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ABSTRACT 

Bayesian inference is used for quantifying and calibrating uncertainty models in structural dynamics 
based on vibration measurements, as well as propagating these modelling uncertainties in structural 
dynamics simulations to achieve updated robust predictions of system performance, reliability and safety. 
The Bayesian tools for identifying system and uncertainty models as well as performing robust prediction 
analyses are Laplace methods of asymptotic approximation and/or more accurate stochastic simulation 
algorithms (e.g. MCMC). These tools involve solving optimization problems, generating samples for tracing 
and then populating the important uncertainty region in the parameter space, as well as evaluating integrals 
over high-dimensional spaces of the uncertain model parameters. They require a moderate to very large 
number of repeated system analyses to be performed. Consequently, the computational demands depend 
highly on the number of system analyses and the time required for performing a system analysis. Component 
mode synthesis (CMS) techniques are integrated with Bayesian techniques to efficiently handle large-order 
models of hundreds of thousands or millions degrees of freedom and localized nonlinear actions activated 
during system operation. Fast and accurate CMS techniques are proposed, consistent with the finite element  
(FE)model parameterization, to achieve drastic reductions in computational effort.  
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1 INTRODUCTION 

1.1 Bayesian Model Updating 

Bayesian techniques are used for quantifying and calibrating uncertainty models in structural 
dynamics based on vibration measurements, as well as propagating these modeling uncertainties in 
structural dynamics simulations to achieve updated robust predictions of system performance, 
reliability and safety (Papadimitriou et al. 2001). The Bayesian model identification techniques are 
next presented using experimentally estimated modal properties. Let 

ω ϕ= ∈ =0ˆ{ˆ , , 1, , }N
r rD R r n  be the estimated modal frequencies ˆrω  and modeshape 

components r̂φ  at 0N  measured DOFs, where n  is the number of observed modes. Consider a 

parameterized FE model class Μ( )m  and let θθ ∈
( )( ) mNm R  be the free parameters of the model class, 

where ( )mNθ  is the number of parameters in θ( )m . Let  
θΠ =Μ( ) ( )( ; )m m ω θ ϕ θΜ Μ( ) ( ) ( ) ( ){ ( ; ),  ( ; )m m m m

r r ∈ 0NR }  be the predictions of the modal frequencies 
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and modeshapes from a particular model in the model class ( )mΜ , with  
ϕ ϕ θ φ θ≡ =Μ Μ( ) ( ) ( ) ( )( ; ) ( ; )m m m m
r r rL , where φ θ Μ( ) ( )( ; )m m

r  the complete modeshape and 
0N NL R ×∈ selects the 0N  measured DOFs from the N  DOFs of the FE model.   

In Bayesian inference the probability distribution of the model parameters ( )mθ  is updated 
based on the available measurements. The formulation starts by building a probabilistic model that 
characterizes the discrepancy between the model predictions θΠ Μ( ) ( )( ; )m m  obtained from a 
particular value of the model parameters ( )mθ  and the corresponding data D . Let ( )eΜ  be a family 
of probability model classes for the discrepancy terms, that depend on a set of prediction error 
parameters ( )eθ . The Bayesian approach to model calibration deals with updating the values of the 
parameter set θ θ θ= ( ) ( )( , )m e  associated with the structural model parameters and the prediction 
error parameters. A probability distribution ( | )π θ Μ  is assigned a priori to incorporate subjective 
prior information on the uncertainty in the values of these parameters, where ( ) ( )m eΜ= {Μ ,Μ }  
includes the structural and prediction error model classes. The updated distribution ( | , )p Dθ Μ  of 
the set θ , given the data D  and the model class Μ , results from Bayes theorem as follows  

( | , ) ( | )( | , )
( | )

p Dp D
p D
θ π θθ = Μ ΜΜ

Μ
  (1) 

where ( | , )p D θ Μ  is the likelihood of observing the data from the model class and ( | )p D Μ  is the 
evidence of the model class Μ  given by the multi-dimensional integral 

