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Abstract—Recent research efforts in the area of future net-
works indicate Information-Centric Networking (ICN) as the
dominant architecture for the Future Internet. The main promise
of ICN is that of shifting the communication paradigm of the
internetworking layer from machine endpoints to information
access and delivery. Optimized content dissemination and efficient
caching of information is key to delivering on this promise. More-
over, current trends in management of future networks adopt
a more distributed autonomic management architecture where
management intelligence is placed inside the network with respect
to traditional off-line external management systems. In this paper,
we present an autonomic cache management approach for ICNs,
where distributed managers residing in cache-enabled nodes
decide on which items to cache. We propose three online cache
management algorithms with different level of autonomicity and
compare them with respect to performance, complexity, execution
time and message exchange overhead. Our extensive simulation-
based experimentation signifies the importance of network wide
knowledge and cooperation.

I. INTRODUCTION

ICN is emerging as the main future networking envi-
ronment, given that the vast majority of Internet activities
are related to information access and delivery. Thus, several
research groups proposed and developed direct information-
centric routing architectures, using location independent con-
tent ID/names instead of endpoint-node addresses; see NDN
[1], PURSUIT [2] and SAIL [3]. In ICNs, information is
explicitly labeled so that anybody, who possesses relevant
information, can potentially participate in the fulfillment of
requests for said information, making efficient caching of
information items one of the most significant management
tasks of future networks.

Moreover, the emerging requirements of the future networks
coming from the proliferation of services deployed over the
Internet such as interactive applications, telecommunication
services, safety and mission critical systems and also its use
for business and social interactions, all demand better quality,
dependability, resilience and protection. Current management
approaches based on off-line external management systems
are inadequate towards these demands. As a result, there is a
need for introducing self-management intelligence within the
network in order to make the latter more flexible and adaptive
to changing conditions through feedback closed-loop control
solutions.

Autonomic self-management is intrinsic in IBM’s pioneer-
ing autonomic computing vision [4] which envisages systems
that can manage themselves given high-level objectives by
administrators. Extending autonomic management from indi-
vidual devices to the collective self-management of networks
of such devices results in autonomic networking and there have
been significant efforts in this area over the last five years.
While a number of approaches have been proposed related
to autonomic network management, most of them are generic
high-level architectures [5]-[6] and design of infrastructures
[7] focusing only partially on the key research issues. Most
of the approaches are based on the concept of knowledge
planes as introduced by [8] or intelligent substrates that
realize a distributed infrastructure for embedding dedicated
management logic in the network in a controllable manner.

Caching is common practice in current networking archi-
tectures as a means of improving performance as this is
perceived from the users. Though finding the optimal cache
management/placement is generally an NP-hard problem, sev-
eral studies [9]-[11] propose approximate solutions. The au-
thors of [12]-[13] formulate the problem as a mixed integer
program (MIP) that takes into account constraints such as disk
space, link bandwidth and content popularity. Moreover, [14]
compares the performance of several caching architectures,
and presents analytical models for important performance
parameters of Web caching, such as clients perceived latency
and bandwidth usage.

The authors of [15] model cache assignment as a distributed
selfish replication (DSR) game in the context of distributed
replication groups (DRG). Under the DRG abstraction, nodes
utilize their caches to replicate information items and make
them available to local and remote users. The pairwise distance
of the nodes is assumed to be equal, while in our approach
we consider the generic case of arbitrary distances. In the
context of DRG and under the same distance assumption a
2-approximation cache management algorithm is presented in
[16]. Finally in [17] authors develop a cache management
algorithm aimed at maximizing the traffic volume served from
the caches and minimizing the bandwidth cost. They focus on a
cluster of distributed caches (Content Distribution Networks),
either connected directly or via a parent node, and formulate
the content placement problem as a linear program in order to
benchmark the globally optimal performance.978-1-4673-0269-2/12/$31.00 c⃝ 2012 IEEE
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While packet-level in-network opportunistic caching is one
of the salient characteristics of ICN architectures, cache place-
ment and replica assignment still has an important role to
play. Particularly in [18] a set of off-line cache planning
and replica assignment algorithms for the ICN paradigm
is proposed. Unlike in-network opportunistic caching [19]-
[20], which attempts to cache the most commonly accessed
items/packets as close to the clients as possible, replication
distributes a site’s contents across multiple mirror servers.
Replication is used to increase availability and fault tolerance,
while it has as side effect load-balancing and enhanced client-
server proximity [21]. In general, replication and in-network
opportunistic caching complement each other. Essentially ev-
ery major aspect of a caching scheme has its equivalent in
replicated systems, but not vice versa [16].

