and presents graphically the necessary details of the 

experimental device that was set up for measuring the stiffness and damping properties of the 

supports, while Figure 2b shows the equivalent mechanical model. 

The experimental process was applied separately to both the lower and the upper spring 

and damper units of the supporting substructures and can be briefly described as follows. 

First, the system shown in Figure 2 is excited by harmonic forcing through the electromagnet-

ic shaker up until it reaches a periodic steady state response. When this happens, both the  

(b) (a) 
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Figure 2: (a) Experimental set up for measuring the support stiffness and damping parameters, (b) Equivalent 
model. 

history of the acceleration and the forcing signals are recorded at each forcing frequency. 

Some characteristic results obtained in this manner are presented in the following sequence of 

graphs. Next, Figure 3a presents the transmissibility function of the system tested, obtained 

experimentally for three different forcing levels. Specifically, this function is defined as the 

ratio of the root mean square value of the acceleration to the root mean square value of the 

forcing signal measured at each forcing frequency. The continuous, dashed and dotted lines 

correspond to the smallest, intermediate and largest forcing amplitude, respectively. Clearly, 

the deviations observed between the forcing levels indicate that the system examined possess-

es nonlinear properties. Moreover, neither the applied forcing is harmonic, especially within 

the frequency range below 10Hz  . To illustrate this, Figure 3b shows two periods of the 

actual excitation force applied for the same three excitation levels in obtaining the results of 

Figure 3a, which were recorder at a fundamental forcing frequency of 4Hz  . 

  

Figure 3: (a) Transmissibility function of the support system, for three different forcing levels, (b) History of the 

external force applied with a fundamental harmonic frequency 4Hz   

A number of models of the restoring and damping forces, say 
r

f  and 
d

f , respectively, were 

tried for modeling the action of the supports and compared with the experimental results. The 

classic linear dependence of the restoring force on the displacement and of the damping forces 

on the velocity of the support unit was first assumed. However, critical comparison with the 

experimental results using the Bayesian model selection framework demonstrated that the 

outcome was unacceptable in terms of accuracy. Eventually it was found that an acceptable 

form of the restoring forces is the one where they remain virtually in a linear relation with the 

extension of the spring, namely 

(a) (b) 
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 ( )rf x k x  (6) 

while the damping force was best approximated by the following formula 

 2
1

3

( )
| |

d

c x
f x c x

c x
 


 (7) 

As usual, the linear term in the last expression is related to internal friction at the support, 

while the nonlinear part is related to the existence and activation of dry friction. More specifi-

cally, in the limit 03 c , the second term in the right hand side of Equation (7) represents en-

ergy dissipation action corresponding to dry friction. On the other side, in the limit 3c , 

this term represents classical viscous action and can actually be absorbed in the first term. 

4 RESULTS 

The value of the parameters appearing in the assumed models of the restoring and damping 

forces of the supports, like the coefficients k , 
1

c , 
2

c  and 
3

c  in Equations (6) and (7), are de-

termined by applying the Bayesian uncertainty quantification and calibration methodology. 

Results are obtained based on experimental response spectra values for both the displacement 

and acceleration of either the wheel or the suspension component. It is assumed that the pre-

diction errors in the Bayesian formulation are uncorrelated with prediction error variance 
2 2

1 2 1 2
( , ) ( , )diag diag I I      , where 2

1 1
I   and 2

2 2
I   are the covariance matrices for the 

prediction errors corresponding to the displacements and accelerations, respectively. The pa-

rameter space is six dimensional and includes 
1 2 3 1 2

( , , , , , )k c c c   . Parameter estimation re-

sults are obtained using the parallelized and surrogate-based version [10] of the TMCMC 

algorithm [7] with 500 samples per stage. Eight computer workers were used to perform in 

parallel the computations involved in the TMCMC algorithm. The computational time re-

quired to run all 5500 samples for the 11 TMCMC stages, without surrogate approximation, 

for the SDOF model is approximately 7 hours. Surrogate modeling [10] reduces further this 

time by approximately one order of magnitude. For illustration purposes, results for the 

TMCMC samples projected in the two-dimensional parameter spaces 
1 1

( , )k c  and 
1 2

( , )c c  are 

shown in Figure 4 for the SDOF system, shown in Figure 2(b), corresponding to the suspen-

sion component. It is clear that the uncertainties in the damping parameters 
1

c  and 
2

c  are rela-

tively high and 
1

c  and 
2

c  are highly correlated along certain directions in the parameter space.  

