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We present explicit upper bound estimates of the microstructural length used in simple
gradient elasticity. Our model is a two dimensional composite made of circular hard inclu-
sions randomly dispersed in a soft matrix. Both inclusions and matrix are described by
isotropic linear elastic constitutive laws. The composite, however, is described by an isotro-
pic gradient elastic law. The elastic modulus and the Poisson’s ratio are given by the exact
classic analysis of Christensen. The in-plane microstructural length is estimated by energy
optimization, based on solutions of the gradient elastic hollow cylinder. It was shown that
the microstructural length decreases with the composition of the particles, taking high val-
ues at low particle composition. Naturally, the microstructural length is proportional to the
particle diameter and increases with the stiffness of the particles. It was shown that there
can be no microstructural prediction for particles that are softer than the matrix. This inter-
esting result seems to be complementary to the result of Bigoni and Drugan who found
that, for the couple-stress composite model, there can be no prediction for the microstruc-
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tural length when the particles are stiffer than the matrix.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The novelty of gradient elasticity theories is the
inclusion of an intrinsic length parameter or internal
length in the constitutive equations that describe the
mechanical behavior of the material. The inclusion of this
new parameter allows these theories to explain the size ef-
fect that has been shown experimentally to exist in heter-
ogeneous materials. The two simplest and well studied
gradient elasticity theories are the couple stress elasticity
(or constraint Cosserat theory) (Mindlin and Tiersten,
1962; Koiter, 1964) and the dipolar elasticity theory (or
grade-two theory) (Toupin, 1962; Mindlin, 1964). The
main difference between the two is that in the strain-en-
ergy density function that they assume: the first associates
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the internal length with the gradient of the rotations,
whereas the second with the gradient of the strains.
However, in both theories the internal length is associated
with the microstresses that are developed due to the
microstructure of the material. In the present work, we
employ the simplest possible dipolar model of just one
additional length parameter. This choice is based on the
fact that one length parameter is enough for predicting size
effect and furthermore models with more internal lengths
are both unpractical and difficult to verify experimentally.

A typical composite material consists of a matrix and
inclusions. The macroscopic material properties of the
composite depend on the individual properties of these
two phases. The aim of homogenization is to replace the
composite material with an equivalent material of uniform
macroscopic properties. Micro-mechanical models have
been developed for both cases of particulate and fiber
reinforcement. Among the many homogenization methods
that have been proposed are the Mori-Tanaka method
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(Mori and Tanaka, 1973), the Self Consistent method
(Budiansky, 1965; Hill, 1965), the Generalized Self Consis-
tent method (Christensen and Lo, 1979) and the Differen-
tial method (McLaughlin, 1977; Norris, 1985). All these
methods aim at deriving the material properties of elastic-
ity which in the case of isotropy are the modulus of elastic-
ity and the Poisson ratio. However, when gradient theories
are considered, an additional material parameter, the
internal length, must be added. Nevertheless, the same
strategy of homogenization can be used, only this time,
to yield an estimate for this new parameter.

In the present paper, the elastic energy of the heteroge-
neous Cauchy-elastic material will be compared with that
of the homogeneous strain gradient elastic material and
the characteristic length will be estimated as function of
the inclusion radius, volume fraction and elastic constants.
The analysis will be limited to the two-dimensional (2D)
case of circular inclusions.

The paper is structured as follows: In Section 2 we pres-
ent the classic results for the in-plane effective elastic
moduli (the shear modulus u and the Poisson’s ratio v).
In Section 3 we present the elastic energies for the various
composite cylinder cases. In Section 4 we present the
gradient elasticity solutions for the corresponding compos-
ite problem. In Section 5 we give the methodology for the
estimation of the internal length and some important re-
marks concerning the model are given in Section 6. Finally
in Section 7, we apply our model to an example of steel
fiber reinforced concrete mixture and we compare our
estimate with the only other model in the literature that
predicts the strain gradient internal length parameter.

2. Effective material properties of transversely isotropic
composites

The following relationships for the effective material
properties are derived with the generalized self consistent
method for the specific case cylindrical inclusions, as pre-
dicted in Christensen (1990). It is noted that the subscript
m stands for the heterogeneous matrix material and the
subscript i stands for the inclusion. The symbols without
subscript are the effective material properties of the homo-
geneous material. The overall elastic behavior is that of a
transversely isotropic homogeneous material, requiring
five material constants: two of them (x,v) describe the
isotropy of the plane (x,, x3) which is of interest in this
paper.

The in-plane shear modulus g, is given by:
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where c is the volume fraction of the inclusions and v de-
notes the Poisson ratio.
The in-plain bulk modulus K is:

c

K= Kp+Hmy .
3 1 + 1-c
Ki—Km+(1/3) (i~ )~ Km+(4/3) i

(2.4)

The axial modulus E; (in the x; direction, normal to the
(x2,X3) plane) is:

4c(1 = ¢)(Vi — Vi)l

(-0 (tim) + c(tin) +1
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The axial Poisson ratio v is:
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Vi=cVi+(1=C)vm+

The in-plain Poisson ratio, v, is given by Hashin and Rosen
(1964):

_K—yu
e (2.7)
where
4Kv?
=1+ (2.8)

The above solution can be simplified for the two extreme
cases of rigid inclusions and porous materials. The limiting
case of a porous material can be derived directly from
the general case represented by (2.2)-(2.8), if we set
Hi=Vi= 0.