In this paper, we propose an autonomic cache management
architecture that dynamically (re-)assigns information items
to caches in an ICN. Distributed managers make information
item (re-)placement decisions, based on the observed item
request patterns such as their popularity and locality, in order
to minimize the overall network traffic imposed by the user
requests. Moreover, we present three distributed on-line cache
management algorithms, categorize them based on the level of
cooperation needed between the autonomic managers and we
compare them against their performance, complexity, message
overhead and convergence time. We validate the proposed
approaches through simulations providing also insight on their
ability to adapt depending on the volatility of the user requests.

The rest of the paper is organized as follows. Section II
presents the functionality of the management substrate that
will coordinate the caches, while in Section III, we formulate
the cache management problem. In Section IV, we present
the three distributed on-line cache management algorithms,
while in Section V the communication and computational
complexity of the proposed algorithms is analyzed. Moreover,
in Section VI, we evaluate through simulations the perfor-
mance of the proposes algorithms and we compare their
outcome with centralized off-line solutions and completely
selfish techniques. Finally, in Section VII we conclude our
paper and give pointers for future work.

II. AUTONOMIC CACHE MANAGEMENT SYSTEM

ARCHITECTURE

In the emerging ICN proposals, information is replicated
almost ubiquitously throughout the network with subsequent
optimal content delivery to the requesting users. Thus, efficient
placement and replication of information items to caches
installed in network nodes is key to delivering on this promise.
When a client is interested in a particular piece of content,
his/her request (interest in [19] or subscription in [2]) can be
redirected to one of the existing replicas rather than requiring
retrieval from the original publisher. Consequently, manage-
ment of such networks entails managing the placement and
assignment of information to caches available in the network
with objectives such as minimizing the content access latency

from clients, maximizing the traffic volume served by caches
and thus minimizing bandwidth cost and network congestion.

Current approaches applied to Content Distribution Net-
works follow static off-line approaches with algorithms that
decide the optimal location of caches and the assignment of
information items and their replicas to those caches based
on predictions of content requests by users. In contrast, we
propose the deployment of an intelligent substrate architecture
that will enable the assignment of information items to caches
to take place in real-time, based on changing user demand
patterns. Distributed Cache Managers decide the items every
cache stores by forming a substrate that can be organized either
in a hierarchical manner for scalability reasons or in a peer-to-
peer organizational structure. Communication of information
related to request rates, popularity/locality of information
items and current cache configurations, takes place between
the distributed cache managers through the intelligent substrate
functionality.

Every cache manager, as depicted in Fig. 1, should decide
in a coordinated manner with other managers whether to cache
an item. This may require the replacement of an already stored
item, depending on the available space at the cache. The
decision of this replacement of stored items can be performed
towards maximizing an overall network-wide utility function
(e.g. the gain in network traffic) which means every node
should calculate the gain the replacement of an item would
incur. This approach assumes that every cache manager has
a holistic network-wide view of all the cache configurations
and relevant request patterns and this information should be
exchanged periodically or in an event-based manner when a
manager changes the configuration of its cache.
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Fig. 1. Autonomic Cache Management Substrate in Information-Centric
Networks

Other approaches can also be realized in which managers
base their decisions on a local view of the user demand for
specific items but coordinate to maximize the overall network
gain, as well as solutions where managers act selfishly aiming
at maximizing their own local utility. Since all the above
decisions are made in a distributed manner, uncoordinated
decisions could lead to suboptimal and inconsistent config-
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urations. Coordinated decision making of a distributed cache
management solution can be achieved through the substrate
mechanisms, by ensuring that managers change the config-
uration of each cache in an iterative manner i.e. one at a
time and not autonomously in a potentially conflicting manner.
All these approaches are investigated in this work by propos-
ing and comparing different distributed cache management
algorithms and evaluating their performance with respect to
their autonomicity. In the next sections, we present the cache
management problem formulation followed by the description
of the proposed algorithms.

