
Modeling the dynamics of caching in content-based
publish/subscribe systems

Vasilis Sourlas
University of Thessaly, Greece

CERTH-ITI
vsourlas@inf.uth.gr

Georgios S. Paschos
University of Thessaly, Greece

CERTH-ITI
gpasxos@gmail.com

Petteri Mannersalo
VTT Technical Research

Center of Finland
petteri.mannersalo@vtt.fi

Paris Flegkas
University of Thessaly, Greece

CERTH-ITI
pflegkas@inf.uth.gr

Leandros Tassiulas
University of Thessaly, Greece

CERTH-ITI
ltassiulas@inf.uth.gr

ABSTRACT
This paper considers cache dimensioning in the context of pub-
lish/subscribe (pub/sub) systems. We assume that each broker is
equipped with a limited capacity cache and it decides upon a policy
for caching and prioritizing messages. By using a request mecha-
nism defined on top of the native pub/sub communication, a client
may also request earlier published information. To study the sur-
vival time of published messages, a Markovian system model cap-
turing the essential dynamics is defined. The model has a modular
generic form which admits a variety of different policies and thus
enables the calculation of their performance. For systems without
message replication between the caching brokers, the distribution
of message survival time is found using matrix analytic methods
for solving absorbing Markov chains. For the general problem with
messages copied from caches, we propose a heuristic approxima-
tion based on estimating the mean rate of copies. The approximate
model is evaluated by a discrete event simulator and it is shown that
for a wide set of parameters, the approximation provides a good ba-
sis for dimensioning the caches in the content-based pub/sub sys-
tems.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Miscellaneous; H.3
[Information Systems]: Information Storage and Retrieval

General Terms
Measurement, Performance, Theory, Verification

Keywords
analytical modeling, Markov chains, pub/sub systems, model veri-
fication and validation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’11 March 21-25, 2011, TaiChung, Taiwan.
Copyright 2011 ACM 978-1-4503-0113-8/11/03 ...$10.00.

1. INTRODUCTION
The pub/sub paradigm is a network architecture that makes com-

munications scalable and content driven. Autonomous components
(clients) interact with publication events (messages) by subscribing
to classes of events they are interested in. The mediation routers
(brokers) are responsible for collecting subscriptions and forward-
ing the messages to clients. In pub/sub systems the forwarding of a
message is determined entirely by the client, using expressions (fil-
ters) that allow sophisticated matching on the event content. Mul-
ticasting notification events or even large files is significantly facil-
itated by this process.

In a pub/sub system, any message is guaranteed to reach all inter-
ested destinations, (completeness property) [1]. This holds for all
clients that are active and therefore their subscriptions are known
to the system at the publish time. However, there are cases where
clients join and leave the system (e.g. mobile environment), and it
is then possible that a client joins the network after the publica-
tion time of an interesting message. In pub/sub systems it is not
possible for a new client to retrieve previously published messages
that match his/her subscription. Therefore, enabling caching for
retrieval of past information (old content) is one of the most chal-
lenging problems in pub/sub networks.

Fiege et al. [2] propose a caching mechanism for wireless ad-
hoc networks based on buffers that offers a way to integrate data
repositories all over the network. Their approach operates within
the class of applications that initiate normal operation after having
monitored a sequence of events. Li et al. [3] and Singh et al. [4]
consider a historic data retrieval pub/sub system where databases
are connected to various brokers, each associated with a filter to
store particular information. This approach is based on predefined
caching points in the network. A caching mechanism where the
messages are stored opportunistically is introduced by Sourlas et
al. [5]. Our work is in line with [5]; each broker in the network is
a potential caching point for each published message and the main
purpose of caching is to preserve the information over time instead
of making information available in nearer space as in traditional
caching schemes.

In all of the above approaches as well as in this paper, it is as-
sumed that the brokers, being part of the core network, are endorsed
with the task of storing information. The strategical goal is to find a
policy that can coexist with the pub/sub principles while at the same
time provides a means of differentiation among popular and un-
popular files, that is the available caching space is efficiently used
in order to maximize the time that popular messages survive in the
system. With this goal in mind, we study opportunistic caching and

the interrelation between the client dynamics and several modular
policies for arbitrating caching.

To our knowledge, there exists no prior work involving analyti-
cal models for dynamic pub/sub networks. In this paper, we assume
that clients arrive to the pub/sub network according to a Poisson
process, stay in the system for an exponentially distributed time
duration and are interested in receiving any message (old or new)
matching their subscription. Messages arrive according to a Pois-
son process as well, and the brokers must decide whether to cache
them or not. When the caches are full, caching a message means
that another message must be dropped. We focus on survival time
of an arbitrary message, a metric that characterizes the availability
of a message in the system cache.

We propose several policies, for caching, requesting and pri-
oritizing messages. We build a multidimensional Markov model
which captures the behavior of all these policies allowing for direct
comparison as well as providing intuition for modes of operation.
When copying between brokers is not allowed (equivalently when
we consider only one broker), we find the distribution of message
survival time by analyzing a two dimensional absorbing Markov
process. However, even for this simple case the state space is very
large and we provide a further approximation to the system reduc-
ing the state space significantly while having a minimal loss in ac-
curacy. For the general problem where copying messages from one
cache to another is allowed, we propose a heuristic approximation
based on estimating the mean rate of copies. This approximate
model is evaluated by a discrete event simulator. It is shown that
for a wide set of parameters, the approximation provides a good ba-
sis for dimensioning the caches in the content-based pub/sub sys-
tems. Finally, we compare the proposed policies and find out that
a simple prioritization mechanism can produce the desired differ-
entiation while the system remains agnostic to the popularity of
each particular message. The priority policy resembles the Least
Recently Used (LRU) policy (see [8]) but it is modified to fit the
pub/sub architecture.