( | ) ( | , ) ( | ) p D p D dθ π θ θ
Θ

= ∫Μ Μ Μ  (2) 

over the space of the uncertain model parameters.  
Assuming that the prediction errors are independent Gaussian zero-mean random variables with 

variance σ2 , the likelihood is readily obtained in the form (Christodoulou and Papadimitriou 2007)  

( ) 0

( ) ( )0
( 1) 2

( 1)1( | , ) exp ( ; )
22

m m
N n

N np D JΜ Μθ θ
σπσ

+

⎡ ⎤+
= −⎢ ⎥

⎣ ⎦
 (3) 

where ( ) ( )( ; )m mJ Μθ  given by  

α ϕ θ ϕω θ ωθ
ω ϕ= =

−−= +∑ ∑
ΜΜΜ

2( ) ( )( ) ( ) 2
( ) ( )

22
1 1

ˆ( ; )1 [ ( ; ) ˆ ] 1( ; )
ˆ ˆ

m mm mn n
r r rm m r r

r rr r

J
n n

 (4) 

represents the measure of fit between the experimentally obtained modal data and the modal data 
predicted by a particular model in the class ( )mM , and ⋅  is the usual Euclidian norm.  
 
1.2 Bayesian Model Selection 

The Bayesian probabilistic framework can also be used to compare two or more competing 
model classes and select the optimal model class based on the available data. Consider a family 
Μ = {ΜFam i , 1, , }i μ= , of μ  alternative, competing, parameterized FE and prediction error 
model classes, and let θθ ∈ iN

i R  be the free parameters of the model class iΜ . The posterior 
probabilities ( | )iP DΜ  of the various model classes given the data D  is (Beck and Yuen 2004)  

= Μ ΜΜ
Μ

( | ) ( )( | )
( | )

i i
i

Fam

p D PP D
p D

  (5) 

where ( )iP Μ  is the prior probability and Μ( | )ip D  is the evidence of the model class iΜ . The 
optimal model class bestM  is selected as the one that maximizes ( | )iP DM  given by (5).  
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2 BAYESIAN TOOLS 

The Bayesian tools for identifying uncertainty models and performing robust prediction 
analyses are Laplace methods of asymptotic approximation and stochastic simulation algorithms. 
 
2.1 Asymptotic Approximations 

For large enough number of experimental data, the posterior distribution of the model 
parameters in (1) can be asymptotically approximated by a Gaussian distribution (Beck and 
Katafygiotis 1998) 

1/ 2

/ 2

ˆ| ( ) | 1 ˆ ˆ ˆ( | , ) exp ( ) ( )( )
(2 ) 2

T
N

hp D h
θ

θθ θ θ θ θ θ
π

⎡ ⎤
⎢ ⎥≈ − − −
⎢ ⎥⎣ ⎦

Μ  (6) 

centered at the most probable value θ̂  of the model parameters with covariance equal to the inverse 
of the Hessian ( )h θ  of the function 2 2

0( ; ) ( / 2)[ ( ; ) ln ] ln ( | )g NN JΜ Μ Μθ σ θ σ π θ−= + −  evaluated 

at the most probable value θ̂ . Such approximation requires the computation of the most probable 
value θ̂  and the Hessian ˆ( )h θ . The asymptotic expression (6) is approximate. Moreover, even for 
large number of experimental data, it may fail to give a good representation of the posterior 
probability distribution in the case of multimodal distributions. In addition, the asymptotic 
approximation fails to provide acceptable estimates for un-identifiable cases manifested for 
relatively large number of model parameters in relation to the information contained in the data.   

For model selection, an asymptotic approximation based on Laplace’s method is also used to 
give an estimate of the integral in (2) appearing in (5) (Papadimitriou & Katafygiotis 2004):  

( ) / 2
0

ˆ ˆ( | ) [ ( )]( | ) 2
ˆdet ( )

JN
N i i i i

i

i i

Jp D c
h

ΜΜ θ θπ θ θπ
θ

−

≈  (7) 

where îθ  minimizes the function ( ; )i ig Μθ  and ˆ( )i ih θ  is the Hessian of ( ; )i ig Μθ  evaluated at îθ .  
 