III. CACHE MANAGEMENT PROBLEM FORMULATION

We consider an information-centric network of arbitrary
topology, represented by a graph 𝒢 = (𝒱, ℰ). 𝒱 denotes the
set of caches and ℰ the communication links interconnecting
them. Throughout the paper we will use the calligraphic letters
to denote sets and the corresponding capitals for cardinality;
for example ∣𝒱∣ = 𝑉 .

We denote with ℳ the set of the 𝑀 information items
available at the network and with 𝑠𝑚 the size (in bits) of item
𝑚. The information items reside at the caches and requests
for content access are generated by the users of the network,
with each user being directly connected to a cache node, say its
closest one. Cache 𝑣 ∈ 𝒱 has a storage capacity of 𝐶𝑣 bits and
serves requests generated with rate 𝑟𝑣 = {𝑟1𝑣, . . . , 𝑟

𝑀
𝑣 }, where

𝑟𝑚𝑣 denotes the aggregate incoming request rate (in requests
per second) at cache 𝑣 for information item 𝑚. Access requests
trigger the transfer of the requested item from a cache hosting
the item to the node where the request was generated. A
request by node 𝑢 for an item 𝑚 cached at node 𝑣 generates a
traffic load equal to the product of the length 𝑑𝑣𝑢 (in number of
hops) of the path from 𝑣 to 𝑢 and the size 𝑠𝑚 of the transferred
item.

We also denote by ℋ the set of all possible cache configura-
tions. A configuration 𝑯 ∈ ℋ can be represented by a binary
matrix of size 𝑉 ×𝑀 and specifies the content of each cache
in the network. Actually, 𝐻𝑚

𝑣 indicates whether information
item 𝑚 is cached at 𝑣.

𝐻𝑚
𝑣 =

{
1 if item 𝑚 is cached at node 𝑣,

0 otherwise.

In this paper, and in compliance with many ICN architec-
tures, we assume that no origin server exists to serve requests
for items not replicated at any cache. Thus, the following
constraints define the set of feasible cache configurations:

𝑉∑
𝑣=1

𝐻𝑚
𝑣 ≥ 1 ∀𝑚 ∈ ℳ

𝑀∑
𝑚=1

𝑠𝑚𝐻𝑚
𝑣 ≤ 𝐶𝑣 ∀𝑣 ∈ 𝒱

(1)

In particular, the first one indicates that each content item
has to be stored in at least one cache. Otherwise, the total
traffic would become unbounded. The second one describes

the fact that each cache has a limited capacity that cannot be
exceeded.

An intelligent substrate architecture enables the assignment
of information items to caches to take place in real-time,
based on the ever-changing user demand patterns. In this
study, we assume that the substrate is organized in a peer-
to-peer fashion where distributed managers, one responsible
for each cache, decide the items that should be stored in
each cache according to specific performance criteria (see Fig.
1). Since there is a one-to-one mapping between managers
and network caching nodes, we use the same notation 𝒱 to
denote both. Communication of information related to request
rates, popularity/locality of information items and current
cache configurations takes place between the distributed cache
managers through the intelligent substrate functionality.

IV. DISTRIBUTED ON-LINE CACHE MANAGEMENT

ALGORITHMS

In this section we present three distributed, gradient descent
type, on-line cache management algorithms that capture the
particularities of the volatile environment under consideration.
All of them are adaptive to popularity and locality changes of
the user demands. To achieve this each manager may update
the contents of its corresponding cache, by fetching new items
and replacing existing ones. We call this process item replace-
ment. Nevertheless, the proposed mechanisms differ in the
amount of information that needs to be communicated through
the substrate, the required level of coordination among the
cache managers, and the performance objective. We present
them in order of decreasing complexity, in terms of the induced
computational/communication overhead.

The first one, henceforth called cooperative, aims at min-
imizing the overall network traffic. This requires that every
cache manager needs a holistic network-wide view of the re-
quest patterns and the current cache configuration. In addition,
since each replacement decision affects the whole network,
some cooperation in the decision making is required.