The parameter uncertainties are propagated through the SDOF model to estimate the uncer-

tainties in the displacement and acceleration response spectra. The results are shown in Fig-

ures 5 and 6 for the displacement and acceleration response spectra, respectively and are 

compared to the experimental values of the response spectra. An adequate fit is observed. 

Discrepancies between the model predictions and the experimental measurements are mainly 

due to the model errors related to the selection of the particular forms of the restoring force 

curves in (6) and (7). The Bayesian model selection strategy based on equation (5) can be 

used to select among alternative restoring force models in an effort to improve the observed 

fit. 
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Figure 4: Model parameter uncertainty: projection of TMCMC samples in the two dimensional parameter spaces 

  

Figure 5: Uncertainty propagation: displacement response spectra uncertainty along with comparisons with the 

experimental data for the suspension component. (a) moderate excitation level, (b) strong excitation level 

  

Figure 6: Uncertainty propagation: acceleration response spectra uncertainty along with comparisons with the 

experimental data for the suspension component. (a) moderate excitation level, (b) strong excitation level. 

The above procedure has been repeated for the wheel component to identify the uncertain-

ties in the linear stiffness and nonlinear damping model. In addition, the uncertainties in nine 
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stiffness-related parameters of the frame component were also estimated using the Bayesian 

methodology and the experimental values the first ten modal frequencies and the mode shape 

components at 72 locations of the frame [15]. The linear finite element model has 45564 

DOFs. Due to excessive computational cost arising in stochastic simulation algorithms, the 

model was reduced using a recently developed CMS method for FE model updating [8]. The 

reduced model has 30 DOFs, resulting in substantial computational savings of more than two 

orders of magnitude. Due to space limitations, results of the parameter estimation are not 

shown here. 

The estimates of the model parameter values and their uncertainties for each component 

are used to build the model for the combined wheel-suspension-frame structure. The number 

of DOFs of the nonlinear model of the combined structure is 45568. The parametric uncer-

tainties are then propagated to uncertainties in the response of the combined structure. The 

CMS was again used to reduce the number of DOFs to 34 and thus drastically reduce the 

computational effort that arises from the re-analyses due to the large number of TMCMC 

samples and the nonlinearity of the combined system. Selected uncertainty propagation results 

are next presented. Specifically, the parameters of the wheel model and the model of the 

frame structure are kept to their mean values and only the uncertainties in the model parame-

ters of the suspension components are considered. Such uncertainties are propagated to uncer-

tainties for the acceleration transmissibility function at a point on the wheel, the connection of 

the wheel with the frame and an internal point on the frame as shown in Figure 7. It is ob-

served that a large uncertainty in the response spectra is obtained at the resonance region close 

to 3.4 Hz, which is dominated by local wheel body deflections. The response in the resonance 

regions close to 58 Hz and 68 Hz is mainly dominated by deflection of the frame structure. It 

is observed that the uncertainties in the suspension parameters do not significantly affect the 

response spectra at the resonance regions. As a result, response spectra obtained experimen-

tally in these resonance regions for the complete vehicle model are not expected to be ade-

quate to identify uncertainties in the parameters of the suspension model. 

 

   

Figure 7: Uncertainty propagation: acceleration transmissibility function uncertainty for combined system. (a) 

wheel DOF, (b) DOF at connection between suspension and frame, (c) frame DOF. 

5 CONCLUSIONS  

A Bayesian UQ&P framework was presented for identifying nonlinear models of dynamic 

systems using vibration measurements of their components. The use of Bayesian tools, such 

as stochastic simulation algorithms (e.g., TMCMC algorithm), may often result in excessive 

computational demands. Drastic reduction in computational effort to manageable levels is 

achieved using component mode synthesis, surrogate models and parallel computing algo-
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rithms. The framework was demonstrated by identifying the linear and nonlinear components 

of a small-scale laboratory vehicle model using experimental response spectra available sepa-

rately for each component. Such model uncertainty analyses for each component resulted in 

building a high fidelity model for the combined system to be used for performing reliable ro-

bust response predictions that properly take into account model uncertainties. The theoretical 

and computational developments in this work can be used to identify and propagate uncertain-

ties in large order nonlinear dynamic systems that consist of a number of linear and nonlinear 

components. 
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