2.2 Stochastic Simulation Algorithms 

For more accurate estimates, one should use stochastic simulation algorithms (e.g. MCMC, 
Transitional MCMC – TMCMC, Delayed Rejection Adaptive Metropolis - DRAM) to generate 
samples that populate the posterior pdf in (1) and then evaluate the integral (2). Among the 
stochastic simulation algorithms available, the transitional MCMC algorithm (Ching & Chen 2007) 
is one of the most promising algorithms for selecting the most probable model as well as finding 
and populating with samples the importance region of interest of the posterior pdf, even in the 
unidentifiable cases and multi-modal posterior probability distributions. In addition, the TMCMC 
method yields an estimate of the evidence in (2) of the model class iΜ  based on the samples 
generated by the algorithm. The samples ( ) , 1, ,j j Nθ =  generated at the final stage of the 
algorithm can further be used for estimating the probability integrals (Papadimitriou et al 2001) 
encountered in robust prediction of various performance quantities of interest.  

 
2.3 Computational Issues 

The asymptotic approximations and the stochastic simulation algorithms, involve solving 
optimization problems, generating samples for tracing and then populating the important region in 
the uncertain parameter space, as well as evaluating integrals over high-dimensional spaces of the 
uncertain model parameters. They require a moderate to very large number of repeated system 
analyses to be performed over the space of uncertain parameters. Consequently, the computational 
demands depend highly on the number of system analyses and the time required for performing a 
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system analysis. The proposed Bayesian techniques require a large number of FE model simulations 
to be carried out which imposes severe computational limitations on the application of the 
technique. For FE models involving hundreds of thousands or even million degrees of freedom and 
localized nonlinear actions activated during system operation these computational demands for 
repeatedly solving the large-scale eigen-problems and the gradient of the eigensolutions may be 
excessive.  

The objective of this work is to examine the conditions under which substantial reductions in 
the computational effort can be achieved using dynamic reduction techniques such as CMS. 
Dividing the structure into components and reducing the number of physical coordinates to a much 
smaller number of generalized coordinates certainly alleviates part of the computational effort. 
However, in each iteration one needs to re-compute the eigen-problem and the interface constrained 
modes for each component. This procedure is usually a very time consuming operation and 
computationally more expensive that solving directly the original matrices for the eigenvalues and 
the eigenvectors. It is shown in this study that for certain parameterization schemes for which the 
mass and stiffness matrices of a component depend linearly on only one of the free model 
parameters to be updated, often encountered in FE model updating formulations, the repeated 
solutions of the component eigen-problems are avoided, reducing substantially the computational 
demands in FE model updating formulations, without compromising the solution accuracy.  
 

3 INTEGRATION OF COMPONENT MODE SYNTHESIS TECHNIQUES 

In CMS techniques (Craig & Bampton 1965), a structure is divided into several components. 
For each component, the unconstrained DOFs are partitioned into the boundary DOFs, denoted by 
the subscript b  and the internal DOFs, denoted by the subscript i . The boundary DOFs of a 
component are common with the boundary DOFs of adjacent components, while the internal DOFs 
of a component are not shared with any adjacent component. The stiffness and mass matrices of a 
component s  are 

( ) ( )( ) s ss n nK ×∈  and 
( ) ( )( ) s ss n nM ×∈ . Without loss of generality, we limit the 

formulation to stiffness matrices that depend linearly on the model parameters θ  and constant mass 

matrices, i.e. 0 ,
1

( )
N

j j
i

K K K
θ

θ θ
=

= +∑ , 0( )M Mθ = , where 0M , 0K  and , jK , 1, ,j Nθ= , are 

constant matrices. The linear representation implies a similar representation at component level, i.e.  
( ) ( ) ( )

0 ,
1

N
s s s

j j
i

K K K
θ

θ
=

= +∑  (8) 

and ( ) ( )
0

s sM M= . Consider the case for which the stiffness matrix of a component is proportional to 
a single parameter in θ .  Let jS  be the set of components that depends on the j -th variable jθ  in 
the parameter set θ . Due to (8), the stiffness matrix of the component in j js S∈  take the form  