The second algorithm, henceforth called holistic also aims at
minimizing the overall network traffic and hence requires the
same amount of information. On the other hand, the holistic
algorithm does not require coordination of the actions of the
cache managers and the required decisions are made in an
autonomous manner by each manager individually.

Finally, in the third algorithm, henceforth called myopic,
each manager needs global knowledge of the items cached
in the network, but only local knowledge regarding demand.
Also, the myopic algorithm assumes that each manager acts
autonomously and has the objective of minimizing the traffic
related to its own demand.

Throughout the paper we assume that the underlying content
delivery mechanism optimally directs the requests to the
closest cache out of those holding the requested item. Given
such an access mechanism in order to minimize the total
network traffic, the cache managers have to coordinate their
actions towards finding the replication frequency/density and
the location where each item should be cached.
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Without loss of generality, we also assume that each infor-
mation item is of unit size (𝑠𝑚 = 𝑠 = 1, ∀𝑚 ∈ ℳ) and all
caches have the same storage capacity (𝐶𝑣 = 𝐶, ∀𝑣 ∈ 𝒱). A
detailed description of the proposed algorithms follows.

A. Cooperative cache management algorithm

Let 𝑇 (𝑯) be the traffic load corresponding to cache con-
figuration 𝑯 .

𝑇 (𝑯) =

𝑀∑
𝑚=1

∑
𝑣∈𝒱:

𝐻𝑚
𝑣

=1

∑
𝑢∈𝒩𝑚

𝑣

𝑟𝑚𝑢 𝑑𝑣𝑢 (2)

where 𝒩𝑚
𝑣 is the set of nodes accessing item 𝑚 through its

replica at cache node 𝑣, 𝑟𝑚𝑢 the request rate for information
item 𝑚 generated at node 𝑢 and 𝑑𝑣𝑢 is the distance (in hops)
from node 𝑣 to node 𝑢.

Our objective here is to minimize the total traffic load in the
network under the constraints of Eq. (1). However, finding the
optimal assignment of the items in the caches, even for a static
environment, can be mapped to the Generalized Assignment
Problem, which in its simplest form is equivalent to the NP-
complete multiple knapsack problem [22]. Thus, we propose
the following adaptive heuristic mechanism, where at each
iteration all the cache managers 𝑣 ∈ 𝒱 execute the following
steps in parallel:

Step 1: For each item 𝑚 cached in 𝑣 compute the overall
performance loss, 𝑙𝑚 = 𝑇 (𝑯𝑚) − 𝑇 (𝑯) ≥ 0, that
will be caused if item 𝑚 is removed from 𝑣, if this
leads to a valid new configuration 𝑯𝑚. In this case
all the requests for item 𝑚 at 𝑣 will be served by
another cache, which is at least that far.

Step 2: For each item 𝑚 not cached in 𝑣 compute the
overall performance gain 𝑔𝑚 = 𝑇 (𝑯)−𝑇 (𝑯𝑚) ≥ 0
achieved if item 𝑚 is inserted at cache 𝑣, leading
hence to a new configuration 𝑯𝑚. In this case a
certain amount of requests for item 𝑚 will be served
by node 𝑣, as the closest replica.

Step 3: Each manager 𝑣 considers as candidate for inser-
tion item 𝑖 ∈ ℳ of maximum performance gain,
i.e 𝑖 = argmax 𝒈 and as candidate for replacement
the item 𝑘 ∈ ℳ of minimum performance loss i.e.
𝑘 = argmin 𝒍.

Step 4: Each manager 𝑣 calculates the local maximum
relative gain 𝑟 = 𝑔𝑖 − 𝑙𝑘 and informs the rest of the
cache managers through a report message 𝑅𝑒𝑝(𝑟, 𝑣,
𝑖, 𝑘).

Step 5: After receiving the 𝑅𝑒𝑝 messages, each manager
calculates the network-wide most beneficial replace-
ment, say 𝑅𝑒𝑝∗(𝑟∗, 𝑣∗, 𝑖∗, 𝑘∗), the one of maximum
relative gain, and updates its configuration matrix 𝑯

correspondingly, setting 𝐻𝑘∗

𝑣∗ = 0 and 𝐻𝑖∗

𝑣∗ = 1.
At this point only the configuration matrices of the
managers are updated. Only after the completion
of the algorithm managers fetch and cache new
information items and replace cached ones (e.g. fetch
item 𝑖∗ and replace item 𝑘∗).

