
On-Line Storage Management with Distributed
Decision Making for Content-Centric Networks

Vasilis Sourlas∗†, Lazaros Gkatzikis∗† and Leandros Tassiulas∗†
∗Department of Computer & Communication Engineering,

University of Thessaly, Greece. †CERTH-ITI
Email: vsourlas, lagatzik, leandros @inf.uth.gr

Abstract—Content traffic proliferation in Internet makes more
dire than ever the development of radical new network ar-
chitectures, where information will be addressed by semantic
attributes rather than the origin and destination identities. In
this direction, content-centric networking appears as a flexible
communication model that meets the requirements of the content
distribution trends of the future Internet. In such networks,
information will reside at various locations/nodes (the Content
Delivery Network surrogate servers) and the requests of the
users for some piece of information will be directed to the
closest replica. Since the location of the users and the popularity
of the content varies over time, the problem of finding the
optimal replication pattern for the available content, given the
storage constraints, comes into the foreground. In this paper, we
propose two on-line storage management algorithms of gradient
descent type, designed specifically for content-centric networks.
The proposed algorithms are of polynomial complexity and thus
adapt easily to any environmental changes. Each node re-assigns
its information items with the aim to minimize the overall traffic
cost of the content delivery as the popularity and locality of users’
requests change. While both the proposed algorithms operate in a
distributed way, differ in the amount of information required for
the decision making. Thus, we identify the inherent information–
performance tradeoff and compare them in terms of network
traffic, convergence speed and amount of circulated information.

I. INTRODUCTION

Distributed storages are placed at various points in a net-
work so as to maximize bandwidth for access to the data from
clients throughout the network. Each client accesses its closest
replica of the data, as opposed to all clients accessing the
origin server, in order to avoid bottleneck near that server.

Existing work on Content Delivery Networks (CDNs) and
Web caches focuses on techniques for efficiently redirecting
user requests to the appropriate replica to reduce request
latency and balance traffic across nodes. Some attention has
also been given to the development of placement strategies
for the content available within a network to further improve
CDN performance. However, the development of a storage
management strategy that re-assigns the content among the
CDN servers, as the popularity and the locality of the demand
for the content change, has received only limited attention.

The content-centric publish/subscribe (pub/sub) paradigm is
considered a promising future network architecture that solves
many challenges of the current Internet and is appropriate
for designing distributed systems due to its loose-coupled and
asynchronous communication. In this paper, we present two

on-line storage management algorithms for a network that
operates under the content-centric pub/sub paradigm.

Our algorithms, given an initial storage configuration, re-
assign the content among the storages with the aim to min-
imize the total traffic cost in the network. Due to storage
limitations it is obvious that in order to store an item in
a storage we may need to remove another one. Whereas,
removing an item increases the total traffic cost, inserting
a new one decreases it. The whole procedure is further
complicated by storing correlations, meaning that storing of an
item at one storage in the network affects the performance gain
in traffic cost of storing the same item in other storages. The
objective is to minimize the total traffic cost/load of all items
in the network given that storages have storing limitations and
items are of different size.

We also consider the special case where each storage node
mainly focuses on the traffic of its clients (clients attached to it
directly or belonging to the subnetwork it is responsible for)
and attempts to minimize their traffic cost. Such a scenario
may arise in the context of inter-connected CDNs of different
providers. In this case each provider is primarily concerned
about his own clients and offers his services to any others in
a best-effort manner.

The rest of the paper is organized as follows. Section
II briefly surveys previous work, while in Section III we
formulate the storage management problem. In Section IV
we present the two distributed on-line storage management
algorithms. Moreover, in Section V, we evaluate through sim-
ulations the performance of the proposed algorithms. Finally,
in Section VI we conclude our paper and give pointers to
future work.

II. RELATED WORK

The storage placement problem, especially in the area of
CDNs and Web caching, is a well investigated problem.
Actually the placement problem is in fact an NP-hard problem,
but there is a number of studies [1]-[5] where an approximate
solution is pursued. Their work is also known as network
location or partitioning and involves the optimal placement
of k service facilities in a network of V nodes targeting
the minimization of a given objective. This work is also
known as the k-median problem. More replication placement
strategies have been proposed in [6]-[7], where their main
outcome is that the best results are obtained with algorithms

that have all the storages cooperating to make the replication
decision. Finally, in [8]-[9] authors formulate the problem as
a mixed integer program (MIP) and in order to overcome the
challenges of scale they employ a Lagrangian relaxation-based
decomposition technique combined with integer rounding.

In the area of Web caching, the Internet Cache Protocol
(ICP) [10] and the HTCP [11] protocol support discovery,
retrieval and management of documents from neighboring
caches as well as parent caches. While most of the above
approaches have a similar cost function (optimize bandwidth
and/or storage usage costs for a given request pattern), less
attention has been given to network constraints (limited storage
capacity) and the possibility of re-assigning items between
storages when the popularity and the locality of users’ requests
change.

