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Abstract. Finite element (FE) model updating and validation techniques are formulated as 
single and multi-objective optimization problems. A multi-objective optimization framework 
results in multiple Pareto optimal models that are consistent with the measured data and the 
residuals used to measure the discrepancies between the measured and the FE model pre-
dicted characteristics. The uncertainty in the Pareto optimal models can then be propagated 
to predict the uncertainty in the response predictions. Gradient-based optimization algo-
rithms, such as the Normal Boundary Intersection algorithm, are used to compute the Pareto 
optimal solutions. These iterative algorithms require repeated solutions of the FE model for 
various values of the model parameters, as well as repeated computation of the gradients of 
the response characteristics involved in the residuals. For FE models with very high number 
of degrees of freedom, of the order of millions, repeated solutions of the FE models can be 
computationally very demanding. Component mode synthesis (CMS) methods are integrated 
into the updating method in order to reduce the computational effort required for performing 
the single- and multi-objective optimization problems. Exploiting certain schemes often en-
countered in FE model parameterization, it is shown that CMS allows the repeated computa-
tions to be carried out efficiently in a significantly reduced space of generalized coordinates, 
avoiding the solution of the fixed-interface/constrained modes and the assembling of reduced 
system matrices at each iteration. The final computational cost is associated with that of esti-
mating the response characteristics of the reduced system at each iteration.  
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1 INTRODUCTION 

Structural model updating methods (e.g. [1]) have been proposed in the past to reconcile 
mathematical models, usually discretized finite element models, with experimental data. The 
estimate of the optimal model from a parameterized class of models is sensitive to uncertain-
ties that are due to limitations of the mathematical models used to represent the behavior of 
the real structure, the presence of measurement and processing error in the data, the number 
and type of measured modal or response time history data used in the reconciling process, as 
well as the norms used to measure the fit between measured and model predicted characteris-
tics. The optimal structural models resulting from such methods can be used for improving 
the model response and reliability predictions [2], structural health monitoring applications 
[3-6] and structural control [7]. 

Structural model parameter estimation problems based on measured data, such as modal 
characteristics (e.g. [3-6]) or response time history characteristics [8], are often formulated as 
weighted least-squares problems in which metrics, measuring the residuals between measured 
and model predicted characteristics, are build up into a single weighted residuals metric 
formed as a weighted average of the multiple individual metrics using weighting factors. 
Standard optimization techniques are then used to find the optimal values of the structural pa-
rameters that minimize the single weighted residuals metric representing an overall measure 
of fit between measured and model predicted characteristics. Due to model error and meas-
urement noise, the results of the optimization are affected by the values assumed for the 
weighting factors.  

The model updating problem has also been formulated in a multi-objective context [9,10] 
that allows the simultaneous minimization of the multiple metrics, eliminating the need for 
using arbitrary weighting factors for weighting the relative importance of each metric in the 
overall measure of fit. The multi-objective parameter estimation methodology provides multi-
ple Pareto optimal structural models consistent with the measured data and the residuals used 
to measure the discrepancies between the measured and the finite element model predicted 
characteristics, in the sense that the fit each Pareto optimal model provides in a group of 
measured modal properties cannot be improved without deteriorating the fit in at least one 
other modal group. The Normal Boundary Intersection algorithm [11] is used to compute the 
Pareto optimal solutions.  

Optimization algorithms used in the model updating methodology require repeated compu-
tations of the finite element model for various values of the model parameters. In addition, 
gradient-based algorithms require the estimation of the gradients of the residuals. For finite 
element models with a very high number of degrees of freedom, of the order of a few millions, 
the model updating methods require very high computational effort. Dynamic reduction tech-
niques can be incorporated in the finite element model updating formulation to alleviate the 
computational burden.  

In this work, a framework is presented for integrating component mode synthesis (CMS) 
[12,13] methods into existing finite element model updating methods in order to reduce the 
time consuming operations involved. The CMS allows the repeated computations to be car-
ried out in a significantly reduced space of generalized coordinates. CMS techniques divide 
the structure into sub-structural components with mass and stiffness matrices that are reduced 
using fixed-interface and constrained modes. For structural components behaving linearly, an 
efficient model updating technique arises for component mass and stiffness matrices that de-
pend linearly on only one of the free model parameters to be updated. In this case the reduced 
mass and stiffness matrices of a component also depends linearly on the free model parameter, 
allowing significant computational savings to be achieved during optimization by avoiding 
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the repeated computation of the fixed-interface and constrained modes of each component 
during the iterative process. Using the resulting linear representation of the assembled mass 
and stiffness matrices of the reduced system in terms of the model parameters, computation-
ally efficient algorithms [14] can be used to further reduce the computational cost involved in 
estimating the gradients and Hessians of the objective functions representing the modal re-
siduals.  

