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Abstract 
A Bayesian probabilistic framework for parameter estimation is applied for updating large-order finite 
element models of structures using response measurements. Fast and accurate component mode synthesis 
(CMS) techniques are proposed, consistent with the finite element model parameterization, to achieve 
drastic reductions in computational effort. Further computational savings are achieved by adopting 
heuristic approximations based on surrogate models. The computational efficiency and accuracy of the 
proposed techniques is demonstrated by updating a finite element model of a bridge involving hundreds of 
thousands of degrees of freedom. 

1 Introduction 

Bayesian inference is used for quantifying and calibrating uncertainty models in structural dynamics based 
on vibration measurements, as well as propagating these modeling uncertainties in structural dynamics 
simulations to achieve updated robust predictions of system performance, reliability and safety [1]. The 
Bayesian tools for identifying system and uncertainty models as well as performing robust prediction 
analyses are Laplace methods of asymptotic approximation and more accurate stochastic simulation 
algorithms, such as MCMC [2] and Transitional MCMC [3]. These tools involve solving optimization 
problems, generating samples for tracing and then populating the important uncertainty region in the 
parameter space, as well as evaluating integrals over high-dimensional spaces of the uncertain model 
parameters. A moderate to very large number of repeated system analyses are required to be performed 
over the space of uncertain parameters. Consequently, the computational demands depend highly on the 
number of system analyses and the time required for performing a system analysis.   

To reliably update models, high fidelity finite element model classes, often involving a large number of 
DOFs, should be introduced to simulate structural behavior. For such large-order finite element models the 
computational demands in implementing asymptotic approximations as well as stochastic simulation 
techniques may be excessive .This study integrates an efficient CMS technique that takes into account the 
FE model parameterization to substantially alleviate the computational burden associated with the 
Bayesian methodology for updating. The CMS allows the repeated computations to be carried out in a 
significantly reduced space of generalized coordinates. . CMS techniques (e.g.[4]) have been successfully 
employed for model reduction in optimization and stochastic simulation algorithms involved in model 
updating [5,6]. CMS techniques divide the structure into sub-structural components with mass and 
stiffness matrices that are reduced using fixed-interface and constrained modes. For structural components 
behaving linearly, an efficient model updating technique arises for component mass and stiffness matrices 
that depend linearly on only one of the free model parameters to be updated. In this case the reduced mass 
and stiffness matrices of a component also depend linearly on the free model parameter, allowing 
significant computational savings to be achieved during optimization by avoiding the repeated 
computation of the fixed-interface and constrained modes of each component during the iterative process. 
Further computational savings are achieved by adopting heuristic approximations based on surrogate 
models. Such surrogate models, developed and integrated with TMCMC algorithm, maintain the desired 
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accuracy and alleviate further the computational burden, offering substantial reductions in the number of 
costly finite element-based function evaluations required in the stochastic simulation algorithms. The 
computational efficiency of the proposed approach is demonstrated by updating a finite element model of 
a bridge involving hundreds of thousands of degrees of freedom.  

2 Bayesian Updating 

Consider a parameterized linear finite element model class Μ  of a structure and let NR qq Î  be a set of 
free structural model parameters to be estimated using a set of modal properties identified from vibration 

measurements. The identified modal properties consist of the square of the modal frequencies, , 

and the mode shape components 
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rf Î  at  measured DOFs, for , where  is the 

number of observed modes. The values of the parameter set 
0N 1, ,r =  m m

q  are estimated so that the modal frequencies 
2( ) ( )r rl q w q=  and modeshapes 0N( )r Îf q , predicted by the FE model, best matches the 

experimentally obtained modal data. The mode shape components ( ) ( )r rL     are computed from 

the full mode shapes ( ) n
rj q Î  that satisfy the eigenvalue problem  

 [ ( ) ( ) ( )] ( ) 0r rK Mq l q q j q- =  (1) 

where ( ) n nK q ´Î  and ( ) n nM q ´Î  are respectively the stiffness and mass matrices of the FE model 

of the structure,  is the number of model degrees of freedom (DOF), and  is an observation 
matrix, usually comprised of zeros and ones, that maps the n  model DOFs to the  observed DOFs.   

n 0N nL R ´Î

0N

Bayesian methods are used to quantify the uncertainty in the finite element model parameters as well as 
select the most probable finite element model class among a family of competitive model classes based on 
the measured data. According to the Bayesian technique, the model class  is augmented to include, in 
addition to the finite element model class, the prediction error model class that postulates zero-mean 