There are several research efforts that develop an overlay
event notification service like Siena [12], Elvin [13] and REDS
[14] that implement the pub/sub architecture. Moreover, there
are also several research efforts aiming to switch from host-
oriented to content oriented networking to meet data-intensive
application needs. In particular, NDN [15]-[16], PURSUIT
[17] and SAIL [18] attempt to name data/content instead of
naming hosts in a way to achieve scalability, security and
performance. Finally, the pub/sub architecture paradigm is
already used in many commercial applications such as Google
Alerts through the usage of a simple, open, server-to-server
web-hook-based pub/sub protocol called PubSubHubbub [19].

In the area of storing in overlay content-centric pub/sub
systems the authors of [20] proposed a historic data retrieval
pub/sub system where databases are connected to various
nodes, each associated with a topic to store. There, every
message is stored only once and no placement strategies
have been examined. Finally, a first attempt with an off-
line replication algorithm in topic-based pub/sub networks is
presented in [21].

III. PROBLEM FORMULATION

Consider a network of arbitrary topology represented by a
graph G = (V, E), where V denotes the set of storage nodes
and E the set of directed communication links interconnecting
these storages. Throughout the paper we will use the calli-
graphic letters to denote sets and the corresponding capitals
for cardinality; for example |V| = V .

Information is residing at different storages and requests for
content access are generated at various nodes. We assume a
set M of M information items and we denote with sm the
size of item m. Each storage v ∈ V has a storage capacity
of Cv . We constrain ourselves to feasible network instances,
i.e. we assume that at least one storage has sufficient storage
capacity to fit any item (Cv ≥ sm ∀m ∈ M , v ∈ V).
Access requests trigger the transfer of the requested item
from a node where the item is stored to the node where the
request was generated. The performance of such a scheme
is affected by the mechanism of deciding which replica of
the requested item to transfer, as well as by the information
replication scheme, i.e. how many replicas of each information

item we maintain and where they are located. We consider
the problem of optimizing the performance of such a scheme
over the ensemble of possible storage configurations. The
performance metric under consideration is the total traffic
generated by the information access process. Specifically, the
access of an information item m stored in node v by node
y generates a traffic load equal to the product of the length
(number of hops) of the path from y to v (dyv) and the size
sm of the transferred item. In this paper we assume that an
underlying content delivery mechanism optimally directs the
requests to the closest storage out of those holding the specific
item. Given such an access mechanism in order to minimize
the total network traffic, we need to find the replication
frequency/density and the location where each item should
be stored.

We denote by H the collection of all possible storage
configurations. That is, an element H ∈ H can be represented
by a binary matrix of size V × M , specifying thus the
content of each storage in the network. Actually, any element
Hvm can be thought of as an indicator whether content item
m exists in the storage v. Let T (H) be the traffic load
corresponding to configuration H . We also denote by hm,
the storage configuration regarding item m, namely the m-th
column of matrix H . Throughout this paper we denote with
fm =

∑V
i=1 Him the replication frequency of item m.

For a storage configuration H we can write:

T (H) =

M∑
m=1

Tm(hm)

where Tm(hm) is the traffic load corresponding to the con-
figuration of item m only. We should mention here that
throughout this text in the function definitions we include
only the control variables as arguments and omit any network
parameters.

We also have

Tm(hm) = sm
∑

v∈V:Hvm=1

∑
y∈Nm

v

rmy dyv (1)

where Nm
v is the set of nodes accessing item m through its

replica at storage node v, rmy the request rate for information
item m generated at node y, dyv is the distance (in hops) from
node y to node v and sm the size of item m. Thus, the overall
network traffic can be expressed as

T (H) =

M∑
m=1

sm
∑

v∈V:Hvm=1

∑
y∈Nm

v

rmy dyv (2)

So, the problem of finding the optimal storage configura-
tion can be formally expressed as the following optimization
problem:

minimize
H

T (H)

s.t. fm ≥ 1 ∀m ∈M
M∑

m=1

smHvm ≤ Cv ∀v ∈ V

(3)

The set of constraints described above defines the feasible
storage configurations. In particular, the first one indicates that
each content item has to be stored at least once. Otherwise
the total traffic would become unbounded. The second one
captures the requirement that each storage needs to have a
storage capacity such that it can store any message. The third
one describes the fact that the messages that can be stored in
each storage are limited by its storage capacity.

Actually, the optimal assignment of the items in the storages
can be mapped to the Generalized Assignment Problem, which
even in its simplest form may be reduced to an NP-complete
multiple knapsack problem [6]. In this work we propose
two algorithms of polynomial complexity that capture the
particularities of content centric networks and can be executed
in a distributed manner.

IV. DISTRIBUTED DECISION MAKING FOR ON-LINE
STORAGE MANAGEMENT ALGORITHMS

Our on-line storage management algorithms capture the
particularities of the volatile environment under consideration
and quickly adapt to any popularity and locality changes of
the users’ requests. All the required decisions are made in
a distributed manner by each node. The key distinguishing
characteristic between the two proposed algorithms is their
objective and the amount of information required for the
decision making. The first one, henceforth called holistic,
aims at minimizing the traffic load of the network in total.
According to the second one, hereafter called myopic, each
storage node considers only the traffic cost incurred to its
own clients. A detailed description of the proposed algorithms
follows.