2 FINITE ELEMENT MODEL UPDATING FORMULATION  

2.1 Modal residuals   

Let 0( ) ( )ˆˆ{ , ,  1, , ,  1, , }Nk k
r r DD R r m kw f= Î = =  N  be the measured modal data from a 

structure, consisting of modal frequencies  and mode shape components  at  measured 

DOFs, where m  is the number of observed modes and 

( )ˆ k
rw 0N

DN  is the number of modal data sets 

available. Consider a parameterized class of linear structural models used to model the dy-
namic behavior of the structure and let NR qÎq  be the set of free structural model parameters 
to be identified using the measured modal data. The objective in a modal-based structural 
identification methodology is to estimate the values of the parameter set q  so that the modal 

data { ( ),  (r r ) , 1, , }dNR r mw q q Î = f , where  is the number of model degrees of freedom 

(DOF), predicted by the linear class of models best matches, in some sense, the experimen-
tally obtained modal data in . For this, let   
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1, ,r =  , be the measures of fit or residuals between the measured modal data and the 
model predicted modal data for the r -th modal frequency and modeshape components, re-
spectively, where 2 T|| ||z z= z  is the usual Euclidian norm, the matrix  is an obser-

vation matrix comprised of zeros and ones that maps the  model DOFs to the  observed 

DOFs, 

0 dN NL R ´Î
NdN 0

( )q dN mR ´F Î  is the matrix of the modeshapes predicted by the model, and 
1 ˆTf( ) [ ( ) ( )] [ ( )]T T

r rL L Lb q q q q-= F F F  is a normalization vector that guaranties that the dis-

tance of the measured modeshape ˆ
rf  from the space spanned by the model predicted 

modeshapes in ( ) dN mL Rq ´F Î  is minimal.  

It should be noted that for modes that are not closely spaced, the elements ( )jrb q  of the 

normalization vector ( )rb q  are expected to have values close to zero for j r  and so the 

measure of fit ( )
rf

e q  is approximately the same as ˆ /r
ˆ( ) ( ) ( )

r r rr rLf f q b q f f= -e q . How-

ever, for closely spaced modes, the measure of fit ( )
rf

e q  in (2) is used to express the fact that 

any vector in the subspace spanned by the identified modeshapes for these closely spaced 
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modes is also a modeshape. Thus, any of the identified closely spaced modeshapes should be 
expected to be a linear combination of the model predicted modeshapes for the closely spaced 
modes. This fact is reflected in the use of the measure of fit ( )

rf
e q  in (2).  

In order to proceed with the model updating formulation, the measured modal properties 
are grouped into n  groups. Each group contains one or more modal properties. The modal 
properties assigned in the i th group are identified by the set ,  and , 

with any element in the set  is an integer from 1 to . An element in the set  with 

 refer to the number of the measured modal frequency assigned in the group i , while the 
elements of the set  with  refer to the number of the measured modeshape as-

signed in the group i . For the i th group, a norm 

( )ig k 1, ,i n=  1,2k =
( )ig k( )ig k

k

m

1k =
( )ig k 2=

( )iJ q  is introduced to measure the residuals 

of the difference between the measured values of the modal properties involved in the group 
and the corresponding modal values predicted from the model class for a particular value of 
the parameter set q . The measure of fit in a modal group is the sum of the individual square 
errors in (1) for the corresponding modal properties involved in the modal group. Specifically, 
the measure of fit is given by 

 2 2

(1) (2)

( ) ( ) ( )
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The grouping of the modal properties { ( ),  ( ), 1, , }r r r mw q f q =   into  groups and the se-

lection of the measures of fit (residuals) 

n

1( ), , ( )nJ Jq  q  are usually based on user preference. 

The modal properties assigned to each group are selected by the user according to their type 
and the purpose of the analysis. 