2. THE PUB/SUB SYSTEM WITH CACHES

2.1 Legacy pub/sub architecture
The legacy pub/sub system uses the subscription forwarding rout-

ing strategy [6]. According to this network architecture, the brokers
form an overlay tree and each client selects one broker, called here-
inafter the serving broker, and connects to it.

At subscription time a client sends a Subscribe()message con-
taining the corresponding subscription filter to the serving broker.
The filter is a binary function which applied to a message yields 1 if
the client is interested in the message and 0 otherwise. The serving
broker, inserts the filter in a Subscription Table (ST) together with
the identifier of the client. Also, it propagates the subscription to all
of its neighboring brokers, which in turn store the filter using this
time the identifier of the serving broker. Finally, the forwarding
procedure goes on until the filter is inserted into all tables of the
network with each entry pointing to a neighboring broker on the
shortest path towards the serving broker. This scheme is usually
optimized by avoiding subscription forwarding of the same event
pattern in the same direction exploiting coverage relations among
filters.

Requests to unsubscribe from an event pattern are handled and
propagated analogously to subscriptions, although at each hop, en-
tries in the subscription table are removed rather than inserted.
In this paper we assume that Subscribe() and Unsubscribe()

messages as well as any other communication events are propa-
gated instantaneously through the whole network.

�

�

� �

� �

� 	
 �

�

�

� �

� �

� 	
 �

Figure 1: Caching and retrieving old information. The grey
brokers have interested clients and the arrows denote the pub-
lication tree.

At publication time a client may send a Publish() message to
the serving broker which in turn, for any entry in the ST match-
ing the message, forwards the message to the corresponding client
or broker. Following, all brokers repeat the same procedure until
the message is forwarded to all intended clients. For an in-depth
discussion of the pub/sub architecture see [7].

2.2 A Caching mechanism in pub/sub
Each broker is equipped with a cache of size k (i.e. assuming

equal message sizes, each cache fits exactly k messages). In the
spirit of being pub/sub friendly, we introduce a simple mechanism
for interaction with the cache. A client may issue a Request()

message using a filter similarly to the subscription procedure. The
Request() is spread across the network as a Subscribe() mes-
sage would, i.e. multicast to all brokers matching the filter. The
brokers search the cache and respond with a Response() message
in case of a successful matching.

For better understanding consider the following example of Fig-
ure 1. First, broker b publishes a message which travels through
the publication tree (arrows in Figure 1) and reaches brokers g and
d which at the publication time have client subscriptions in their
tables that match the published message (they are indicated grey).
These two brokers decide opportunistically to cache the message,
while brokers a, b and c decide not to cache the message accord-
ing to an implied caching policy. Next, all clients interested in this
content previously attached to broker d leave, and thus d becomes
white again. Later, a client interested in this content (both old and
new) enters the network through broker a. Using the caching mech-
anism, the new client at broker a, issues a Request() message
which is forwarded to the brokers. Brokers a and g, having client
subscriptions, search their caches for a match. Broker g, finds the
old message and issues a Response() message. Finally, the inter-
ested client receives the cached message and broker a decides to
cache the message.

The above example shows how it is possible to avoid exhaustive
search techniques for caching and fetching messages in pub/sub
systems. There is a certain risk involved, however. If for example
clients from broker g had left the network as well, the message
cached in g and d would not be discovered. On the other hand,
this mechanism provides a tool for efficient cache handling. For
example, the message cached in broker d could have been erased
from cache or moved towards the end of it, providing more space
since it is not possible to be found. The question then is whether
popular files can find their way of extending their survival time only
by exploiting the rate of requests for them.

2.3 Modular policies of the caching mechanism
The caching mechanism operates based on modular policies. Fol-

lowing we explain the role of each one and present the example
policies that we will consider in this paper.

1. Caching policy: When a message crosses a broker, the caching
policy determines whether the broker will opportunistically

store the message in the cache.
2. Request policy: Determines the way that the Request()mes-

sage spreads throughout the network, reaching several bro-
kers along the way.

3. Priority policy: Re-orders the messages according to client
dynamics.

Caching policies: A straightforward policy is the one where a
broker stores the traversing message in its cache whenever there
exists at least one interested client attached to it (as in the example).
We call this caching policy sel, standing for selective. Also, it
is possible that the brokers always store the traversing messages
resulting in a very dynamic caching system. We call this policy
all and we study it solely for performance reference. Note that by
caching everywhere in the propagation path causes extra overhead
that might not be acceptable for the pub/sub system. In this paper
we focus only on these two policies, although it is possible to define
other policies for caching as well, e.g. random caching.

Request policies: A common policy is similar to the example
above, where the Request() message is propagated along the sub-
scription tree. We refer to this policy as the sub request policy.
Alternatively, it is possible to flood the Request() message in the
network (fld policy). This guarantees that any message cached is
retrieved at the cost of higher overhead.