For the case of fibers much stiffer than the matrix, only
the coefficients of the y; terms in A, B, C of (2.2) need be re-
tained with the other being vanishing small. Hence, the A,
B, C coefficients, when inclusions are much stiffer than the
matrix, take the form:
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Fig. 1. Effective shear modulus ratios for the case of elastic cylindrical inclusion for various inclusions to matrix shear modulus ratio (u/
m=1.5,2,2.5,5,10,15). Poisson ratio of matrix and inclusion is v, = 0.2 and v; = 0.25 respectively.
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(29)

The rest of the solution for the case of rigid inclusions is
found, if we assume y; - co and modify Eqs. (2.4)-(2.8)
accordingly.

These results have been shown to give good estimates
not only for the case of dilute composition but also for
the limiting case of full packing of the inclusion phase
(c — 1). In addition to the physical consistency of the re-
sults, it should be noted that the generalized self consistent
method is the only complete, exact, closed form solution
for the two-dimensional (2D) case of cylindrical inclusions.

The normalized composite shear modulus p/;, of elas-
tic cylindrical inclusions is shown in Fig. 1, allowing the
inclusion to matrix shear modulus ratio to range from 1.5
to 15. The assumed matrix and inclusion Poisson ratios
for all cases considered are 0.2 and 0.25 respectively.

The limiting cases of rigid fibers and of porous materials
are shown in a semi-logarithmic plot in Figs. 2 and 3
respectively. Both results depend (weakly) only on the
Poisson ratio of the matrix and four cases are plotted cor-
responding to matrix Poisson ratios of 0.1, 0.15, 0.2 and
0.25.

A comparison between the three cases is shown in
Fig. 4. The matrix Poisson ratio is 0.2 for all cases. The shear
modulus ratio for the elastic inclusion case is p;/ i, = 2. The
rigid inclusion and the void solution are upper and lower
bounds for u;/um, respectively.

3. Classic elasticity solutions

The solution of a circular ring under plain strain condi-
tions subjected to normal uniform pressure p applied at
the outer boundary r=b and to normal uniform pressure

q applied at the inner boundary r=a is (Kachanov et al.,,
2003; Timoshenko and Goodier, 1951) (see Fig. 5):

urzm{bzaz(q—p)%—k(l —2vp)(qd® —pbz)r} 51)
uy=0
—q)b’a®> 1 qa® — pb?
o= (pb2 (i)az =N qb2 - zz
5 __(p—qb’a® 1 qa’—pb’ (32)
YT R_e PP _g
09=0

where u, is the radial displacement, o, the radial stress,a
the hoop stress, v,, the Poisson ratio and p,,, the shear mod-
ulus of elasticity. Subscripts r and 0 denote radial and cir-
cumferential directions of the ring.

The elastic energy is:

b
.
Uy =2m / ? (Gretre + G dr (3.3)
o

The expressions for the strains can be found directly from
those of the stresses assuming plane strain constitutive
equations (Timoshenko and Goodier, 1951). The constitu-
tive relations of the non-zero strains are:

1
r =5—{(1—-v)or —Vouw}
2Hn 34)
&gp = m{(l — V)0 — VO }

3.1. Rigid inclusion

The above general solution of the annulus problem can
be modified to yield the solution for the case of rigid inclu-
sion of radius a. In this case the displacements at the inner
boundary must be zero. By using (3.1) and setting u,
(r=a)=0, we obtain a relation between the inner and
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Fig. 2. Effective shear modulus ratio for the case of cylindrical inclusions much stiffer than the matrix for various matrix Poisson ratio values

(vm=0.1,0.15,0.2,0.25).
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Fig. 3. Effective shear modulus ratio for the case of porous material (= vs=0) for various matrix Poisson ratios (v, = 0.1, 0.15,0.2,0.25).

outer pressures that satisfies this condition. The inner
pressure q must be:

2b°(1 — v)p

b 1 (1 - 2vy) 39

If we feed this specific value of g back to (3.1) and (3.2), we
will have the solution for the problem of a circular ring
containing a rigid inclusion.

The elastic energy Uy, would then be:

~ (1 —co)p?a® (1 — vy — 2v7)
Uan " 2p, (T4 vm)c(1 + ¢ — 2cvp) (3.6)

where c is the composition and is equal to ¢ = a?/b? for the
2D case.
We can rearrange (3.6) to become:

(1= O)p2 (2)* (1 = v — 212)
2, (1 4+ V) (1 4+ ¢ —2¢Vp)

=7 x £* x p? xﬁ(um,vm,c,g) (3.7)

1 =

where / is an internal length used to normalize the expres-
sion of elastic energy. The addition of this parameter might
appear unnecessary at the moment since it does not affect
the solution but it will become apparent later.

The first derivative of u, at r=b is:

ou| - (A4+0p(1—=2vm) _ o (3.8)

Oy 2T Hc(T=2vn)

3.2. Porous material (voids)

The general solution for the case of pores is directly ob-
tained from the general results (3.1) and (3.2), if we set
q = 0. The elastic energy is then:
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Fig. 4. Comparison between the cases of porous material and elastic matrix material with rigid or elastic inclusions (/i = 2) for vy, = 0.2.