Gaussian models for the modal frequency and mode shape error terms , with equal variances  for all 

modal frequency errors and equal variances  for all mode shape errors. Using probability density 
functions (PDF) to quantify uncertainty and following the Bayesian formulation described in 

Μ
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[7], the 
posterior PDF ( , | , )p D Μ   of the structural model parameters   and the prediction error parameter 

given the data D  and the model class  can be obtained in the form  s Μ
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( , | )   Μ  is the prior PDF of the structural model parameters   and the prediction error parameter 

model  , and  is the evidence of the model class . ( | )p D Μ Μ
For large enough number of experimental data, and assuming for simplicity a single dominant most 
probable model, the posterior distribution of the model parameters can be asymptotically approximated by 
the multi-dimensional Gaussian distribution [8]. 
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centered at the most probable value q̂  of the model parameters, with covariance equal to the inverse of the 

Hessian  of the function  ( )h q

 2 2
0( , ; ) ln ( | , ) [ ( 1) / 2)][ ( ; 1) ln ] ln ( | )g p D m N JΜ Μ             Μ    (5) 

evaluated at the most probable value q̂ . An asymptotic approximation based on Laplace’s method is also 

available to give an estimate of the model evidence  in ( | )p D Μ (2) [9].  

The Bayesian probabilistic framework is also used to compare two or more competing model classes and 
select the optimal model class based on the available data. Consider a family Μ = {ΜFam i , 1, , }i   , 

of   alternative, competing, parameterized FE and prediction error model classes, and let qq Î i
N

i R  be 

the free parameters of the model class . The posterior probabilities  of the various model 

classes given the data D  is 
iΜ ( | )i DP Μ

[10] 
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where  is the prior probability and  is the evidence of the model class . The optimal 

model class  is selected as the one that maximizes  given by 

( iP Μ
M

Μ( | )ip D iΜ
best ( |iP DM (6).  

The aforementioned asymptotic expressions require the computation of the most probable value q̂  and the 

Hessian ˆ( )h q . The asymptotic expression (4) is approximate. Moreover, even for large number of 
experimental data, it may fail to give a good representation of the posterior probability distribution in the 
case of multimodal distributions. In addition, the asymptotic approximation fails to provide acceptable 
estimates for un-identifiable cases manifested for relatively large number of model parameters in relation 
to the information contained in the data. For more accurate estimates, one should use stochastic simulation 
algorithms (e.g. MCMC [11], TMCMC [3]) to generate samples that populate the posterior pdf in (2). 
Among the stochastic simulation algorithms available, the TMCMC algorithm is one of the most 
promising algorithms for selecting the most probable model class among competitive ones, as well as 
finding and populating with samples the importance region of interest of the posterior PDF, even in the 
unidentifiable cases and multi-modal posterior probability distributions. In addition, the TMCMC samples 
can be used to yield an estimate of the evidence  in Μ( | )ip D (6) of the model class . The samples iΜ

( ) , 1, ,j j N   generated at the final stage of the algorithm can further be used for estimating the 
probability integrals encountered in robust prediction of various performance quantities of interest.  

2.1 Computational Issues 

The asymptotic approximations and the stochastic simulation algorithms, involve solving optimization 
problems, generating samples for tracing and then populating the important uncertainty region in the 
parameter space, as well as evaluating integrals over high-dimensional spaces of the uncertain model 
parameters. They require a moderate to very large number of repeated system analyses to be performed 
over the space of uncertain parameters. Consequently, the computational demands depend highly on the 
number of system analyses and the time required for performing a system analysis. The proposed 
Bayesian estimators requires a large number of finite element model simulations to be carried out which 
imposes severe computational limitations on the application of the damage identification technique. For 
finite element models involving hundreds of thousands or even million degrees of freedom and localized 



nonlinear actions activated during system operation these computational demands for repeatedly solving 
the large-scale eigen-problems may be excessive.  