Priority policies: The priority policy is a way to differentiate the
messages in a cache based on their usability as well as to provide
better system performance. As a common principle for all poli-
cies, a new message is always positioned at the top of the cache
and the last message (in the bottom) is dropped. In order to in-
troduce priority, we propose cache management with regenerations
and degradations. In particular, the client activity is monitored lo-
cally at each serving broker. Upon an arrival of a client whose
subscription matches a given message in the cache, the message
is regenerated, i.e. transferred to the front of the cache. Instead,
whenever the broker is left without clients with interest (at the pre-
cise moment that the last client interested in this message leaves
the broker) a message degradation takes place and the message is
transferred to the end of the cache. This way, we prioritize mes-
sages based on the locality of current interest. This policy is called
prt. By using the priority policy prt it should be possible to dif-
ferentiate between popular and unpopular messages and extend the
survival time of the popular messages at the expense of the unpop-
ular ones. As a reference, the plain policy without regeneration and
degradation is also considered (called nop). When using this pol-
icy, the cache operates in a First-Come-First-Serve (FCFS) manner.

In this work, we are specifically interested in the sel-sub-prt

policy and compare it against sel-fld-prt, sel-sub-nop and
the yardstick all-fld-nop. The policy sel-sub-*** is used for
the example in Figure 1.

3. SYSTEM MODEL
We consider a pub/sub network with n brokers. Clients arrive in

each broker requesting content (old and new) and stay in the sys-
tem for some time until they disappear. By assuming a potentially
infinite population of clients, the client arrivals are modeled by a
Poisson process. For a given content m and broker i, the clients
with subscriptions matching to m arrive with a rate λc(m, i) ≡ λc
and depart with a rate μc(m, i)≡ μc. Thus we assume that the client
dynamics are all the same for all brokers and messages1. Conse-
quently, the population sizes of clients interested in m are given by

1Here different rates can be used to model message popularity. In
this paper, this is studied only via simulation.

Xm(t) .= (Xm,1(t), . . . ,Xm,n(t)), where Xm,i (t)
distr= X(t) is a birth-

death process of the interested clients in broker i. Given the above

rates, the stationary state probability vector for X(t) is π j = π0
ρ j

c
j! ,

where j = 0,1, π0 = e−ρc and ρc = λc
μc

.
Similarly, we assume that all the new messages are arriving in the

system with equal rate λb following a Poisson process as well. The
arrival of a message corresponds to a publishing which happens
only once for each message. Each message survives in the caches
of the system for some random time that depends on the caching,
request and priority policies, as well as the client dynamics, arrival
rate of the messages and the cache size. If a message disappears
from all caches at one instance, then clearly it is impossible to be
recovered and thus it is lost forever. We then say that the message
is absorbed.

Let each broker be equipped with a cache of size k and con-
sider the process Ym(t) .= (Ym,1(t), . . . ,Ym,n(t)), where Ym,i(t) ∈
C = {0,1, . . . ,k} is the position of message m in cache i. Here
location 1 corresponds to the top of a cache and the zero point cor-
responds to the fact that the message is not stored in this cache.
Assume that message m is published at t = 0 and consider the pro-
cess Ym on t ≥ 0. The state 0 = {0, . . . ,0} ∈ Cn corresponds to the
absorbing state. Therefore, the message could be lost before stored
in any cache. The main performance metric studied is the mean
survival time (MST) which is given by

MST .=�{Tm |Ym(0) �= 0}�(Ym(0) �= 0)

where Tm = sup{t > 0 : Ym(t) �= 0} denotes the survival time of
the message m. We also define Ploss

.=�(Ym(0) = 0) as the prob-
ability of initial loss of the message.

By Little’s law E(T) = E(N)/λb, where N is the number of dif-
ferent messages in the system. Thus, increasing the number of dif-
ferent messages stored simultaneously increases also MST. It also
gives analytical bounds for MST in a homogeneous system. Since
the number of different messages varies between k (all caches hav-
ing an identical content) and nk (all caches storing different mes-
sages), we have

k
λb

≤ MST ≤ nk
λb

. (1)

In order to get deeper performance results, we need to analyze
(Xm(t),Ym(t)) in detail. Unfortunately, it is not a Markov process
due to the dependence on which messages have nonzero client pop-
ulation. On the other hand, the full system (X j(t),Y j(t), j ∈ Z) is
Markovian but too complicated to be studied directly. Thus we will
provide approximate approaches in the following sections.

The caching policy determines the initial state probabilities. The
all policy, is the only one for which we have Ploss = 0. In sel

policy, there is always a probability that the set of brokers, to which
interested clients are directly subscribed, is empty. In that case we
have a loss event with a probability Ploss = πn

0 = e−ρcn. The caching
policy also affects time to absorption since selective caching will
reduce the contention at the cache.

The request policy determines the request overhead and the mes-
sage retrieval efficiency. Particularly, the fld request policy en-
sures the retrieval of a degraded message but requires the request
to visit the whole network, while the subscription based selective
policy (sub) retains the principles of the pub/sub, since the request
is propagated towards the brokers with interested clients. Another
effect of the request policy relates to copying messages. Since
the flooding request policy always discovers cached messages, the
copying rate is higher, leading to higher replication degree, less
messages in the system and smaller MST.

The priority policy differentiates the survival time of messages
by bringing popular messages to the top of the cache and thus ex-
tending the sojourn time of these messages in the transient states.
It is then of interest to see whether such an approach, together with
the properties of a pub/sub system, is enough to provide a priority
mechanism for popular and unpopular messages.