Fig. 5. Circular ring subjected to normal uniform external and internal
pressures.

7p*b* (1 + ¢ — 2vy)
2p,(1 )

and if we normalize the expression of the elastic energy
with the internal length ¢, we obtain:

Uz = (3.9

U 2ap?(0)*(1+ ¢ 2vy)
e 2u,(1-0)

=7 x 2 x p? ><f2(,um,vm,c,%> (3.10)
The first derivative of u, at r=>b is in this case:
ou | p(d —c—2vm):u?" (3.11)

or r=b Zlum(‘l - C)

3.3. Elastic inclusions

The solution for this case can be obtained by superim-
posing the solution of two sub-problems following the well
known Eshelby methodology (Eshelby, 1957). We first
remove the inclusion and assume an internal pressure g
acting at the inner boundary (r = a). By solving this prob-
lem we obtain the displacement u(r = a) = u;. We then as-
sume a solid circle with the inclusion properties of radius
o under normal pressure q. By solving this problem, we ob-
tain the displacement u(r = a) = u,. The two sub-problems
are shown in Fig. 6. The solutions to both these problems
can be easily obtained from the general solution repre-
sented by (3.1) and (3.2) by applying the necessary simpli-
fications for the second sub-problem.

The radial displacement u; at r = a of the sub-problem 1,

is:

_alq(1 +c¢—2cvm) — 2p(1 — vp)]
= 2n1—0) (3.12)
The radial displacement u, at r = a of the sub-problem 2, is:

21
The boundary condition of the generic problem demands
Uy = up. Using (3.12) and (3.13), we obtain the value of q
as a function of the outer pressure p and the material prop-
erties of the matrix and inclusion. The pressure g must be:
2pp(1 — V)
= 3.14
U (1 =) (1 =2v;) + (1 + ¢ — 2cvp) ( )
If we feed this value of q back to the solution of the two
sub-problems, we obtain the solution of the annulus with
a circular inclusion.
The elastic energy of the matrix would then be:

a(1-c)p*n
20043, [(1 =€)y (1= 2V0) + (1 4 € = 2V
X (12,1 =20 (14 = 20m) +2(1 = )iy

q

UcB.m =

(1=2v)(1=2vp) + 12(1 = 2v,) (1 +¢(1 =2y
(3.15)
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Fig. 6. Superposition of sub-problems 1 and 2 to yield the generic case of an annulus with elastic circular inclusions.

and, if we normalize the expression of the elastic energy
with the internal length ¢, we obtain:

(0)*(1-op**n
2ty [(1 =€)y (1= 2V)) + (1 + ¢ = 20vy)]?
x (1, (1= 20 (14 ¢ = 2vm) +2(1 = )ity
(1=2v)(1=2Vp) + (1 = 2Vp) (1 +¢(1 = 2vp)]

=7 x (2 x p? xf3_m<um7vm,ui7vi,c,%) (3.16)

Ucl3,m =

The elastic energy of the inclusions is:

2a2p? (1 — 2v;)(1 = vp)?

Uz = 3
(1= )y (1 = 2vi) + (1 + € — 2CVp)]

(3.17)

and, if we normalize the expression of the elastic energy
with the internal length ¢, we obtain:

2()°PpPmp(1 - 2v)(1 — v)?
[(1 — C),U,m(l — 2Vi) + 'ul(] +c— zcvm)]Z

= x 2 xp*xfs <,um, Vi, W, v,—,c,g) (3.18)

Un.i =

Therefore, the total elastic energy of an annulus with an
elastic circular inclusion is:

Un =Upm+Udms_i
=T x £* x p?

b b
X fsom | s Vs 14, Vi €, + fai Hims Vs Ji, Vi €

(3.19)
and the first derivative of u, at r=>b is:

au, —p[(1+ ) p;(1 = 2Vm) + fy (1 = 2v)(1 = € = 2vy]

oy 21 = Oty (1= 20) + (1 + ¢ = 20Vy)]
= u?rr

(3.20)

Note that (3.20) gives (3.11) in the case of porous material
(ui=0,v;=0). Also, in the limit of a rigid inclusion
(i —» o0), (3.20) gives (3.8).

4. Gradient elasticity solution for the annulus problem

Eshel and Rosenfeld (1975) were the first to provide the
outline of the gradient elasticity solution for the annulus
problem. The problem was solved analytically by Aravas
(2011) and Gao and Park (2007) for plain strain conditions.
The key points of the solution of the annulus problem (see
Fig. 2) are presented below.