The objective of this work is to examine the conditions under which substantial reductions in the 
computational effort can be achieved using dynamic reduction techniques such as CMS. Dividing the 
structure into components and reducing the number of physical coordinates to a much smaller number of 
generalized coordinates certainly alleviates part of the computational effort. However, at each iteration one 
needs to re-compute the eigen-problem and the interface constrained modes for each component. This 
procedure is usually a very time consuming operation and computationally more expensive that solving 
directly the original matrices for the eigenvalues and the eigenvectors. It is shown in this study that for 
certain parameterization schemes for which the mass and stiffness matrices of a component depend 
linearly on only one of the free model parameters to be updated, often encountered in finite element  
model updating formulations, the repeated solutions of the component eigen-problems are avoided, 
reducing substantially the computational demands in finite element model updating formulations, without 

Without loss of generality, we limit the formulation to stiffness matrices that depend linearly on the model 
arameters 

compromising the solution accuracy.  

3 Model Updating Using CMS Techniques 

p  and constant mass matrices, i.e. 
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0( )M Mq = , where 0M , 0K  and , jK , 1, ,j N  , are constant matrices independent of  .  

In CMC techniques [4], a structure is divided into several components. Reduction techniques are applied 
on a number of these components, while the rest are the non-reduced parts of the structure which could be 
left un-altered. For each component, the unconstrained DOFs are partitioned into the boundary DOFs, 
denoted by the subscript b  and the internal DOFs, denoted by the subscript . The boundary DOFs of a 

boundary DOF djacent compon
y adjacent component.  

The stiffness and mass matrices 

i
component are common with the s of a ents, while the internal DOFs of a 
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where 
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The linear representation (7) implies a similar representation at component level, i.e.  
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Next, consider the case for which the stiffness matrix of a component is proportional to a single parameter 
 the set in q .  Let jS  be the set of components that depe  the nds on j -th variable  in the parameter set  jq

q . Due to(10) matrix of the component in , the stiffness js SÎ j  take the form  
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The matrices 0
ˆ CBK  and ,

ˆ CB
jK  are independent of the values of q . In order to save com utational time, 

these constant matrices are computed and assembled once and, therefore, there is no need this computation 
to be repeated during the iterations involved in optimization and stochastic simulation 

p

algorithms. At each 
iteration step involved in model updating for which the value of the parameter set q  changes, this 
procedure saves significant computational  since it avoids (a) mputi  the fixed-int d 
constrained modes, and (b) assembling the reduced matrices from these components.  

It should be noted that in the case of model updating, the PDF of the model parameter to be computed 

have the same exactly form as in 

 time re-co ng erface an
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Available model updating software can thus be rea to dily used handle the parameter estimation using   the
reduced mass and stiffness matrices by just replacing the eigenvalue problem of the original mass and 
stiffness matrices with the eigenvalue problem (24) of the reduced system matrices and also replacing the 

matrix L  of zeros and ones by the constant matrix ˆL S S= Y .  

It should be pointed out that the significant savings arising partly from the reduction of the size of the 
eigenvalue problem from n  to qn  in the CMS technique and partly from the fact that the estimation of the 

the component fixed-interface modes and the constrained interface modes need not to be repeated for each 
iteration involved in the optimization. The computational savings depend on the size of the reduced 
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4 Approximation using surrogate models 

Surrogate models can be further used to reduce the computational time by avoiding the structural 
dynamics model runs at a sampling point in the parameters space. This is done by exploiting the function 
evaluations that are available at the neighbour (design) points in order to generate an estimate at a new 
point. Surrogate models are well-suited to be used with the TMCMC method [13]. The kriging technique 
[10] is used to approximate the function evaluation at a sampling point using the function evaluations at 
neighbor points in the parameter space. To ensure a high quality approximation, a surrogate estimate is 
accepted only if it satisfies certain conditions. Specifically, the estimate is based on a minimum number of 

of the uncertain parameter space. The surrogate 
ts so that an interpolation is performed, while 

extrapolations are prohibited. The neighbour design points are selected the one closest to the surrogate 

5 Application to a bridge structure 

The computational efficiency and accuracy of the CMS technique for finite element model updating is 

 typical ele
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eque  than w , where the  values affect computational 

fficiency and accura  of the CMS from 2 to 10. The total 
umber of internal DOFs per com n is applied are shown in Figure 2. The 

ber of modes retained per components for various  values is Figure 2. For the case 

, a total of 286 internal m ponents. The total number of DOFs of the 
reduced model is 3,586 which consist of 286 fixed interface generalized coordinates and 3,300 constraint 
interface DOFs for all components. It is clear that a two orders of magnitude reduction in the number of 
DOFs is achieved using CMS. 