2.2 Multi-objective identification  

The problem of identifying the model parameter values q  that minimize the modal or re-
sponse time history residuals can be formulated as a multi-objective optimization problem 
stated as follows [10]. Find the values of the structural parameter set q  that simultaneously 
minimizes the objectives 

 1( ) ( ( ), , ( ))ny J J Jq q= =  q           (4) 

subject to inequality constrains ( ) 0c q £  and parameter constrains low upperq q q£ £ , where 

1( , , )Nq
q q q=  ÎQ  is the parameter vector, Q  is the parameter space, 1( , , )ny y y Y= Î  is 

the objective vector, Y  is the objective space, ( )c q  is the vector function of constrains, and 

lowq  and upperq  are respectively the lower and upper bounds of the parameter vector . For con-

flicting objectives 1( ), , ( )nJ Jq  q , there is no single optimal solution, but rather a set of al-

ternative solutions, known as Pareto optimal solutions, that are optimal in the sense that no 
other solutions in the parameter space are superior to them when all objectives are considered.  

Using multi-objective terminology, the Pareto optimal solutions are the non-dominating 
vectors in the parameter space Q , defined mathematically as follows. A vector q ÎQ  is said 
to be non-dominated regarding the set Q  if and only if there is no vector in Q  which domi-
nates q . A vector q  is said to dominate a vector 'q  if and only if  

 ( ) ( ')   {1, , }   and     {1, , } :  ( ) ( ')i i j jJ J i n j n J Jq q q q£ " Î $ Î <   (5) 
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The set of objective vectors ( )y J q=  corresponding to the set of Pareto optimal solutions q  

is called Pareto optimal front. The characteristics of the Pareto solutions are that the residuals 
cannot be improved in any group without deteriorating the residuals in at least one other 
group. The multiple Pareto optimal solutions are due to modelling and measurement errors. 
The level of modelling and measurement errors affect the size and the distance from the origin 
of the Pareto front in the objective space, as well as the variability of the Pareto optimal solu-
tions in the parameter space.  

2.3 Weighted modal residuals identification 

The parameter estimation problem is traditionally solved by minimizing the single objec-
tive 

 
1

( ; ) ( )
n

i i
i

J w w Jq q
=

=å           (6) 

formed from the multiple objectives ( )iJ q  using the weighting factors , , 

with . The objective function 

0iw ³ 1, ,i n= 

1
1

n

ii
w

=
=å ( ; )J wq  represents an overall measure of fit be-

tween the measured and the model predicted characteristics. The relative importance of the 
residual errors in the selection of the optimal model is reflected in the choice of the weights. 
The results of the identification depend on the weight values used. Conventional weighted 
least squares methods assume equal weight values, .  1 1/nw w= = = n

2.4 Computational issues 

The proposed single and multi-objective identification problems are solved using available 
single- and multi-objective optimization algorithms. The optimization of ( ; )J wq  in (6) with 
respect to q  for given w  can readily be carried out numerically using any available gradient-
based algorithm for optimizing a nonlinear function of several variables. The set of Pareto op-
timal solutions can be obtained using available multi-objective optimization algorithms. A 
very efficient algorithm for solving the multi-objective optimization problem is the Normal-
Boundary Intersection (NBI) method [11]. Each Pareto optimal solutions is obtained by solv-
ing a single-objective optimization problem using gradient based optimization algorithms. 
Thus, the computational time is of the order of the number of points used to represent the 
Pareto front multiplied by the computational time required to solve a single-objective problem 
for computing each point on the front.  

It is obvious that the search for the Pareto optimal models require repeated computations of 
the finite element model for various values of the model parameters. In addition, gradient-
based algorithms require the estimation of the gradients of the residuals. For finite element 
models with a very high number of degrees of freedom, of the order of a few millions, the 
computational time involved for repeatedly solving the large-scale eigen-problems may be 
excessive, especially if the number of iterations is high. The objective of this work is to exam-
ine the conditions under which substantial reductions in the computational effort can be 
achieved using dynamic reduction techniques such as component mode synthesis methods. 
Dividing the structure into components and reducing the number of physical coordinates to a 
much smaller number of generalized coordinates certainly alleviates part of the computational 
effort. However, at each iteration one needs to re-computed the eigen-problem for each com-
ponent which can be a very time consuming operation. It is shown that for certain parameteri-
zation schemes, often encountered in finite element model updating formulations, the repeated 
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solutions of the component eigen-problems are avoided, reducing substantially the computa-
tional demands in finite element model updating formulations.  