( ) ( )j js s
jK K θ=  (9) 

It can be shown that the matrix ( )js
kkΛ  of the kept eigenvalues and the matrix of the eigenvectors ikΦ  

of the component fixed-interface modes are given with respect to the parameter jθ  in the form  
( ) ( ) ( )      and        j j js s s
kk kk j ik ikθΛ =Λ Φ =Φ  (10) 

where the matrices ( )jsΛ  and ( )js
ikΦ  are solutions of the following eigen-problem  

( ) ( ) ( ) ( ) ( )j j j j js s s s s
ii ik ii ik kkK MΦ = Φ Λ  (11) 

which is independent of the values of jθ . The subscript  k  denotes the kept modes of a component. 
Also the constrained modes, given by 

( ) ( ) ( ) ( ) ( )1 1[ ] [ ]j j j j js s s s s
ib ii ib ii ibK K K K− −Ψ =− =−  (12) 
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are constant independent of the values of the parameter jθ . It should be noted that only a single 
component analysis is required to estimate the fixed-interface and constrained modes, independent 
of the values of jθ . The component’s mass and stiffness matrices are ( ) ( ) ( ) ( )ˆ s s T s sM M= Ψ Ψ  and 

( ) ( ) ( ) ( )ˆ s s T s sK K= Ψ Ψ . It is straightforward to verify that  ( ) ( )ˆˆ j js s
jK K θ= , where ( )ˆ jsK  is a constant 

matrix given by ( ) ( )ˆ j js s
kk kkK =Λ , ( ) ( ) ( )ˆ ˆ 0j j js s T s

kb bk kbK K= =  and ( ) ( ) ( ) ( ) ( )1ˆ [ ]j j j j js s s s s
bb bb ii ib ibK K K K K−= − ,  

independent of the model parameters θ . Also, using the fact that ( ) ( )
0

s sM M=  is constant, the 

reduced matrix ( ) ( ) ( ) ( ) ( )
0 0

ˆ ˆs s T s s sM M M= Ψ Ψ ≡  is also constant.  

The assembled Craig-Bampton stiffness matrix ˆ q qn nCBK ×∈  and mass matrix ˆ q qn nCBM ×∈  
for the reduced set of independent generalized coordinates ( )q t  is 

( )(1) ( )

1

ˆ ˆ ˆ ˆF[ , , ] F [ ]
s

s

N
NCB s

s
s

K K K K
=

= =∑   (13) 

( )(1) ( )

1

ˆ ˆ ˆ ˆF[ , , ] F [ ]
s

s

N
NCB s

s
s

M M M M
=

= =∑  (14) 

For N  matrices 1 1
1 , , N Nn nn n

NA A ××∈ ∈R R , the mathematical operators 1F[ , , ]NM M  and F [ ]s sA  

are defined as follows 1 1F[ , , ] ( , , )T
N NA A S blockdiag A A S= , where 1( , , )Nblockdiag A A  is a 

block diagonal matrix having as diagonal blocks the matrices 1( , , )NA A  and 

1 1 1
F [ ] F[0 , ,0 , ,0 , ,0 ]

s s Ns s n n s n nA A
− +

=  where 0 i i
i

×∈R  denotes a matrix of zeroes.  

Introduce the index set 1{ , , }Ns s
θ

Σ=  to contain the structural components that depend on a 

parameter in the set θ . Then the set {1, , }sNΣ= −Σ  contains the component numbers that their 
properties are constant, independent of the values of the parameter set θ . Using the aforementioned 
analysis, the stiffness matrix of the reduced system admits the representation  

0 ,
1

ˆ ˆ ˆ
N

CB CB CB
j j

i

K K K
θ

θ
=

= +∑  (15) 

and 0
ˆ ˆCB CBM M= , where 0

ˆ CBK  and ,
ˆ CB

jK  are assembled from the component stiffness matrices by 

( )( )
0 ,

ˆ ˆˆ ˆF [ ]   and   F [ ]j

j

j j

sCB s CB
s j s

s s S

K K K K
∈Σ ∈

= =∑ ∑  (16) 

The sum in the second of (16) considers that more than one components j js S∈  depend on jθ .  