The material is an in-plane isotropic, compressible,
homogeneous, linear elastic material and is described by
an elastic strain energy density function W that incorpo-
rates strain gradient effects:

)]
(4.1)
where is ¢ is a material length, & is the infinitesimal strain
tensor and k the strain gradient 3rd order tensor. Note that
the deformation in the out-of-plane direction x3 is zero
(U3 = 0) and also e33=0, K33, =0.
The Cauchy stress and double stress quantities T and 4
are defined as follows:

v
W(e, k) = ,u{s,;sﬁ—l — 2v8ij8ij+£2 (KU,(K,-]-H

ow v ) oW
T = 8_8,] = 2#[8,‘,‘ +m8ij5v‘] and i = OKijk
v N
=2u [Kijk 12y Kipp()fk] @2

The following relations also hold true:

A=Vt = £20t;/ox) and K = Ve(ky = dey/Oxy)
(43)

The dynamic boundary conditions required by the princi-

pal of virtual work, are the Cauchy (P,) and the double
stress tractions (R;) in the radial direction:

P,(r) = i{% — - czf i (3) - (1 - 20k (7]

mé[m(() (1-2v)h ( [)] i4} (4.4)

_G

2

Rr(r):—c;f[(l—v)1<1(g)+ (1-2v)K (>]
R )
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where K and I are modified Bessel functions of the first and
second kind (the subscript shows the order) and cy, ¢3, c3
and cg are unknown constants to be determined from the
following boundary conditions:

P(a)=—-q, R(a)=0 at r=a
P(b)=—-p, R(b)=0 at r=b
The radial displacements are:

1 (1 — 2V)C1 Cg
5{72 T+Z

<o () -0 ) a

and the rest of the solution is:

Tr) = (1) 5 (€~ ) + 2 Ko (D) + (1 -2k (1]

(4.6)

up(r) = —(1-2v)

+2[10(3) + (1 =29 (3)] (4.8)
Too(r) = T8, (1) + % <C7 +%) +C2—2 [Ko (2) - (1=-2v)K; (g)]
+2[10(3) - 1 =29 (3)] (4.9)
and
&n(r) = (1) +2]—'u{(] —22v) ¢ =5z +(1-2v)
{ [KO( )4k ( )} +05 [lo(%) at (g)} }}
(4.10)
anlr) = (1) + 0 { 5L+ s = (1= 20

<o () e ()]} an

where 79, 79,, €2 and &), represent the classical linear iso-
tropic elasticity solution, (i.e. £ =0).

:A—s—%, rgng—E and ul

2

1 B

:ﬂ {(1 —2v)Ar—;} (4.12)
with
qa? — pb? a2b?

A= 413

o B0 (4.13)
and
i =C7+ ZA. Cs =Cg — 2B (414)

We are interested in the solution for a — 0. The constants
¢, and cg must be zero in order for the displacements to
be finite and zero at r=0. Therefore, the unknown con-
stants reduce to just two, c3 and c;. However, when trying
to calculate the values of these two constants from traction
type boundary conditions, they both vanish and the gradi-
ent solution reduces to the classical elasticity solution. This
is not surprising because in order for the gradient effects to
participate in the solution, they must be triggered some-
how by the boundary conditions. This is in agreement with
the finding of Bigoni and Drugan (2007) who considered
corresponding results for Cosserat materials.

In order to overcome this, a kinematic boundary condi-
tion is assumed at r = b:

ou, 0

5|, =t (4.15)

This condition implies that the two dimensional gradient
elastic material that represents the composite, assumes a
homogeneous gradient of the radial displacement. We will
use (4.15) together with the traction type condition P/{(b) =
—p. In this way we load the gradient material with trac-
tions and displacements gradients that are the same with
these of the inhomogeneous classic composite system.
The constants now become:

cg=C=B=0, A=-p (4.16)
and
- 2b[(1-2v)p+2pu xul,] (4.17)

(1-2v)[b(le(®) + 1, (8)) —2¢(L, (&) +vI (&) —2v ()]

o= ML) 0 () -2 @1 [(1-2vp+ 2 x ] 4
T A-2b®) +R() 200 L () -2LE()]

The elastic energy of the gradient solution Uy, is:

-b
Ugr = TC/ r(Trrgrr + Too€o0 + j'rrrKrrr + j~000K(100)dr (419)
0

or

bJe
r r
2 , ,
Ug =7t / i(‘crr‘grr + Too€oo + ArrrKrrr + Agoo¥o00)d 7
0 C C

The values of k and 4 are obtained after substituting (4.8)-
(4.11) into (4.3).

After substituting all the quantities and integrating, the
gradient elastic energy becomes:

02 ) (6 ()
ROE DI
65 6-2)0

v (306 (osel o ()]

) (ol ()

7{p uwmm{nﬂg}
() fo-amel {3} e ()]
wa(5) ha-amel (3} {10310
S0 { %é}v{mv% (ifﬂ
() (@ n-2one

~| S

N[ —

(4.20)
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or
2 2 b
Ugr = T0x 7 x p* x g( [L,,€5,€7,€C.5

where HG is a generalized hypergeometric function and
HGTI is a regularized confluent hypergeometric function
(Abramowitz and Stegun, 1970). Both functions are
described as:

HG[{as,...,ap},{b1,...,bq},x] = pFq(a; b;x)
0 k
= > (@ @)/ (b (o) g

k=0
HGT'[a,x] = oF1(a;x)/T'(a),

where I'(«) is the Euler gamma function.
Alternatively, the gradient elastic energy can be found
from the external work. The elastic energy is then equal to:

Ugr = 1th{P,(b)uy(b) + R-(b)u,(b)} (4.21)

where primes denote derivatives with respect to r.