3 COMPONENT MODE SYNTHESIS 

In component mode synthesis [12,13] a structure is divided into several components. Re-
duction techniques are applied on a number of these components, while the rest are the non-
reduced parts of the structure which could be left un-altered. For each component, the uncon-
strained DOFs are divided into the boundary DOFs, denoted by the subscript b  and the inter-
nal DOFs, denoted by the subscript i . The boundary DOFs of a component are common with 
the DOFs of adjacent components, while the internal DOFs of a component are not shared 
with any adjacent component.  

The stiffness and mass matrices ( )sK  and ( )sM  of a component s  are partitioned to blocks 
related to the internal and boundary DOFs, with the undamped equation of motion of a com-
ponent given by  

 
( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
 

ss s s s s s
iii ib i ii ib i

s s s s s s s s
bi bb b bi bb b b b

fM M u K K u

M M u K K u f r

ì üé ù ì ü é ù ì ü ï ïï ï ï ï ïï ï ï ï ï ïê ú ê ú+ =í ý í ý í ýê ú ê úï ï ï ï ï ï+ï ï ï ï ï ïë û î þ ë û î þ ï ïî þ




ï  (7) 

where ( )s
if  and ( )s

bf  are the external forces, while ( )
 

s
br  are the reaction forces on the compo-

nent from the adjacent components at the boundary DOFs. The indices i  and b  are sets con-
taining the internal and boundary DOFs of the component .  s

In component mode synthesis, the physical displacement coordinates ( )su  of a component 

are represented in terms of the generalized coordinates ( )sp  of the component by the Ritz co-

ordinate transformation  

 ( ) ( ) ( )s s su = Y p  (8) 

According to the Craig-Bampton fixed-interface-mode method, the physical coordinates of 
the component are related to the generalized coordinates using the fixed-interface normal 
modes and the interface constrained modes as follows 

 
( )( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )0

ss s s
ks s si ik ib

s s s s
b bk bb b

pu
u p

u I p

ì üì ü é ù ï ïï ï F Y ïï ï ï ïê ú= = Y =í ý í ýê úï ï ï ïï ï ï ïî þ ë û ï ïî þ

ï  (9) 

where ( )s
ikF  is the interior partition matrix of kept fixed-interface modes satisfying the eigen-

problem  

 ( ) ( ) ( ) ( ) ( )s s s s
ii ik ii ik kkK MF = F L s  (10) 

with all boundary DOFs for the considered component restrained, and the ( )s
ibY

( )

 is the interior 

partition matrix of the constrained-modes given by ( ) ( ) 1[ ]s s
ib iiK -Y =- s

)
ibK . The matrix 

( ) 2( )(s s
kk jdiag wL =  is diagonal containing the eigenvalues 2( )s

jw  of the kept fixed-interface 

normal modes. The fixed-interface modes ( )s
ikF  are considered mass normalized, satisfying  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),              s T s s s s T s s s
ik ii ik kk ik ii ik kkM I KF F = F F =L  (11) 

The reduced set of component equations of motion in generalized coordinates is  
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 ( ) ( ) ( ) ( ) ( ) ( )ˆˆ ˆ ˆs s s s s sM p K p f r+ = +  (12) 

where the reduced mass, stiffness matrix and force vectors for the component are given in 
terms of the original matrices and force vectors in the form  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ˆˆ ˆ ˆ,    ,     =      and     s s T s s s s T s s s s T s s s T s
ik ik ik ik ik ikM M K K f f r= Y Y = Y Y Y = Y r  (13) 

with the partitions for the mass and stiffness matrices given respectively by  

 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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= Y + Y +Y +

 (14) 

and 

 

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) 1 ( ) ( ) ( ) ( )

ˆ

ˆ ˆ 0

ˆ [ ]

s s
kk kk

s s T s
kb bk kb

s s s s s s s T
bb bb bi ii ib bb b ib

K

K K

K K K K K K K-

=L

= =

= - = +Y s

 (15) 