4. THE SINGLE BROKER CASE
In this section we consider the simplified network composed of

one broker (n = 1) which has k cache slots. This model captures
also the case where the network consists of more than one broker,
but no message copies from cache to cache are allowed. Then the
brokers are behaving independently, i.e., the state probabilities are
just products of the single broker state probabilities.

First note Equation (1) implies MST = k/λb, independently of
the caching mechanisms. In order to study the distribution and
more importantly to prepare the basis for the multi-broker (n > 1)
case, we model both the position of a given message m in the cache
as well as the number of messages with interested clients (alive
messages), with a two dimensional continuous-time Markov chain
(CTMC) with state space S = C×C and generator matrix Q. The
matrix Q contains the transition rates qs,ŝ from any state s to any
other state ŝ, where s, ŝ∈S, and s = {i, j} is the state where we have
i alive messages and message m is stored in the jth slot of the cache.
The size of Q can be reduced to ((k +1)k +1)×((k +1)k +1) be-
cause there are k(k + 1) transient states in the chain and we can
group all k absorbing states (states of the type s = {i,0}, j ∈ C) into
one. Typically, the elements qs,s of the main diagonal are defined
by qs,s = −∑ŝ�=s qŝ,s.

There are three events that may affect the state of the Markov
process, (1) a caching event is triggered by the publication of a mes-
sage, (2) a regeneration event is triggered by the arrival of a client
interested in a message m and (3) a degradation event is triggered
by the departure of a client such that the new state for this message
becomes Xm(t +Δt) = 0. Accordingly there are seven types of tran-
sitions that can take place in system which focuses on a particular
message m.

1. The event of caching a new message (other than m) in the
given broker increases the number of alive messages by one
and moves message m one cache slot further.

2. The event of regeneration of message m when message m
was alive retains the number of alive messages and moves
message m to state one (at the top of the cache).

3. The event of regeneration of message m when message m
was degraded increases the number of alive messages by one
and moves message m at the top of the cache.

4. The event of regeneration of an alive message (other than m)
retains the number of alive messages and may move message
m one cache slot further depending on the original position
of message m (before or after the regenerated message).

5. The event of regeneration of a degraded message (other than
m) increases the number of alive messages by one and may
move message m one cache slot further depending on the
original position of message m (before or after the regener-
ated message).

6. The event of degradation of message m decreases the number
of alive messages by one and moves message m at the bottom
of the cache (slot k).

7. The event of degradation of an alive message (other than
m) decreases the number of alive messages by one and may
move message m one cache slot towards to the top depend-
ing on the original position of message m (before or after the
degraded message).

In the following we formulate the transition rates according to
the above intuitive connection to our system. We define the transi-
tion rate from state s = {i, j} to state ŝ = {î, ĵ} as

qî, ĵ = lim
τ→0

�(W (t + τ) = ŝ|W (t) = s)
τ

,∀t

by omitting the first index of q for presentation reasons. Then for
any policy we get:

t (1) :q0,0 = λ p
h j = k, i ≤ k

t (1,4) :qk, j+1 = max{0, i− j}λg +λ p
h i = k, j < k

t (1,5) :qi+1, j+1 = min{k− i,k− j}λg +λ p
h i < k, j < k

t (2) :qi,1 = λg j ≤ i ≤ k,2 ≤ j ≤ k

t (3) :qi+1,1 = λg i < j, j ≤ k

t (4) :qi, j+1 = max{0, i− j}λg i < k, j < k

t (5) :qi+1, j = (j− i−1)λg i < j,2 ≤ j ≤ k

t (6) :qi−1,k = μd j ≤ i ≤ k, j ≤ k

t (7) :qi−1, j−1 = min{i, j−1}μd 2 ≤ i ≤ k,2 ≤ j ≤ k

t (7) :qi−1, j = (i− j)μd j < i ≤ k,2 ≤ j < k

qî, ĵ = 0 otherwise,
(2)

where in general i, j ∈ C (i, j ≥ 1 where not explicity denoted)
and k ≥ 2, μd is the rate of message degradation, λg is the rate at
which messages are regenerated and λ p

h is the rate at which mes-
sage m is pushed in the cache by one slot when a new published
message is cached in the broker (p indicates that this rate is policy-
dependent). In particular,

1. For the sel caching policy, the messages are stored in all
brokers with interested clients, λ sel

h = λb(1−π0).
2. For the all caching policy, the messages are stored in all

brokers, λ all
h = λb.

For the rate of regeneration we have either λg = λc in case the re-
generation policy is used, or λg = 0 otherwise. The rate of message
degradation is the total rate of transitions of the type {Xm(t +Δt) =
0|Xm(t) �= 0} in the underlying birth-death process Xm(t). There-
fore we have μd = λcπ0

1−π0
.

The studied system is a continuous time Absorbing Markov Pro-
cess (AMP) (see, e.g., [9],[10]). We renumber the states in the gen-
erator matrix so that the transient (the non-absorbing) states come
first. So if there are i absorbing states and j transient states, the
generator matrix will have the following canonical form:

Q =
(

Tr tr
0i j 0ii

)
,

where Tr is a j-by- j matrix of transition rates among transient
states, tr is a j-by-i matrix of transition rates from transient to ab-
sorption states and 0i j a i-by- j matrix of zeros. Then

�(MST < x) = 1−φφφeTrxe j, MST = −φφφTr−1e j, (3)

where Tr−1 is the inverse matrix, eTrx is the exponential of the
matrix and φφφ is the row vector with the initial probabilities of the
transient states.