Substituting the value of u9, from (3.20) into (4.17) and
(4.18), we can connect the gradlent elasticity solutions
with the classic elasticity solutions for the three cases of
rigid inclusion, porous material and elastic inclusions
discussed in Section 3. This approach is similar to that of
Bigoni and Drugan (2007) for Cosserat gradient elastic
materials. We obtain the constants c3 and c; for each case
separately:

For the case of rigid inclusions (Fig. 7), the constants
become:

2bp[<1—2v)— i

e (A+0)(1-2vm)
.

(1-2vm)

G31= A=-2v)2(lo(t) + L2 (%) - 2(L ()C.t,_v[l() 20())] (4.21)
—4p|[l (%) + VI () - 2v12()H]72v 7;7%] o

T 00 + B 0) 200 i () 20k ()]

For the case of porous materials (Fig. 8), the constants
become:
28p[(1-2v) - L 052

C32= (1=2v) (o)) + 12 (8) —2(I (&) + vI; (&) = 2v> (8))]

~4p(I> (¢) + vh (&) - 2vI2 (9] [(1 - 2v) - 2 O]

(=20 (I () +12(2) =2(L(}) +v1 (2) - 2vE ()]

For the case of elastic inclusions(Fig. 9), the constants
become:

(4.23)

C72 = (424)

Note that for all expressions of the constants c; and c7, the
internal length appears only in the normalized form b/¢. By
substituting c3 ; and ¢7 ;, withi=1, 2, 3 to (4.20), we obtain
three expressions for the gradient elastic energy Uy, Ugr2
and Uy, respectively.

5. Estimation of internal length

The energy of the heterogeneous material calculated in
Section 3 and the energy of the gradient homogeneous
material calculated in Section 4 were determined for the
same boundary conditions. By equating the two energies,
we can derive an estimation of the internal length of the
gradient material as a function of the inclusion radiusa,
the composition ratio c and the elastic material constants
of the matrix and the inclusion (u;/um, vy, vm). However,
before proceeding, we must face the problem of how to
settle the other two material properties of the gradient
material which in the general case will not be equal to
the matrix material properties. The problem has three un-
knowns, namely, the internal length ¢, the in-plane shear
modulus p and the in-plane Poisson ratio v and we only
have one equation to work with, which is:

Uy = Ug (5.1

If the solution is limited to dilute concentration of inclu-
sions one can assume that the material properties of the
matrix and composite material remain the same. It is noted
that the results of Bigoni and Drugan (2007) were derived
using this assumption. In this work the two material prop-
erties, i.e. the shear modulus and Poisson ratio, were
extracted from a classic composite model suitable to our
considered problem. By doing so, the unknowns are
reduced to just one, the internal length ¢, which can then
be estimated. This approach is justified by the fact that
the gradient material should always reduce to the classic
material if the gradient effect is neglected, i.e. ¢ = 0. There-
fore the effective material properties predicted by the
classical homogenization schemes hold true for the com-
posite gradient material as well. Estimates of the effective
material properties of the homogeneous gradient material
that correspond to our problem are given in Section 2.
The expression of Ug, is highly non-linear and can not be
solved explicitly with respect to ¢. It can however be solved
numerically through an iteration process for different
values of all the parameters. The solution path is shown

U+ ) (1 = 2Vm) + fy (1 = 29)(1 — € — 2Vm]

b
241{(1 —2v) -

U [(1 = Ot (1 — 20 + (1 + € — 20v,)]

(4.25)

62 =20 (Io(}) + () —2((}) + V11 (}) - 2vL(}))]
b b b U+ (1 = 2vm) + iy (1 = 2v)(1 — € — 2Vn]
o (7)o (7) -2m(7) {“ 2 [ Oty (1 20) + (1 + €~ 207,)]
7 (=23 (lo(®) +(}) = 2(L(}) + V11 (}) - 2v12(}))]

(4.26)
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Fig. 7. Homogenization procedure of a material containing rigid inclusions: (a) Heterogeneous Cauchy material; (b) Homogeneous gradient material.

Fig. 8. Homogenization procedure of a porous material: (a) Heterogeneous Cauchy material; (b) Homogeneous gradient material.

Fig. 9. Homogenization procedure of a material containing elastic inclusions: (a) Heterogeneous Cauchy material; (b) Homogeneous gradient material.
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Assumption of a heterogeneous material with elastic properties,
m, Vi, li ,vi and composition c.

l

Estimation of effective in-plane elastic properties, p and v, corresponding to
each problem (Section 2).

l

Estimation of b// (: a///,«/;) based on solving Eq. (5.1),s0 (/a=

1
N

Fig. 10. Iteration process to estimate the internal length as a function of the composition, ¢, and the inclusion radius, a.

Gradient internal length to inclusion radius
ratio, €/o

0.1% 1.0% 10.0% 100.0%
Composition, ¢

Fig. 11. Variation of the gradient internal length to the inclusion radius ratio ¢/a;, with respect to the composition c, for the case of rigid cylindrical
inclusions.

Table 1

Variation of the normalized gradient internal length for the case of rigid inclusions.
c b/¢ Lfo?