In the substructure assembly process, the vector (1) ( )[ , , ]T S Tp p p=  T  of all generalized 

coordinates for each components is introduced. Letting (1) ( )[ , , , ]T S T T
k kq p p u=  T

b   be the vec-

tor of independent generalized coordinates formed from the generalized coordinates (fixed-
interface modal and boundary coordinates) of all components, the following transformation 
holds  

 p Sq=  (16) 

where the component coupling matrix S  couples the independent generalized coordinates 
with the generalized coordinates of each component. Using the continuity of displace-
ment/rotations and the equilibrium of forces along the shared boundaries of the components,  
the equations of motion in the reduced space of independent generalized coordinates takes the 
final form  

 ˆˆ ˆCB CB TM q K q S f+ =  (17) 

where the assembled mass and stiffness matrices for the reduced system are given by  

 

(1) (1)

( ) ( )

ˆ ˆ0 0 0 0
ˆ ˆ0 0         and        0 0

ˆ ˆ0 0 0 0

CB T CB T

S S

M K

M S S K S

M K

S

é ù é ù
ê ú ê ú
ê ú ê= = ú
ê ú ê ú
ê ú ê ú
ê ú ê úë û ë
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û

L

 (18) 

Solving the eigen-problem  

  (19) ˆ ˆCB CBK Q M Q=

associated with the reduced mass and stiffness matrices ˆ CBM  and , respectively, one ob-

tains the modal frequencies in  and the mode shapes Q  of the reduced system. 

The mode shapes of the original structure are assembled from the reduced ones. Specifically, 
using 

ˆ CBK
2( )idiag wL=

(8) and (16), the physical mode shapes are recovered as follows   
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4 MODEL UPDATING USING COMPONENT MODE SYNTHESIS  

Next, the component mode synthesis procedure is integrated into the finite element formu-
lation. We limit the presentation for the case for which the stiffness and mass matrices depend 
linearly on the model parameters to be estimated using the measured data. Specifically, it is 
assumed that the mass and stiffness matrix takes the form  

  (21) 
0 ,
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1
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j j
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N

j j
j

K K K

M M M

q

q

q

q

=

=

= +

= +
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å

This implies that the component mass and stiffness matrix as well as their partitions admit a 
similar representation. Specifically, the following is true for a component stiffness and mass 
matrix   

  (22) 

( ) ( ) ( )
0 ,

1

( ) ( ) ( )
0 ,

1

N
s s s

j j
i

N
s s s

j j
j

K K K

M M M
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Let 1{ , , }sJ j j=   be a set of index values with 1 {1, , }sj j qÈ È =  N , where sj  is a 

subset of the set J , with integer elements, denoting the parameters in the set q  on which the 
structural component s  depends on. Note that more than one components are allowed to de-
pend on a parameter in the set q .  

Consider the following three special cases of structural component parameterization. In the 
first case, the mass and stiffness matrix of a component s  do not depend on the model pa-
rameters q . In this case the set sj  is empty. The component fixed-interface and constrained 

modes are independent of the parameter values. Only a single analysis is required to estimate 
the fixed-interface and constrained modes. Within the model updating iteration scheme, these 
component modes are computed once and are then used in the iterations involved, thus reduc-
ing the computational effort for assembling the reduced system from these components at 
each iteration.  

In the second case, the mass or stiffness matrix of a structural component  depends only 
on one model parameter in the set 

s
q . In this case the subset sj  contains only one element and 

the stiffness or mass matrices take the form  

 ( ) ( ) ( ) ( )
,         or        M ,s s

s s s s
j j j jK K Mq=

s s
q=  (23) 

Equivalently, the partitions of the component mass and stiffness matrices take the form 

 ( ) ( ) ( ) ( ) ( ) ( )
, ,,        ,        ,s s s s

s s s s s s
ii ii j j ib ib j j bb bb j jK K K K K Kq q= = =

s s
q  (24) 
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or  

 ( ) ( ) ( ) ( ) ( ) ( )
, ,M ,        M ,        M ,s s s s

s s s s s s
ii ii j j ib ib j j bb bb j jM Mq q= = =

s s
M q  (25) 