The state probability vector for the transient states φφφ p = {φ p(s)}
corresponds to states where message m is positioned at the first slot,
i.e., s = (i,1), i = 1, . . . ,k. Note that the cache is always full with k
different messages and for the corresponding stationary client birth-
death processes it holds �(X(t) = 0) = π0. For caching policies
p = sel,all,

φ p ({i,1}) =
(

k−1
i−1

)
πk−i

0 (1−π0)i−1, 1 ≤ i ≤ k.

(k-1)�c+�p
h (k-2)�c+�p

h (k-3)�c+�p
h

4�d

�c+�p
h

3�d2�d k�d

k�c+�p
h

�d

Figure 2: CTMC capturing the evolution of the number of alive
messages in the single broker scenario.

The above model can be further applied to other policies for caching,
request and priority as long as the event rates used in the Marko-
vian model are tractable. Finding the distribution for the message
sojourn time, i.e., applying Equation (3), requires manipulation of
the reduced transition matrix Tr. This can be done numerically by
any mathematical software after the transition rates in Equation (2)
are defined.

5. REDUCING THE STATE SPACE
A two-dimensional Markov process with |S|= k(k+1)+1 states

was developed in Section 4. However, in order to use this model
for a larger network (n > 1), it is important to reduce if possible
the state space. In this section we propose a further approximation
which has a state space of |S| = k + 1 states while incurring very
small errors in comparison to the original model. The approach is
based on stationary analysis of the number of alive messages and
an AMP which utilizes this stationarity assumption.

In particular, we consider first a stationary CTMC which cap-
tures the evolution of the number of alive messages in the cache.
Figure 2 depicts this Markov process and its transitions. The sta-
tionary state probabilities are given by

ψi =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

1+∑k
n=1

(
∏n

j=0((k− j)λc+λ p
h)

j!μ j
d

) i = 0

∏l
j=0

(
(k− j)λc +λ p

h
)

j!μ j
d

ψ0 0 < i ≤ k,

where ψi is the stationary probability of having i alive messages in
the cache of the broker.

Define Ui as the number of alive messages in front of message m
when m is at slot i. Then assuming independence between the state
of message m and the number of alive message, gives

E [Ui] =
k−1

∑
j=0

(
ψ j ·min(j, i−1)

)
.

Moreover, the probability that message m is alive when it is in the
i-th slot of the cache is given by

πalive
i =

⎧⎪⎨
⎪⎩

0, i = 0,

k

∑
j=i

ψ j otherwise.

Using ψψψ , E [Ui] and πalive
i we can approximate statistically the

number of alive messages and use the state space S = C to denote
the position of message m in the cache. In this model, there are five
types of transitions that can take place in the chain that tracks the
position of message m in the cache.

1. The event of caching a new message (other than m) in the
given broker moves message m one cache slot further and
thus triggers an increase in the state by one.

2. The event of regeneration of message m moves message m to
state one (at the top of the cache).

0

t(1,3)
t(2)

t(1,3) t(1,3)

t(5)

1 k-1 k32

t(1,3,4)

t(5)t(2,5)

t(4)

t(5)

t(2)
t(2)

t(4)
t(4)

t(1)

Figure 3: Markov chain for the approximated single broker
scenario.

3. The event of regeneration of a message which is before mes-
sage m (closer to the bottom of the cache) moves message m
one cache slot further (closer to the end of the cache).

4. The event of degradation of message m (m should be alive)
moves message m at the bottom of the cache (slot k).

5. The event of degradation of an alive message in front of mes-
sage m moves message m one cache slot towards to the top
of the cache.

For any policy, the transition rates from state i to state j, with
i, j ∈ C, are given by

t (1) :qk,0 = λ p
h

t (1,3) :qi,i+1 = (k− i) ·λg +λ p
h 0 < i ≤ k−2

t (1,3,4) :qk−1,k = λg +λ p
h +πalive

k−1 ·μd

t (2) :qi,1 = λg 2 < i ≤ k

t (2,5) :q2,1 = E [Ui] ·μd +λg

t (4) :qi,k = πalive
i ·μd 0 < i ≤ k−2

t (5) :qi,i−1 = E [Ui] ·μd 2 < i ≤ k

qi j = 0 otherwise.

(4)

Figure 3 shows the transitions of the approximated single bro-
ker scenario. For caching policies p =sel, all, the initial state
probability vector for the transient states is given by

φ p (i) =

{
π0 i = 1
0 otherwise.

6. THE MULTI-BROKER CASE
Consider a network composed of n brokers with message copy-

ing allowed. In this case, the message can be cached initially in
a subset of brokers and later copied to other brokers as well. The
message disappears from the network only when it is not cached in
any broker of the network. We start by making the similar approx-
imation as used for the single broker scenario in the previous sec-
tion. The state space is S = Cn and state vector s = {s1,s2, . . . ,sn}∈
S indicates that the m message is positioned at the sth

i slot in the
cache of broker i.

As before, we have caching events that model the publish of a
message, regeneration and degeneration events of a cached mes-
sage. In addition to those we should cope with message copies
which occur together with the events {X(t +Δt) = 1|X(t) = 0}. We
assume that all events concerning client activity affect only one di-
mension of the state, i.e., when a message is requested and sent,
it will not be cached in the cache of any intermediate broker other
than the serving one and only the newly arrived client will receive
it. Thus, for each transition from state s to state ŝ, we get ŝi = si,
∀i �= j, where j is the dimension where the change is taking place.