Vm=0.1 vm=0.15 V=02 vm=0.25 Vm=0.1 vm=0.15 V=02 vm=0.25

0.1% 4.6 4.5 4.5 4.7 6.802 7.088 7.058 6.707
1% 7.2 54 49 5.0 1.390 1.844 2.028 2.017
5% 171 9.6 7.0 6.1 0.262 0.468 0.640 0.732
10% 27.8 14.7 10.2 7.8 0.114 0214 0.309 0.408
20% 47.9 26.4 16.7 12.0 0.047 0.085 0.134 0.186
30% 71.7 42.0 26.7 18.6 0.025 0.043 0.068 0.098
40% 106.2 66.1 43.1 29.6 0.015 0.024 0.037 0.053
50% 163.0 107.3 723 50.0 0.009 0.013 0.020 0.028
60% 268.2 186.3 130.2 91.7 0.005 0.007 0.010 0.014
70% 495.5 362.2 263.6 191.0 0.002 0.003 0.005 0.006
80% 1140.7 875.8 664.8 498.6 0.001 0.001 0.002 0.002
90% 4583.1 3685.0 29215 2277.0 0.000 0.000 0.000 0.000

2 For the 2D case, the composition is: ¢ = a?/b%

schematically in Fig. 10. Throughout the calculations, a 5.1. Rigid inclusions
5-digit accuracy was maintained. The numerical integra-
tion of the curves presented below converges as the inter- Estimation for the internal length for rigid inclusions is

polation order is increased. derived by equating the two associated energies, U = Ugr
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ratio, €/a

Gradient internal length to inclusion radius

—— =2
—o— u/u,=2.5
—— /1, =5

e M/u,=10
e M/, =15
e M,

R s T

10.0% 100.0%

Composition, ¢

Fig. 12. Variation of the gradient internal length divided by the inclusion radius with respect to the composition c for the case of elastic cylindrical

inclusions (v,;, = 0.2,v; = 0.25).

Table 2

Variation of the normalized gradient internal length for the case of elastic inclusions.
c b/ oo

Hiltm =2 pilpm=2.5  plpm=5  pilpm=10  wilpm =15 wlpm=2  wilwm=25  wilum=5  pilpm=10  pilpm =15

0.1% 52.5 44.1 16.6 9.4 7.5 0.602 0.717 1.909 3.350 4.193
1% 55.5 36.8 16.4 9.8 8.0 0.180 0.272 0.611 1.018 1.252
5% 54.6 385 18.6 12.0 10.2 0.082 0.116 0.240 0.372 0.440
10% 57.3 41.7 21.8 15.0 131 0.055 0.076 0.145 0.210 0.241
20% 64.3 49.4 29.4 22.4 203 0.035 0.045 0.076 0.100 0.110
30% 72.5 58.9 39.6 325 30.5 0.025 0.031 0.046 0.056 0.060
40% 82.5 70.7 54.0 47.9 46.1 0.019 0.022 0.029 0.033 0.034
50% 93.9 85.4 74.9 72.4 72.0 0.015 0.017 0.019 0.020 0.020
60% 106.7 103.5 106.0 113.6 117.7 0.012 0.012 0.012 0.011 0.011
70% 121.2 125.4 153.1 187.4 205.7 0.010 0.010 0.008 0.006 0.006
80% 136.4 152.1 227.2 332.6 398.5 0.008 0.007 0.005 0.003 0.003
90% 164.5 185.9 - 674.2 938.2 0.006 0.006 - 0.002 0.001

2 The Poisson ratio of the matrix and inclusion is 0.2 and 0.25, respectively.

b For the 2D case, the composition is: c = a®/b%

(see Fig. 7). The variation of the gradient internal length, ¢,
normalized by the radius of the inclusion,a, with the com-
position ratio ¢ is shown in Fig. 11 in a semi logarithmic
plot for v,, values of 0.1, 0.15, 0.2 and 0.25. The results
are also presented in Table 1. We note that the internal
length increases with the matrix Poisson ratio.

5.2. Elastic inclusions

Estimation for the internal length for the case of elastic
inclusions is derived by equating the two associated ener-
gies, Uus = Ugs (see Fig. 9). The variation of the gradient
internal length, ¢, normalized by the radius of the inclu-
sion, «, with the composition ratio ¢ is shown in Fig. 12
in a semi logarithmic plot for inclusion to matrix shear
modulus ratio, i/, values of 2, 2.5, 5, 10 and 15
(vmn=0.2,v;=0.25). For comparison purposes, the rigid case

with v, = 0.2 is plotted as well. These results are also pre-
sented in Table 2. The rigid inclusion case p;/ i, — oo gives
the upper bound of ¢/o and /¢/a increases monotonically
with pi/p, > 1. The internal length ¢/« is a decreasing func-
tion of composition c, with ¢/ — 0 as ¢ — 1, as expected. It
is noted that in all cases, when ¢ — 0, ¢/a - co with
f(; ¢/adc finite. Note also that when the ratios p;/u, and
vi/vim Was assumed to be equal to one, no physically mean-
ingful prediction was recovered from the problem as it
should, because this case is essentially the case of a homo-
geneous material. The same was found to be true when the
inclusion is less stiff than the matrix.