 

 

 

neighbour design points that depend on the dimension 
point belongs to the convex hull of the design poin

estimate and also within the hyper-ellipse of the TMCMC proposal covariance matrix scaled to include the 
minimum number of design points. The estimate is accepted based on local optimality conditions for the 
selected surrogate scheme, guaranteeing that the error in the surrogate estimate is smaller than a user-
defined value. Details can be found in the work by Angelikopoulos et al. [13]. 

demonstrated using simulated data from the Metsovo bridge. Detailed finite element models are created 
using 3-dimensional tetrahedron quadratic Lagrange finite elements to model the whole bridge. An extra 
coarse mesh is chosen to predict the lowest 20 modal frequencies and mode shapes of the bridge. The 
model has 97,636 finite elements and 562,101 DOFs. 

5.1 Effectiveness of CMS technique 

For demonstration purposes, the bridge is divided into nine physical components with eight interfaces 
between components as shown in Figure 1. Each deck component consists of several 4-5m deck sections. 
The tallest pier also consists of several sections. The size of the elements in the extra coarse mesh is the 
maximum possible one that can be considered, with ment length of the order of the thickness of 
the deck cross-section.  

The cut-off frequency cw  is introduced to be the highest modal frequency that is of interest in finite 

elem nt model updating. In this study the cut-off frequency is selected to be equal to the 20th modal 
frequency of the nominal model. i.e. cw = 4.55 Hz. The effectiveness of the CMS technique as a function 

of the number of modes retained for each component is next evaluated. For each component it is selected 
to retain all modes that have fr ncy less
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Figure 1: Components of FE model of Metsovo Bridge 

Figure 3 shows the fractional error between the modal frequencies computed using the complete finite 
element model and the modal frequencies computed using the CMS technique as a function of the mode 

number for , 5 and 8. It can be seen that the error for the lowest 20 modes fall below  for 

, 10  for  and  for . A very good accuracy is achieved even for the case of 
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Figure 2: Number of DOFs per component of FE model 

A large number of generalized coordinates for the reduced system arises from the interface DOFs. A 
further reduction in the number of generalized coordinates for the reduced system can be achieved by 
retaining only a fraction of the constrained interface modes. For each interface, it is selected to retain all 
modes that have frequency less than ,  is user and problem dependent. Results are shown in max cw n= w n
Figure 3 for . It can be seen that the fractional error for the lowest 20 modes of the structure fall 

below  for . The number of modes retained for different n  values is given in 

200n =
n =

200=

310-

n
200
r

Table 1. The 
value of  and  gives accurate results and the number of retained interfaces modes for all 
interfaces is 306. The reduced system has 406 DOFs from which 100 generalized coordinates are fixed-

5=



interface modes for all components and the rest 306 generalized coordinates are constrained interface 
modes. Obviously the number of generalized coordinates is drastically reduced. 
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Figure 3: Fractional modal frequency error between predictions of the reduced and the full model. 

 

Total DOFs Original 

Reduced 

200n =  

& 

8r=  

Reduced 

200n =  

& 

5r=  

Reduced 

200n =  

& 

2r=  

Internal 558,801 286  100  31 

Boundary     3,300 306  306  306  

Total 562,101 592  406  337  

Table 1: Number of internal and boundary DOFs 

The computational time needed to estimate the lowest 20 modal properties using CMS with  is 
twenty times less than the time required to solve the complete finite element model. Reducing the 
constrained interface modes ( ), the computational time reduces by three to four orders of 
magnitude. It is thus obvious that CMS drastically reduces the computational effort without sacrificing in 
accuracy.  

8r£

200n =

5.2 Finite element model updating results 

The finite element model is parameterized using five parameters associated with the modulus of elasticity 
of one or more structural components shown in Figure 1. The parameterization is graphically depicted in 
Figure 4. Specifically, the first two parameters  and q  account respectively for the modulus of 

elasticity of the pier components 3 and 7 of the bridge. The parameter  accounts for the modulus of 

elasticity of the components 1 and 2 of the deck, the parameter  accounts for the components 4 and 5, 

q1 2

q3

q4



while the parameter  accounts for the components 6 and 8. The model parameters are introduced to 
scale the nominal values of the properties that they model so that the value of the parameters equal to one 
corresponds to the nominal value of the finite element model.  

q5

  
Figure 4: FE model parameterization based on 5 parameters.  