In the case of stiffness dependence of the parameter 
sj

q , it can be readily shown that the ma-

trix of the kept eigenvalues and eigenvectors of the component fixed-interface modes are 
given with respect to the parameter 

sj
q  in the form  

 ( ) ( ) 2( ) 2( )
, ,,                and        

s s s

s s s s
j j j j j ik ik jq w w qL =L = F =F

s
 (26) 

where the matrices ( )sL  and ikF  are solutions of the following eigen-problem  

 ( ) ( ) ( ) ( ) ( )
, , , , ,s s s s

s s s s s
ii j ik j ii j ik j kk jK MF = F L

s
 (27) 

which is independent of the values of 
sj

q . Also the constrained modes, given by 
( ) ( ) 1 ( ) ( ) 1 ( )

,[ ] [ ] ,s s

s s s s
ib ii ib ii j ib jK K K K-Y =- =- s- , are constant independent of the values of the parame-

ter 
sj

q . It should be noted that even in this case only a single component analysis is required 

to estimate the fixed-interface and constrained modes, independent of the values of 
sj

q .  

Substituting the stiffness matrices (24) and the eigenproperties (26) of a component into the 
reduced stiffness matrix (15), one obtains  

 ( ) ( )
,

ˆˆ
s s

s s
j jK K q=  (28) 

where ( )
,

ˆ
s

s
jK  is given by  
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, ,

( ) ( ) ( )
, ,

( ) ( ) ( ) 1 ( ) ( )
, , , ,

ˆ

ˆ ˆ 0
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s s

,s s s s
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s s T s
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s

s s s s
bb j bb j ii j ib j ib j

K

K K

K K K K K-

=L

= =

= - s

 (29) 

and it is independent on values of the the model parameters. Finally, substituting (28) into 
(18), the stiffness matrix of the reduced system admits the representation  

  (30) 
0 ,

1

0 ,
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N
CB CB CB
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N
CB CB CB

j j
j
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M M M

q

q

q

q

=

=

= +

= +

å

å

where the matrices  and  are given by  0
CBK ,

CB
jK

 (0) ( )
0 ,

0 0 0 0

ˆ ˆˆ ˆ0 0         and        0 0

0 0 0 0

CB T CB T s
jK S K S K S K

é ù é
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ê ú ê= =ê ú ê
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It is important to note that the matrices  and  are independent of 0
ˆ CBK ,

ˆ CB
jK q . In order to save 

computational time, these constant matrices are computed and assembled once and, therefore, 
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there is no need this computation to be repeated during the iterations involved in optimization 
algorithms for model updating. This aforementioned procedure saves significant computa-
tional time since it avoids (a) re-computing the fixed-interface and constrained modes and (b) 
assembling the reduced matrices from these components, at each iteration step involved in 
model updating.  

In the third case, the mass and stiffness matrices of a component depend on more than one 
model parameters. In this case the subset sj  contains more than one element. The stiffness 

and mass matrices are given by  

  (32) 

( ) ( ) ( )
0 ,

( ) ( ) ( )
0 ,

s

s

s s s
j j

j j

s s s
j j

j j

K K K

M M M

q

q

Î

Î

= +

= +

å

å

The fixed-interface and constrained modes have to be recomputed in each iteration involved 
in the model updating procedure and used to form the reduced stiffness and mass matrices of 
the components. This iterative computation, however, is usually confined a small number of 
components with sets sj  involving more than one elements.  

5 CONCLUSIONS  

Component mode synthesis methods were presented to substantially reduce the computa-
tional effort required in the iterative optimization algorithms used for finite element model 
updating. Exploiting certain schemes often encountered in finite element model parameteriza-
tion, the mass and stiffness matrices of the reduced system are shown to depend linearly on 
the model parameters with the mass and stiffness sensitivity matrices to be assembled once 
and to remain constant during the iteration process. The only time consuming operation left is 
associated with the solution of the eigen-problem of the reduced system, avoiding the expen-
sive estimation of the component eigen-problems at each iteration. In the proposed model up-
dating formulation, the division of the structure into components is controlled by the 
parameterization scheme. The methodology is particularly efficient for large-scale finite ele-
ment models where the solution of the component eigen-problem may be a computationally 
demanding operation. The methodology described in this work is also applicable to damage 
detection methods based on finite element model updating methods. According to available 
damage detection methods [6], the structure is subdivided into one components with proper-
ties that remain unchanged during the search for the damaged sub-structure and components 
with mass and stiffness properties that depend linearly on the parameter indicative of damage.  
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