Step 6: Repeat steps 1-5 until no further replacements are
beneficial for the network, i.e. no positive relative
gain exists.

The proposed algorithm is based on cooperative decision
making. At each iteration the cache managers cooperate
through appropriate message exchanges towards identifying
the maximum relative gain. Thus, it can be shown that since
any change performed in the cache configuration decreases
the overall network traffic, the proposed algorithm finally
converges to an equilibrium point where no further improve-
ment is possible. We should mention here that it does not
necessarily converge to the optimal cache assignment, but to
a local minimum of the objective function given the initial
cache configuration.

B. Holistic cache management algorithm

The holistic algorithm is of similar nature and towards the
same objective. Its distinguishing characteristic though is that
each manager operates on its own by performing replacements
on the respective cache. It can be thought of as a sequence of
Gauss-Seidel iterations [23], where at each iteration a single
cache manager, say 𝑣 ∈ 𝒱 , autonomously decides and executes
the following steps. Steps 1-3 are identical to the cooperative
algorithm and are omitted:

Step 4: The replacement of maximum relative gain 𝑟 =
𝑔𝑖 − 𝑙𝑘 is performed by manager 𝑣. The rest of
the cache managers are notified through the report
message 𝑅𝑒𝑝(𝑟, 𝑣, 𝑖, 𝑘).

Step 5: After receiving the 𝑅𝑒𝑝 message every manager
updates its configuration matrix 𝑯 correspondingly,
setting 𝐻𝑘

𝑣 = 0 and 𝐻𝑖
𝑣 = 1.

The essence behind the holistic algorithm is that each
node performs only valid and beneficial replacements, i.e
replacements that lead to feasible cache configurations and
improve the overall objective respectively. This process is
repeated until an equilibrium point is reached. We say that the
algorithm has reached an equilibrium when no more beneficial
replacements are possible.

Besides, though the cache updates may be applied asyn-
chronously among the nodes, we assume that only a single
node may modify the cache configuration at a given time. This
is due to the fact that each node needs to know the current
cache configuration of the network, in order to calculate the
gain and loss metrics. Thus, each modification is advertised to
the rest cache managers. Relaxing this assumption would lead
to a setting where the nodes make decisions based on outdated
information, causing thus some performance degradation and
making convergence questionable.

C. Myopic cache management algorithm

In both the holistic and the cooperative algorithms every
node needs to acquire global knowledge regarding the demand
pattern for the decision making. However, in highly dynamic
environments the amount of information that needs to be
circulated among the managers becomes significant, causing
thus non-negligible communication overhead. Even worse the
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TABLE I
COMMUNICATION AND COMPUTATIONAL COMPLEXITIES.

Complexity Cooperative Holistic Myopic
Communication for initialization 𝑂(𝑉 2𝑀) 𝑂(𝑉 2𝑀) 0
Communication per iteration 𝑂(𝑉 2) 𝑂(𝑉 ) 𝑂(𝑉 )
Computational per iteration 𝑂(𝑉 2𝑀 + 𝑉 log(𝑀 − 𝐶) + 𝑉 log𝐶) 𝑂(𝑉𝑀 + log(𝑀 − 𝐶) + log𝐶) 𝑂(𝑀 + log(𝑀 − 𝐶) + log𝐶)

required information may not be available on time, making
hence such an approach inapplicable.

For such scenarios we derive an alternative algorithm. We
assume that each manager has no information about the
demand patterns at the other caches, and thus makes decisions
based only on local information. That is each node 𝑣 has to
select his own cache configuration 𝑯𝑚

𝑣 for 𝑚 = 1 . . .𝑀 , so
as to minimize the traffic cost for the demand it serves. Thus,
its objective function now becomes:

𝑇𝑣(𝑯) =

𝑀∑
𝑚=1

𝑟𝑚𝑣 𝑑𝑢𝑚𝑣, (3)

where 𝑢𝑚 the nearest cache hosting a replica of item 𝑚. Given
the new objective function, though the performance gain and
loss expressions change, the main steps of myopic algorithm
remains the same with the holistic one. For brevity, we do not
present the myopic algorithm in detail.