Simulated, noise contaminated, measured modal frequencies and mode shapes are generated by adding a 
1% and 3% Gaussian noise to the modal frequencies and modeshape components, predicted by the 
nominal non-reduced finite element models. The added Gaussian noise reflects the differences observed in 
real applications between the predictions from a model of a structure and the actual (measured) behavior 
of the structure. A sensor configuration involving 38 sensors is considered. The sensors are placed along 
the deck and the piers, measuring along the longitudinal, transverse and vertical directions. The finite 
element model is updated using simulated modal data for the lowest ten modes.  

The Bayesian model updating is performed using the stochastic simulation algorithm TMCMC with 1000 
samples per TMCMC stage [3]. Results for the accuracy of the reduced-order models and the 
computational effort are presented in Table 2 for the following cases involving reduction in internal and 
boundary DOFs: (a) , (b)  and , (c)  and , and (d)  and 

. The results for the log evidence as well as the mean parameter values for the different reduced-
order models are reported in 

8=r

200

8r= 200n = 5r= 200n = 2r=
200n =

Table 2. Comparing the log evidence of each reduced model and also the 
corresponding mean values of the model parameters it is evident that the various reduced-order models 
provide adequate accuracy.  

The resulting number of finite element model runs and the computational demands in minutes for each 
reduced-order model are also is shown in Table 2. The number of finite element model runs for each 
model depends on the number of TMCMC stages which vary for each model class from 19 to 20. The 
parallelization features of TMCMC [13] were exploited, taking advantage of the available 8 workers to 
simultaneously run eight TMCMC samples in parallel. For comparison purposes, the computational effort 
for solving the eigenvalue problem of the original unreduced finite element model is approximately 129 
seconds. Multiplying this by the number of TMCMC samples shown in Table 2 and considering that 8 
samples run in parallel , the total computational effort for each model class is expected to be of the order 
of 4 days. The results from the full finite element model are not shown due to the excessive computational 
time required to obtain results. In contrast, for the reduced-order model for , the computational 
demands are reduced to 16 hours (831 minutes as shown in 

8r=

8=

Table 2), while for the reduced-order models 
for  and  these computational demands are drastically reduced to 14 minutes. It is thus 
evident from the results in 

8r= n =
Table 2 that a drastic reduction in computational effort for performing the 

structural identification based on a set of monitoring data is achieved from four days for the unreduced 
model classes to 14 minutes for the reduced model classes corresponding to  and , without 
compromising the accuracy of the proposed model updating methodology. This results in a drastic 
reduction in the number of the computational effort of almost three orders of magnitude. A large number 

r 200n =



of function evaluations, of the order of 70%, are also estimated using surrogate models, resulting in extra 
reduction in the computational time. The drastic reduction in computational time achieved for the present 
finite element model of approximately 560,000 DOFs is evident. 

 

 

Cases 
FE Reduced Order Models Evidence 

(log) 

Mean Total DOFs NFES 

 

CE 
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Full Model ─ ─ 
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6,000
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(b) 8r= 200n= 1670.5 592 20,000 14
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1.011

       

  

 

 

 

 

(c) 5r= 200= 1672.6 406 19,000 9.5
, n  

 

1.008

1.022

1.007

1.012

1.007

        

   

 

 

 

 

(d) 2r= 200= 1666.3 19,000 8.5
, n  

 

1.007

1.016

1.009

1.005

1.007

        

   337  

 

 

 

 

Table 2: Model updating results, model DOFs, number of FE simulations (NFES) and computational 
effort (CE) in minutes for each model class. 

 

 

 



6 Conclusions 

Component mode synthesis methods were presented to substantially reduce the computational effort 
required in the Bayesian updating of large-order finite element models in structural dynamics. Exploiting 
certain schemes often encountered in finite element model parameterization, the mass and stiffness 
matrices of the reduced system are shown to depend linearly on the model parameters with the mass and 
stiffness sensitivity matrices to be assembled once and to remain constant during the iteration process. The 
only time consuming operation left is associated with the solution of the eigen-problem of the reduced 
system, avoiding the expensive re-analyses of the component eigen-problems at each iteration. The 
methodology is particularly efficient for large-scale finite element models where the solution of the 
component eigen-problem may be a computationally demanding operation. Further computational savings 
can be achieved by adopting surrogate models to substantially speed-up computations. Parallel computing 
algorithms can be combined with the proposed method to efficiently distribute the computations in 
available GPUs and multi-core CPUs.  
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