Solving the eigen-problem associated with the reduced matrices ˆ CBM  and ˆ CBK   
ˆ ˆCB CBK Q M Q= Λ           (17) 

one obtains the retained modal frequencies in 2( ) k kN N
idiag ω ×Λ= ∈  and the corresponding mode 

shapes q kn NQ ×∈  of the reduced system, while the physical mode shapes are recovered as follows  
ˆ ˆ      or      r rS SQ LQ LqφΦ= Ψ = =  (18) 

where 0ˆ pN nS ×∈  maps the generalized coordinates of each structural component to the physical 
coordinates of the structure, 1̂ ˆ[ , , ]mQ q q=  is the matrix of mode shapes for the reduced system,  

( )(1)[ , , ] p qs n nNblockdiag ×Ψ= Ψ Ψ ∈ , and ˆL S S= Ψ  is constant, independent of the parameters θ .  
The matrices 0

ˆ CBK  and ,
ˆ CB

jK  in (15) are independent of the values of θ . In order to save 
computational time, these constant matrices are computed and assembled once and, therefore, there 
is no need this computation to be repeated during the iterations involved in optimization and 
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stochastic simulation algorithms. At each iteration step involved in model updating for which the 
value of the parameter set θ  changes, this procedure saves significant computational time since it 
avoids (a) re-computing the fixed-interface and constrained modes, and (b) assembling the reduced 
matrices from these components.  

It should be noted that the modal frequency and mode shape residuals have the same exactly 
form as in (4) with ( )rφ θ  replaced by ˆ ( )rq θ  and L  replaced by ˆL S S= Ψ . Available Bayesian 
uncertainty quantification and propagation software can thus be readily used to handle the 
parameter estimation using the reduced mass and stiffness matrices by just replacing the original 
eigenvalue problem with the eigenvalue problem (18) of the reduced system matrices and also 
replacing the matrix L  of zeros and ones by the constant matrix ˆL S S= Ψ .  

It should be pointed out that the significant savings arising partly from the reduction of the 
size of the eigenvalue problem in the CMS technique and partly from the fact that the estimation of 
the component fixed-interface modes and the constrained interface modes need not to be repeated 
for each iteration involved in the optimization. The computational savings depend on the size of the 
reduced system. This size is controlled by the number of fixed interface modes needed to describe 
the deformation of the component as well as the number of interface DOFs for each component. 
However, the number of interface DOFs may be large compared to the number of the fixed 
interface modes. The interface DOFs may control the size of the reduced mass and stiffness 
matrices. Further reduction in the generalized coordinates can be achieved by replacing the 
interface DOFs by a reduced number of constraint interface modes formed by a reduced basis. 
Selecting the reduced basis to be constant, independent of θ , the formulation significantly 
simplifies. The reduced basis can be kept constant at each iteration involved in the optimization 
algorithm or updated every few iterations in order to improve convergence and maintain accuracy.  

 

4 APPLICATION 

The computational efficiency and accuracy of the CMS technique for FE model updating is 
demonstrated using simulated data from the Metsovo bridge. Detailed FE models are created using 
3-dimensional tetrahedron quadratic Lagrange FEs to model the whole bridge. An extra coarse 
mesh is chosen to predict the lowest 20 modal frequencies and mode shapes of the bridge. The 
model has 97,636 FEs and 563,586 DOFs. For demonstration purposes, the bridge is divided into 
fifteen physical components with eight interfaces between components as shown in Figure 1. Each 
deck component consists of several 4-5m deck sections. The tallest pier also consists of several 
sections. The size of the elements in the extra coarse mesh is the maximum possible one that can be 
considered, with typical element length of the order of the thickness of the deck cross-section.  