V. COMPLEXITY ANALYSIS

In this section we present the communication and compu-
tational complexity of the above algorithms. This will give
significant insight regarding the incurred computational burden
for each manager and the communications requirements re-
garding the substrate. Our analysis is performed regarding both
the initialization and the per iteration complexity. An important
parameter that affects both the total communication and the
computational complexity of each approach is the number of
iterations required for convergence to an equilibrium point.
Since this is difficult to be calculated analytically we perform
a characterization through simulations in section VI.

A. Communication Complexity

We assume that each cache manager is aware of the initial
cache configuration of the remote caches. Such information is
available at contemporary CDNs [22] and Web caches (digest
[24] or summary [25]) and could be easily provided by the
ICN architecture.

At the initialization phase of both the cooperative and
the holistic algorithms each cache manager needs to have a
network-wide knowledge of the demand patterns. This requires
each manager to forward its local demand vector to all the
other cache managers. For this purpose a message 𝑟𝑣 (the
demand vector at node 𝑢) of size 𝑀 needs to be forwarded to
any other cache manager, leading thus to a total of 𝑉 (𝑉 − 1)
overhead messages for the initialization phase. As a result,
the communication complexity of the initialization phase for
both algorithms is 𝑂(𝑉 2𝑀). On the other hand, the respective
communication complexity of the myopic algorithm is zero,
since decisions are made based only on local demand pattern,
information that is available at manager level.

Regarding the amount of communication overhead induced
per iteration, the cooperative algorithm, in order to calculate
the maximum relative gain, requires a total of 𝑂(𝑉 2) mes-
sages. In particular, each manager needs to “broadcast” its 𝑅𝑒𝑝
message of length 4 in words. On the other hand, in the holistic
and the myopic algorithm a single manager performs locally
the cache updates and forwards to the rest of the managers a
single 𝑅𝑒𝑝 message, for consistency purposes. This leads to
a communication complexity per iteration of 𝑂(𝑉 ) messages.
The multiplicative constant is 4 in all these cases (size of the
𝑅𝑒𝑝 message).

B. Computational Complexity

In order to calculate the computational complexity of each
algorithm we define the calculation of the traffic cost for node
𝑢 to access item 𝑚 stored at node 𝑣 (i.e. a single multiplica-
tion, 𝑟𝑚𝑢 𝑑𝑣𝑢) as the basic operation. Thus, the complexity of
each algorithm is calculated as the number of basic operations
required.

The cooperative algorithm requires each manager at each
iteration to perform 𝑉 ⋅𝑀 basic operations for the calculation
of the 𝒈 and the 𝒍 vectors. In order to get the 𝑔∗ and the
𝑙∗ one max-heap and one min-heap operations are executed
by each manager. The max-heap operation has a computa-
tional complexity of 𝑂(log(𝑀 − 𝐶)), where 𝐶 the storage
capacity of each node. Similarly the min-heap operation has a
computational complexity of 𝑂(log𝐶). So the computational
complexity of the cooperative algorithm for each iteration is
𝑂(𝑉 2𝑀 + 𝑉 log(𝑀 − 𝐶) + 𝑉 log𝐶).

The holistic algorithm is of the same computational com-
plexity per manager. However, here only a single manager
computes the relative gain within an iteration and not all of
them. So the computational complexity per iteration of the
holistic algorithm is 𝑂(𝑉 𝑀 + log(𝑀 − 𝐶) + log𝐶).

The myopic algorithm requires for the calculation of the 𝒈

and the 𝒍 vectors only 𝑀 constant time operations, since only
the local demand pattern is known to each manager. So the
computational complexity of the myopic algorithm for each
iteration is 𝑂(𝑀 + log(𝑀 − 𝐶) + log𝐶). Table I summa-
rizes the communication and computational complexity of the
proposed distributed on-line cache management algorithms.