For events which depend only on client activities, we write qs,ŝ(j)
= qsj ,ŝ j where, qsj ,ŝ j is calculated using (4). We collect these tran-
sitions in matrix Q1. However, a special care is required when

0 2 4 6 8 10
0

25
50
75

100
125
150
175
200
225

k=15, �
c
=0.1, �

b
=1

 analysis
 approximation

M
ST

�c
0 2 4 6 8 10

0
25
50
75

100
125
150
175
200
225
250

�b

k=15, �
c
=0.1, �

c
=2

 analysis
 approximation

M
ST

0,1 1 10

1E-14

1E-12

1E-10

1E-8

1E-6

1E-4

0,01

 k=5
 k=10
 k=15
 k=20
 k=40

�
c
=0.1, �

b
=1

(lo
g)

 re
la

tiv
e

er
ro

r (
|a

na
l-a

pp
rx

|/a
na

l)

����� �
	

 0,1 1 10

1E-7

1E-6

1E-5

1E-4

1E-3

0,01

������ �b

�
c
=0.1, �

c
=2

 k=5
 k=10
 k=15
 k=20
 k=40

(lo
g)

 re
la

tiv
e

er
ro

r (
|a

na
l-a

pp
rx

|/a
na

l)

Figure 4: Single broker: (up) The gray area represents the 50% of data–data between the 1st and 3rd quartile. (down) relative error
between analysis and approximation for several parameter settings.

s j = 0. In such cases, a message may be copied from another cache
reachable by the chosen request policy. Thus we get

qs j=0,ŝ j=1 = f request (λc) ,

where s �= 0 and f request (λc) depends on the request policy used
and the prioritization or not of the cached message.

• For the flooding request policy we get f request (λc) = λc• For the subscription-based selective request policy we get

f request (λc) =

(
1−

n−1

∏
k=1

(1−πalive
sk

)�{sk>0}

)
λc.

The rest of the transitions in Q1 take place independently in each
dimension and they are given by (4) with the exception of the transi-
tions reflecting the message copies (we call this additional pushing
rate as λ p

cp).
Next we deal with events that reflect the publication of a mes-

sage other than m. These events can cause a change in multi-
ple dimensions of the state space. Specifically, in each broker
where message m is stored in the cache, a new message may ap-
pear and cause a push of message m. The caching event in this
case depends on the caching policy. In the following, the transi-
tions in case of selective caching policy are shown. Consider the
set S̆ = {s2 ∈ S : s2 = s1 + u,s1 ∈ S \ {0},u ∈ {0,1}n}. For all
s ∈ S \{0} and ŝ ∈ S̆ we write

qs,ŝ = (1−π0)λb.

By collecting the above transition rates in Q2, we finally obtain the
generator matrix as Q = Q1 +Q2.

The information required to compute the rate of message copies
λ p

cp is the random process Ni(t) defined as the number of messages
in the network that differ from those cached in broker i. Process
Ni(t) is hidden from our Markov chain and thus we need to rely on
an approximation. Process Ni(t) takes values in [0,(n− 1)k] with
the minimum attained when all caches contain exactly the same
messages and the maximum attained when all messages are cached
exactly once. Note that Ni(t) is not stationary and its behavior de-
pends greatly on the ratio of λc/λb.

In this work we make a gross approximation of Ni(t). In par-
ticular, we assume that at each time epoch all messages in the net-
work have identical replication pattern as that of message m. On

the average, this is, of course, true because of i.i.d. client dynam-
ics and message arrivals. Let Rm(s) be the number of copies of m
cached in the network, i.e., it counts the total number of non-zero
elements in s and thus is state dependent but known at each state.
We make the approximation that Ñ(s) =

⌊
k
(

n
Rm(s) −1

)⌋
. The intu-

ition behind this approximation is driven by simulations where we
observed that the number of replicas in the network has very small
variance and has quasi-stationary behavior soon after the publica-
tion of each message.

Then depending on the request policy we have

• For the flooding request policy we get λ fld
cp (s) = Ñ(s) ·λc.

• For the subscription-based selective request policy we should
calculate how many out of the Ñ(s) messages could be copied.
Defining pfail(s) = πRm(s)

0 as the probability of a different
message not to be copied, we get λ sub

cp (s)= Ñ(s)(1− pfail(s))λc.

The transitions from (4) in Q1 that are affected from λ p
cp and

their new form are

t (1) : qk,0 = λ p
cp(s)

t (1,3) : qi,i+1(s) = (k− i) ·λg +λ p
cp(s), 0 < i ≤ k−2,

t (1,3,4) : qk−1,k(s) = λg +πalive
k−1 ·μd +λ p

cp(s)
(5)

Also, the initial probability vector for the transient states, i.e.,
s �= 0, is given by

φ (s) =

{
(1−π0)∑i si πn−∑i si

0 , si = 0,1,∀i ∈ {1, . . . ,n}
0, otherwise.

7. MODEL VALIDATION
In this section we present results from the proposed models set

side by side with discrete event simulations of a pub/sub system
with caches. The goal is to validate the models, show that the pro-
posed approximations yield accurate results and compare the vari-
ous proposed policies. The metric for comparison is chosen to be
the mean survival time (MST), where survival time is the time from
the publication of the message until it disappears from the network.
The larger the MST the better, indicating that a message survives
longer in the system cache and thus it is available for longer time.