The cut-off frequency cω  is introduced to be the highest modal frequency that is of interest in 
FE model updating. In this study the cut-off frequency is selected to be equal to the 20th modal 
frequency of the nominal model. i.e. cω =4.55 Hz. The effectiveness of the CMS technique as a 
function of the number of modes retained for each component is next evaluated. For each 
component it is selected to retain all modes that have frequency less than max cω ρω= , where the ρ  
values affect computational efficiency and accuracy of the CMS technique. Representative ρ  
values range from 2 to 10. The total number of internal DOFs per component before the model 
reduction is applied are shown in Figure 2a. The number of modes retained per components for 
various ρ  values is also given in Figure 2a. For the case 8ρ= , a total of 276 internal modes are 
retained for all 15 components. The total number of DOFs of the reduced model is 8,325 which 
consist of 276 fixed interface generalized coordinates and 8,049 constraint interface DOFs for all 
components. It is clear that a two orders of magnitude reduction in the number of DOFs is achieved 
using CMS.   



7 
 

 
Figure 1- Components of FE model of Metsovo bridge. 

Figure 2b shows the fractional error between the modal frequencies computed using the 
complete FE model and the ones computed using the CMS technique as a function of the mode 
number for 2ρ= , 5 and 8. It is seen that the error for the lowest 20 modes fall below 510−  for 

8ρ= , 410−  for 5ρ=  and 310−  for 2ρ= . A very good accuracy is achieved for the case of 2ρ= .  
 

   
Figure 2- (a) Number of DOFs per component of FE model; (b) Fractional modal frequency 

error between predictions of the full and reduced model. 

It is thus obvious that a large number of generalized coordinates for the reduced system arises 
from the interface DOFs. A further reduction in the number of generalized coordinates for the 
reduced system can be achieved by retaining only a fraction of the constrained interface modes. For 
each interface, it is selected to retain all modes that have frequency less than max cω νω= , ν  is user 
and problem dependent. Results are shown in Figure 2b for 2ν =  and 5. It can be seen that the 
fractional error for the lowest 20 modes of the structure fall below 310−  for 5ν = . The number of 
modes retained for different ν  values is given in Table 1. In particular, the value of 5ν =  and 

5ρ=  gives accurate results and the number of retained interfaces modes for all interfaces is 54. 
The reduced system has 155 DOFs from which 101 generalized coordinates are fixed-interface 
modes for all components and the rest 54 generalized coordinates are constrained interface modes. 
The number of generalized coordinates is drastically reduced.  

Table 1- Number of internal and boundary DOFs. 
Total DOFs Original 

 
Reduced 

8ν =  & 8ρ=  
Reduced 

5ν =  & 5ρ=  
Reduced 

2ν =  & 2ρ=  
Boundary 8,049 84 54 31 
Internal       554,052 276 101 35 
Total       562,101 360 155 66 
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The computational time needed to estimate the lowest 20 modal properties using CMS with 
8ρ≤  is five times less than the time required to solve the complete FE model. Reducing the 

constrained interface modes ( 5ν ≤ ), the computational time reduces by three to four orders of 
magnitude. It is thus obvious that CMS is expected to drastically reduce the computational effort in 
Bayesian uncertainty quantification and propagation framework without sacrificing in accuracy.  

 

5 CONCLUSIONS 

Component mode synthesis methods were presented to substantially reduce the computational 
effort required in the Bayesian tools for uncertainty quantification and propagation in structural 
dynamics. Exploiting certain schemes often encountered in finite element model parameterization, 
the mass and stiffness matrices of the reduced system are shown to depend linearly on the model 
parameters with the mass and stiffness sensitivity matrices to be assembled once and to remain 
constant during the iteration process. The only time consuming operation left is associated with the 
solution of the eigen-problem of the reduced system, avoiding the expensive estimation of the 
component eigen-problems at each iteration. The methodology is particularly efficient for large-
scale finite element models where the solution of the component eigen-problem may be a 
computationally demanding operation. Further computational savings can be achieved by adopting 
surrogate models to substantially speed-up computations, and parallel computing algorithms to 
efficiently distribute the computations in available GPUs and multi-core CPUs. 
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