VI. PERFORMANCE EVALUATION

In this section, we evaluate through simulations the per-
formance of the proposed cache management algorithms. For
comparison purposes we simulate also a greedy centralized
cache assignment algorithm and a local selfish approach. In the
latter each manager has no information regarding neither the
remote request patterns nor the assignment of the other caches,
and thus makes decisions based only on local information.
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Fig. 4. The performance of the proposed cache management algorithms vs. the number 𝑉 of caches in the network.

Actually, the 𝐶 locally most popular items are cached. The
greedy algorithm, reported in [26], is an iterative but off-
line centralized algorithm which requires 𝑉 2𝑀 iterations. It
gives solutions of high quality, since its median performance
is within a factor of 1.1 - 1.5 of the optimal and around a
factor of 4 for the maximum cases.

Each point of the following figures is the mean value
out of fifty executions starting from different initial cache
assignments and for fifty different network topologies. In
particular, we use the Waxman model [27] to generate the
network topologies, where a pair of nodes {𝑢, 𝑣} is connected
with probability 𝑝𝑢𝑣 = 𝛽e

−𝑑𝑢𝑣

𝐿𝛼 depending on their distance
𝑑𝑢𝑣 , with 𝐿 being the maximum distance of any two nodes
and 𝛼, 𝛽 ∈ (0, 1]. Parameter 𝛽 controls the density of the
graph (the larger the value of 𝛽 the denser is the graph),
while 𝛼 controls the connectivity of the graph (the smaller
the value of 𝛼 the larger is the number of short edges) [28].
Our fifty random network topologies arise from random values
of parameters 𝛼 and 𝛽.

Information-centric research lacks publicly available data
sets for meaningful evaluation. Thus, synthetic workload gen-
eration according to realistic assumptions is widely accepted.
Each information item is characterized by two parameters,
namely popularity and locality. Popularity refers to the request
rate related to an item and locality to the region of the topology
likely to originate requests. We denote by 𝑝𝑚 (respectively ℓ𝑚)
the popularity (respectively the locality) of item 𝑚. Popularity
and locality values are computed according to a Zipf law of
exponents 𝑧𝑝𝑜𝑝 and 𝑧𝑙𝑜𝑐 respectively. Requests are issued from
a set of nodes computed using ℓ𝑚. In particular, ⌈ℓ𝑚𝑉 ⌉ nodes
are potential issuers of requests related to item 𝑚. This set of
nodes is computed by choosing randomly a central node and
its ⌈ℓ𝑚𝑉 ⌉ − 1 closest nodes, by executing a Breadth First
Search algorithm.

Our figures depict for each cache management algorithm
the following performance metrics:

∙ The overall network traffic, NT (in 𝑟𝑒𝑞𝑠 ⋅ ℎ𝑜𝑝𝑠/𝑠𝑒𝑐) at
the equilibrium.
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∙ The total number of replacements, RE after the com-
pletion of the cache management algorithms (the actual
number of items fetched by the managers so as to update
their caches).

∙ The total number of iterations, IT required for conver-
gence and is indicative of the running time of each al-
gorithm. IT multiplied by the communication complexity
derived at section V-A provides the communication cost,
while multiplication with the computational complexity
calculated in section V-B reveals the computational cost
of each algorithm.

Initially, we assume uniform locality and popularity for
each item. Uniform locality implies that requests are generated
from every node in the network for every item with the same
probability i.e. the neighborhood of interest for each item is
the whole network. Uniform popularity implies that the request
rate generated from each node 𝑦 of the network for item 𝑚
is 𝑟𝑚𝑢 and it is the same for all nodes for that specific item
𝑚 (𝑟𝑚𝑢 = 𝑟𝑚, ∀𝑢 ∈ 𝑉 ). This request rate varies from 0 - 250
requests/sec.

In this setting, we depict in Fig. 2 and Fig. 3 the impact of
cache capacity, expressed as the fraction of the items that can
be stored in a cache (𝑝 = 𝐶/𝑀 ). In the former the variable
is the actual capacity 𝐶 of each cache, while in the latter the
number of information items 𝑀 in the network. Regarding
the NT metric we notice similar behaviour for both cases, with
our nework-wide approaches having performing better than the
greedy algorithm, but as expected with the benefit diminishing
as we relax the storage capacity constraint and allowing more
items to fit in each cache. However, the complexity related
metrics exhibit different behaviour. In particular, while RE

and IT are increasing in the capacity 𝐶 of each cache, they
are decreasing as the number of items 𝑀 decreases. This is
justified by the fact that as the available capacity increases
more beneficial replacements appear as candidates, while the
decreasing number of items has the opposite impact.