5.3. Porous material

Estimation for the internal length for the case of voids
is derived by equating the two associated energies,
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Uci = Ugro, (see Fig. 8). The normalized internal length
(b/¢) estimate for this case is of the order 1078, for the
majority of c values, and for some values of c the estimate
of b/¢ becomes negative. These results can not be accept-
able since they lack physical justification. In other words,
there can be no realistic prediction for the internal length
for the case of porous materials or generally when the
inclusions are less stiff than the matrix. When inclusions
are less stiff than the matrix, the micro-structural load
path changes and strain gradient theories may be no longer
applicable because microstructure with voids introduces
gradients mostly in the antisymmetric part (rotations)
than in the symmetric part (strains) of the deformations
gradient. This is in agreement with Bigoni and Drugan
(2007) who used a couple-stress (constaint Cosserat) mod-
el that emphasize on the rotation gradient. They proved
that there can be no prediction for the microstructural
length when particles are stiffer than the matrix. We could
argue that the present results are complementary to those
of Bigoni and Drugan (2007).

6. Remarks
6.1. Micromechanical explanation of the results

The predictions presented in Section 5 showed that as
the composition is increased, the internal length esti-
mates decreases. The internal length is associated with
the microstresses that develop due to the microstructure
of the composite. However when composition increases
the distance between particles, decreases. Instead of hav-
ing an inclusion embedded in a continuum, the problem
resembles that of a particle with a thin layer around it.
It has been shown (Budiansky and Carrier, 1984) that
when this happens, the strain gradients reduce
drastically.

6.2. Influence of the loading system

The estimates of Section 5 were based on an axi-
symmetric type of loading. In order to verify that these
predictions hold true for other loading cases, we con-
sidered a different loading system that removes this
symmetry. The second loading case corresponds to a
remote uniaxial tension and the details of the solutions
are presented in Appendix A. We consider the limiting
case of rigid inclusions only and found that the mate-
rial length prediction obtained from both loading cases
is the same.

7. Application to fiber-reinforced concrete

A hooked end steel fiber reinforced concrete mixture
(Papatheocharis, 2007) used currently by Lafarge for retro-
fitting structures has the following properties: E,;, = 40 GPa,
Vv =0.2, E;=210 GPa, v; = 0.3 and c = 0.8%. The fibers have a
circular cross section and the diameter is 5 mm. The shear
modulus ratio of fibers and matrix is: g/, = 4.85. The
density of the matrix is p,, = 2350 kg/m> and the density
of the inclusion/fiber is p; = 7850 kg/m>

In order to obtain the estimate of the internal length,
one can use either the assumption of elastic or rigid inclu-
sion. The internal length estimate for each case is:

Rigid fiber assumption —»¢/a=2.3 = ¢=5.75 mm
Elastic fiber assumption —//a=0.6 = ¢=1.50 mm

It is noted that this specific fiber-reinforced mixture
was designed to be used as an outside jacket to existing
reinforced concrete column and this jacket has typically a
thickness between 3 cm and 5 cm.

7.1. Ben-Amoz estimate of the internal length parameter

The Ben-Amoz model (Ben-Amoz, 1976) for predicting
the internal length parameter is based on a dynamic anal-
ysis of the micro and macro-structure. It is noted that in
the absence of the dynamic conditions imposed on
problem, the validity of model becomes questionable. Nev-
ertheless, the Ben-Amoz model is the only other model in
the literature that predicts the strain gradient internal
length parameter and for this reason it is interesting to
compare the two predictions. The key points of the model
are presented below.

A normalized scale parameter, L/d, is introduced which
can be seen as a measure of the strength of inhomogeneity.
It is noted that this scale parameter is derived by assuming
that the strain energy and kinetic energy are of the same
order of magnitude but this assumption however is not
always true.

The normalized scale parameter is:

L/d = [p, (2 +2p0),/ pp(2+ 2] (7.1)

where, d = 2b for the 2D case.and subscripts v and R denote
the Voigt and Reuss averaging quantities respectively,
which are defined as follow:

0v = CmOm +Gi();
1 G (7.2)

ko Om O

where c is volume fraction and subscript m and i denotes
the matrix and inclusion/fiber material.

The internal length parameters, ¢; and ¢,, of Midlin’s
work for the long wave-length approximation (Mindlin,
1964, pp.69) are then associated with the scale parameter
L by the following equations for the shear and dilatation
modes:

2

ﬁ{l (2 (A+2p)
4 (A+2p),

6= ™ (c; — 41,-)}
where for the 2D case I; = (a/b)* = 2
By applying the simplifications of the simplified strain
gradient theory used throughout in this Ppaper (see Mind-
lln 1964, pp. 73, a;=a3=as =0, a,=(2/2)# and
= w®), the Mindlin’s internal length parameters
become {1 = ¢, = (. Hence, the Ben—-Amoz model gives two
different estimates for the internal length parameter,
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which however for small values of the composition c are
approximately the same. The Ben-Amoz predictions, for
the specific fiber reinforced concrete mixture considered
here, are:

Shear mode — ¢/a=11.28 = ¢=28.2 mm
Dilatation mode — ¢/a=11.22 = ¢ =28.05 mm

8. Conclusions

The homogenization of a plane-strain heterogeneous
Cauchy-elastic material was performed and the internal
length parameter used in strain gradient theory was esti-
mated for the cases of elastic inclusion stiffer than the
matrix. Upper bound estimates for the internal length were
found when inclusions much stiffer than the matrix were
considered. The internal length was found to be between
0.5 and 7 times the inclusion radius for very small values
of ¢(c=0.1%) depending on the inclusion to matrix shear
modulus ratio. The internal length decreases rather rapidly
as the composition is increased and is approximately zero
for ¢ >70%. No prediction was possible for inclusions less
stiff than the matrix and for the extreme case which corre-
sponds to porous materials.
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Appendix A. Remote uniaxial tension case

We consider the problem of a circular inclusion of
radius a inserted into an infinite isotropic body under
remote uniaxial tension P as shown in Fig. A.1.