5 10 15 20 25 30 35 40 45 50
0

20
40
60
80

100
120
140
160
180
200

MST

MST

 analysis
 simulation

n=4, �
c
=0.1, �

c
=2, �

b
=1

M
ST

k
0 2 4 6 8 10

6

12

18

24

30

36

 analysis
 simulation

k=5, n=4, �
c
=0.1, �

b
=1

M
ST

�
c

0 2 4 6 8 10
0

20

40

60

80

�b

 analysis
 simulation

k=5, n=4, �
c
=0.1, �

c
=2

M
ST

MST

MST

0 5 10 15 20 25 30 35 40
5

10

15

20

25

30

35

40

 analysis
 simulation

k=5, �
c
=0.1, �

c
=2, �

b
=1

M
ST

n

MST

MST

Figure 5: Multi-broker: MST vs k, ρc, λb, and n.

We consider a network with n brokers, with each broker having a
cache capable of storing k messages. New messages are published
with rate λb; we use a unique identifier for each message and a dif-
ferent independent birth-death process with birth rate λc and death
rate μc representing the clients interested in this message.

7.1 Validation of the single-broker models
In order to validate our models we examine the sel-sub-prt

policy. Apart from MST, we are also interested in the relative er-
ror between the the original model (we call it analysis) and the one
with the reduced state space (we call it approximation). The MST
and the relative error are both random variables and we estimate
their mean by simulating 50k of observations. We set out two ex-
periments, one varying the client intensity ρc (λc = 0.1, k = 15 and
λb = 1) and one varying the rate of newly published messages λb
(λc = 0.1, k = 15 and ρc = 2).

The gray area in Figure 4 represents the area between the 1st
and 3rd quartile and thus the 50% of the mass of data. From these
Figures we extract the conclusion that the proposed models predict
very accurately the MST for several settings. Also, the approxima-
tion brings a very small error.

The relative error between analysis and approximation is also
showcased for several scenarios in Figure 4. The relative error is
always smaller than 1% and in many cases is lower than 10−4. This
implies that approximating the number of alive messages is well
motivated and worthwhile.
7.2 Validation of the multi-broker model

In this section we validate the proposed model for the multi-
broker scenario using the discrete event simulator. For validation
reasons we consider the sel-sub-prt policy as before. We set
out four experiments, one varying the number of cache slots k, one
varying the client intensity per broker ρc, one varying the rate of
message publication λb and one varying n, the number of brokers
in the network. We define as MST and MST the upper and lower
bound respectively obtained from (1).

Figure 5 depicts MST for several experiments. Note that MST
decreases fast with λb and ρc and increases linearly with n and k.
Also it is notable that despite the approximations that we have used,
the model is close to simulation having an error of at most 10% in
the shown cases. The error seems to increase when n and k increase
where the assumption for uniform replication is less accurate. On
the other hand, the accuracy seems to be rather invariant to λb, ρc.

7.3 Performance evaluation of the proposed
policies

In this section we compare four different combinations of poli-
cies: 1) sel-sub-prt policy, 2) sel-fld-prt policy, 3) sel-

sub-nop policy and 4) all-fld-nop policy.
First we compare the policies based on Ploss, the probability that

a published message is not cached in the system. The only policy
which guarantees that all messages have positive survival time (or
Ploss = 0) is the all-fld-nop policy that requires flooding of the
published messages. In Figure 6 we observe this phenomenon. The
pub/sub caching mechanism proposed bears always a number of
messages with zero survival time. This is a price to pay for the
opportunistic way of caching used. The rest of the policies behave
similarly. Ploss is quite small when ρc > 2 or n > 3 in the shown
examples.

Next, in Figure 6 we set four experiments showing MST vs k,
ρc, λb and n as before, comparing the proposed policies. First note,
that the all-fld-nop policy performs strictly worse in almost all
settings. This is expected since no coordination is used in that pol-
icy. Next, the gain from using priority (compare prt policies with
nop) is evident in most cases. Notably, priority gain increases im-
portantly when n increases and slowly when k increases. Also for
small ρc, a case of interest, the priority gain is very small while
the gain from selective caching is very large indicating that selec-
tive caching can provide an important differentiation tool in case
of a large distributed system with non-uniform interest. From the
same figure, note that for large ρc, a priority gain is retained while
selective caching does not offer that much.

Last we compare the proposed policies in the case of multiclass
messaging using simulations. In particular, we define two classes
of messages with clients subscribing to them arriving with rates
λpop and λunpop correspondingly with λpop > λunpop indicating the
popularity. Figure 7 shows the MST for the two classes of messages
when sel-sub-prt and sel-sub-nop are used. First note that
the system promotes the differentiation of the classes by reducing
significantly the unpopular messages survival time and allowing the
use of cache space by the popular ones. Next, comparing the two
policies it is possible to quantify the gain from the prioritization
inside the cache and the implicit prioritization yield by the selective
caching policy. From Figure 7, we conclude that the mechanism of
selective caching provides an important tool for differentiating the