In Fig. 4 we examine the impact of the number of cache
locations 𝑉 in the network. We notice that all the performance
metrics exhibit a linear behaviour of slope 𝑉 , indicating a
per cache identical performance that is justified due to the
uniform popularity and locality parameters. Thus, for the
uniform scenario we notice that the network wide approaches
outperform significantly the local ones but also the greedy
one. Regarding the communication/computational complexity
the proposed cache management algorithms perform signifi-
cantly better than the centralized greedy, which requires 𝑉 2𝑀
iterations. Moreover the cooperative algorithm requires up
to ten times less iterations than the other two algorithms
but its communication complexity is 𝑉 times larger than
the communication complexity of the other two algorithms,
while its computational complexity is 𝑉 times larger than
the computational complexity of the holistic algorithm and
𝑉 2 times larger than the computational complexity of the
myopic algorithm. The cooperative and the holistic algorithms
perform better regarding the number of iterations (convergence
time) due to the fact that all the actions are either explicitly
coordinated (cooperative) or implicitly through the common
objective (holistic). On the other hand, the local approaches
suffer from the probably counteracting objectives of the indi-
viduals. So in general fast convergence comes with a higher
communication and computational cost.

In our second set of experiments we investigate how adap-
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tive our algorithms are as either popularity or locality changes.
Using as initial cache assignment that of the off-line greedy
algorithm for given locality and popularity values, we depict
the iterations and replacements required by each algorithm
to adapt to the new environmental parameters. In Fig. 5 we
see that as the item popularity becomes more uniform (near
zero exponent) less replacements are required since all the
assignments are of almost equal performance. This is also
evident from the network traffic plots, where the performance
gap of the proposed approaches diminishes.

In Fig. 6 we examine the impact of locality variations on
performance. We notice that changes of the locality exponent
cause a domino effect requiring significant reorganization
of the cache contents, since they alter the topology of the
demands of the network under consideration. This justifies also
the better performance of the off-line greedy algorithm, which
selects the items assigned from scratch, at the cost of increased
complexity.

Fig. 5 and Fig. 6 could also be used as a benchmark for
the cache managers in their decision to reassign or not the
cached items upon the detection of a change in the popularity
or the locality pattern. Particularly the difference between the
network traffic cost of the initial cache assignment and the traf-
fic cost after the completion of the algorithms combined with
the communication and computational complexity enables the
cache managers to skip or not the cache reassignment. For
example when the observed 𝑧𝑝𝑜𝑝 alters from 𝑧𝑝𝑜𝑝 = −1.5
to 𝑧𝑝𝑜𝑝 = 0 (Fig. 5) we observe only a 10% decrease on
the overall network traffic, whereas when the 𝑧𝑝𝑜𝑝 alters to
𝑧𝑝𝑜𝑝 = 1.3 the decrease in the overall network traffic is more
than 60%, meaning that in the first case the managers could
skip the reassignment of the caches, whereas in the second
case the reassignment is crucial at almost the same cost with
the first case.

VII. CONCLUSION

In this paper, we proposed an autonomic cache management
architecture that dynamically reassigns information items to
caches in an ICN. The reassignment decisions are based on
the real time observed item request patterns such as their
popularity and locality and not in static off-line predictions.
Particularly we presented three distributed on-line cache man-
agement algorithms which require different level of coopera-
tion between the autonomic managers and we compare them
against their performance, complexity, message overhead and
convergence time.

It is evident that the network wide knowledge and cooper-
ation give significant performance benefits and reduce signif-
icantly the time to convergence, but at the cost of additional
message exchanges and computational effort. It would be
interesting, as future work, to explore enhancements to the
proposed algorithms that would also take into consideration
the cost of replacing the items at the caches of the network,
as well as the processing load of each cache when assigning
items to them. Finally a testbed implementation and evaluation
(PURSUIT testbed [2]) are in the imminent plans.
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