The plain-strain gradient solution for the radial and
angular displacements outside the inclusion has been pro-
duced by Aravas (Private communication):

a:7(1 = 2v + cos(20))
Mg+ Ay AsEK )]

ur(r.,H): P a ‘ r a\3
tu +[A1?+A2FK2(2)+A4(;)

G2 (5) + 2K (2))] cos(20)
(A1)

—2;7'sin(20)

u(r,0) = { +5{-FBA L+ MG +3K () (A2)
+A4(9) + As¢Ks (1) b sin(20)

where A; (i = 1..6) are unknown coefficients.

The classical expressions of the displacements outside
the inclusion for the case of rigid inclusions (Kachanov
et al., 2003) are:

u(r,0) :g—Z{ {(D— 1)£+2y$]

+{2£+/3(v+ 1)%+25<$ﬂ cos(2())} (A3)

3
u0(r,0) = g% {-zg — B+ 1)$+ 25(?) } sin(20)  (A4)
where g=-2/v,y= (1 -v)/2,6=1/vand v=3 — 4v.
Note that both the gradient and classical solutions have
the same dependence on the angle 6.
We demand that at r=a and r=>b (b > a), the gradient
displacements to be equal to the classical prediction:

u,(a,0) = u®(a, 0)vo

uy(b, 8) = ud(b, 6)v6 (A-3)

Eq. (A.5) describe a system of six equations that can be
solved for the six unknowns A;. The coefficients that
become zero are:

Ay =As=As =0 (A.6)

Therefore, the gradient solution reduces to the classic
solution but this however does not mean that the gradient
effect disappears as in the case of axisymmetric loading.
In essence we apply the same kinematic admissible
field to the gradient homogeneous material and classic

A O s

)

A O A A A A A A

Fig. A.1. Inclusion of radius a inserted into an infinite body under uniaxial tension P.
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Gradient internal length to inclusion radius
ratio, €/a.
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Fig. A.2. Variation of the gradient internal length to the inclusion radius ratio ¢/, with respect to the composition c, for the case of rigid cylindrical

inclusions, obtained for two different loading cases (vp,, = 0.2).

heterogeneous material. Therefore, the boundary condi-
tions for the two systems at r=a and r=b are the same.
Obviously, this kinematic field is the same only for r > g,
but for the case of dilute composites (a < <b), the total elas-
tic energy calculated for b > r > a is approximately the
same with the total elastic energy calculated forb > r > 0.

The expression for the total elastic energy for the heter-
ogeneous classic material is:

/2 b 1
Uy = 4/ / jr(‘rws,T + Too€oo + 2TrpEre)drdo (A7)
0 Ja

The expression of the total elastic energy for the homoge-
neous gradient material is:

/2 b-l
U :4/ / =T
g 0 o 2

It is reminded that the double stress /. and the third order
strains k are defined by Eq. (4.3) accounting that:

Trr&rr + Too€oo + 2Tro€ro
+)~rrrkrrr + )vreﬁkrﬁé) + 2}~rr€krr6 drd6
+ o Korr + Zavokooo + 22aroKoro

(A.8)

0 10
V=e_—-+e--
Tor T 00’
0 i)
Vi =%re, +Zueeme, + Zle (e + eme;)
+1 (% — 21, )egerer + 1 (52 + 27, )egeey (A.9)

+1 (% 4 1 — Tyo) @9 (€10 + €0€;)

where e is the base vector.

Under the assumption of dilute composition, we can de-
mand equality of the two energies since both systems have
the same boundary conditions and the gradient energy
part neglected i.e. « > r > 0 is very small if b>>q, i.e.
c<<1. The other two material properties, i.e. in-plane
shear modulus and Poisson ratio for the gradient material
are again extracted from the Cristensen predictions (see
Section 2).

The variation of the gradient internal length, ¢, normal-
ized by the radius of the inclusion, «, with the composition
ratio c is shown in Fig. A.2 for the case of rigid inclusions
and assuming that the matrix Poisson ratio is v, =0.2.
The solid line corresponds to the loading case 1 (see
Fig. 7) and the diamond symbols correspond to loading
case 2 (see Fig. A.1). The prediction for the second loading
case was derived under the assumption of dilute concen-
tration of inclusions and hence we plot only the predic-
tions for ¢ <10%. As can be seen in Fig. A.2, the match
between the two estimates is very good at low values of
c and as c increases the two predictions differ as expected
since the dilute composition assumption is compromised.
Nevertheless, the results clearly show that a different load-
ing system did not affect the prediction of the internal
length parameter.
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