0 5 10 15 20 25 30 35 40

0,00

0,03

0,06

0,09

0,12

0,15

 sel-sub-prt
 sel-sub-nop
 sel-fld-prt
 all-fld-nop

k=5, �
c
=2, �

c
=0.1, �

b
=1

P lo
ss

�
5 10 15 20 25 30 35 40 45 50

0
10
20
30
40
50
60
70
80

 sel-sub-prt
 sel-sub-nop
 sel-fld-prt
 all-fld-nop

n=4, �
c
=0.1, �

c
=2, �

b
=1

M
ST

k
0 2 4 6 8 10

5

10

15

20

25

30

35

 sel-sub-prt
 sel-sub-nop
 sel-fld-prt
 all-fld-nop

k=5, n=4, �
c
=0.1, �

b
=1

M
ST

�
c

0 2 4 6 8 10
0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

 sel-sub-prt
 sel-sub-nop
 sel-fld-prt
 all-fld-nop

k=5, n=4, �
c
=0.1, �

b
=1

P lo
ss

�
c

0 2 4 6 8 10
0

10

20

30

40

50

60

70

�b

 sel-sub-prt
 sel-sub-nop
 sel-fld-prt
 all-fld-nop

k=5, n=4, �
c
=0.1, �

c
=2

M
ST

0 5 10 15 20 25 30 35 40
4
8

12
16
20
24
28
32
36

 sel-sub-prt
 sel-sub-nop
 sel-fld-prt
 all-fld-nop

k=5, �
c
=0.1, �

c
=2, �

b
=1

M
ST

n
Figure 6: Performance evaluation of the several policies.

messages belonging to popular and unpopular classes by forbidding
the caching of unpopular messages. When the ratio of popularity
is small, however, the prioritization in the cache has a significant
effect (up to 40% of improvement for ratio of 2).

0 40 80 120 160 200
0
2
4
6
8

10
12
14
16

 sel-sub-prt pop
 sel-sub-prt unpop
 sel-sub-nop pop
 sel-sub-nop unpop

n=4, k=5, �
c
=0.1, �

b
=1, �

pop
=1

M
ST

 �
pop

/�
unpop

Figure 7: Performance evaluation of the proposed policies in
case of multiclass messages.

8. CONCLUSION AND FUTURE WORK
We proposed a stochastic model that captures the dynamics of

a pub/sub system with caches. In this system, messages are pub-
lished and cached opportunistically at the core nodes called bro-
kers. Later, clients enter the system through a broker and request
old messages. An efficient system policy should utilize the caches
in order to increase the survival time of the messages in the system,
making them available to more clients requesting them. The pro-
posed stochastic models are based mostly on the transient behavior
of continuous-time Markov chains and utilize several approxima-
tions well motivated by experiments. We use the analytical models
to compare rational policies and understand their performance. As
a mode of operation we propose the sel-sub-prt policy which
is lightweight, opportunistic, pub-sub–friendly and yields the most
efficient results for cache operation and handling. Future work can
be steered in different directions, improving the model and the ap-
proximations, modeling multiclass messaging (popular and unpop-
ular messages) and using utility theory to identify optimal policies.

Acknowledgment
V. Sourlas’ work was supported by the Greek Ministry of National
Education and Religious Affairs (E.S.P.A.- “HRAKLEITOS II"),
P. Mannersalo’s work was supported by TEKES as part of the Fu-
ture Internet program of TIVIT (Finnish Strategic Centre for Sci-

ence, Technology and Innovation in the field of ICT). This work
has also been supported by the European Commission through the
FP7 PURSUIT program.

9. REFERENCES
[1] Baldoni R., Contenti M., Piergiovanni S.T. and Virgillito A.,

“Modeling publish/subscribe communication systems:
towards a formal approach,” Proceedings of the 8th
International Workshop on Object-Oriented Real-Time
Dependable Systems (WORDS 2003), pp. 304 – 311, 2003.

[2] Cilia M., Fiege L., Haul C., Zeidler A., and Buchmann A. P.,
“Looking into the past: enhancing mobile publish/subscribe
middleware,” Proceedings of the 2nd international Workshop
on Distributed Event-Based Systems (DEBS 2003), pp. 1–8,
San Diego, California, 2003.

[3] Li G., Cheung A., Hou S., Hu S., Muthusamy V., Sherafat R.,
Wun A., Jacobsen H., and Manovski S., “Historic data access
in publish/subscribe,” Proceedings of the 2007 inaugural
international Conference on Distributed Event-Based Systems
(DEBS 2007), pp. 80–84, Toronto, Canada, 2007.

[4] Singh J., Eyers D. M., and Bacon J., “Controlling historical
information dissemination in publish/subscribe,” Proceedings
of the 2008 Workshop on Middleware Security (MidSec
2008), pp. 34–39, Leuven, Belgium, 2008.

[5] Sourlas V., Paschos G. S., Flegkas P. and Tassiulas L.,
“Caching in content-based publish/subscribe systems,” in
Proc. of IEEE Globecom 2009, Honolulu, HI, USA, 2009.

[6] Carzaniga A., Rosenblum D. and Wolf A., “Design and
evaluation of a wide-area event notification service,” ACM
Trans. On Computer Systems, vol. 19, pp. 332–383, 2001.

[7] Eugster P. Th., Felber P. A., Guerraoui R. and Kermarrec A.
M., “The many faces of publish/subscribe,” ACM Computing
Surveys, vol. 35, pp. 114–131, 2003.

[8] Wang J., “A survey of web caching schemes for the Internet,”
ACM SIGCOMM Computer Communication Review, 29 (5),
pp. 36–46, 1999.

[9] Latouche G., Ramaswami V., “Introduction to Matrix Analytic
Methods in Stochastic Modeling,” SIAM, Philadelphia, 1999.

[10] Neuts M., “Matrix-Geometric Solutions in Stochastic
Models: An Algorithmic Approach”, Johns Hopkins, 1994.