A. Holistic storage management algorithm

Given an initial H ∈ H feasible storage configuration, the
nodes of the network, independently and asynchronously, up-
date the contents of their storages towards the global objective.
The holistic approach can be thought of as a sequence of
Gauss-Seidel iterations [27], where in each iteration a node,
say v ∈ V , executes the following steps:

Step 1: For each item m, stored in storage v and at least
once more in the network (i.e. fm ≥ 2), compute the
overall performance loss, lm = |T (H)−T (Hm)| ≥
0, that will be caused if item m is removed from v,
leading hence to a new configuration Hm. In this
case all the requests for item m at storage v will be
served by another storage, which is at least that far.

Step 2: For each item m not in storage v, compute the
overall performance gain gm = T (H)−T (Hm) ≥ 0
achieved if item m is inserted at storage v, leading
hence to a new configuration Hm. In this case a
certain amount of requests for item m will be served
by node v, as the closest replica.

Step 3: Consider as candidate for insertion, the item of
maximum performance gain; say g∗ = max(g) =
ga.

2

1

3

a

(0,3 0,6)

(0,8 0,7)

(0,3 0,9)

ab

Initial
assignment

2

1

3

b

ab

Replacement 1

2

1

3

b

aa

Replacement 2

2

1

3

b

ba

Replacement 3

Fig. 1. Evolution of the storage management algorithm for a network of
V = 3 nodes, Cv = C = 1 slots/node and M = 2 items with the depicted
clients’ interest rates.

Step 4: Consider as candidates for replacement the items
of minimum performance loss. Starting from the
minimum one (say l∗ = min(l) = lb), and in
ascending order consider that many items that their
total size is greater or equal to sa (say b and c
cause the minimum increase of the overall traffic
with sa ≤ sb + sc).

Step 5: If the gain of storing the new item is greater than
the loss of removing the selected items, perform
the replacement, (i.e. replace b, c with a). In order
to store this particular item (a), the node needs to
retrieve it. Thus, it sends a subscription message to
the closest replica.

Step 6: If the replacement leaves some free space (ev)
in the storage v (ev = Cv −

∑M
m=1 s

mHvm > 0)
compute, for each item m not in storage v of size
sm ≤ ev , the performance gain gm. Store the fitting
item of maximum gain. Repeat until no other items
could be stored, due to insufficient free space.

Step 7: Repeat steps 1-6 until no further replacements are
beneficial for the network.

Figure 1 depicts an example of the algorithm’s evolution for
a network topology of V = 3 nodes, Cv = C = 1 slot and

M = 2 items of equal size. In brackets are the request rates for
items a and b. The algorithm requires two iterations per node
to reach an equilibrium. The top left side of the figure depicts
the initial (random) storage configuration, whereas the bottom
right side is the final storage configuration. In this case the
resulting equilibrium coincides with the optimal assignment.
Next, we describe the evolution of the algorithm for this simple
network in detail, where T is the overall network traffic in
reqs · hops/sec:
• node 1: T = 6.8, la = 1.1, gb = 1.5.

Replace item a with item b, new T = 6.4.
• node 2: T = 6.4, lb = 0.7, ga = 1.6.

Replace item b with item a, new T = 5.5.
• node 3: T = 5.5, la = 0.6, gb = 0.9.

Replace item a with item b, new T = 5.2.
• node 1: T = 5.2, lb = 1.3, ga = 0.6.

No Replacements.
• node 2: T = 5.2, la = Inf (only replica of item a),

gb = 0.7. No Replacements.
• node 3: T = 5.2, lb = 0.9, ga = 0.6.

No Replacements. Algorithm terminates.

The essence behind this algorithm is that each node per-
forms only valid and beneficial replacements, i.e replacements
that lead to feasible storage configurations and improve the
overall objective respectively. We say that the algorithm has
reached an equilibrium point when no more replacements are
possible.

It can be easily shown that since all the changes in the
configuration of the storages always decrease the overall
network cost, the proposed algorithm finally converges to
an equilibrium point where no further decrease is possible.
This is indeed a local minimum of the cost function but
the performance gap to the global optimum cannot be cal-
culated. Besides, though the storage updates may be applied
asynchronously among the nodes, we assume that only a
single node may modify the storage configuration at a given
time. This is because each node needs to know the current
storage configuration of the network as a whole, so as to
calculate the gain and loss metrics. After each modification
the node advertises the new configuration of its own storage.
Relaxing this assumption would lead to a setting where the
nodes make decisions based on outdated information, causing
thus some performance degradation and making convergence
questionable.

In appendix A we present in pseudo-code the Holistic
storage management algorithm.

B. Myopic storage management algorithm

In the holistic approach described earlier every node needs
to possess global information for the decision making. How-
ever, in highly dynamic environments the amount of informa-
tion that needs to be circulated throughout the network grows,
causing thus significant communication overhead. Even worse
the required information may not be available on time, making
hence such an approach inapplicable.

For such scenarios we derive an alternative approach. We
assume that each node has no information about the rate
patterns at the other storages, and thus makes decisions based
only on local information. That is each node v has to select
his own storage configuration Hvm for m = 1 . . .M , so as to
minimize the traffic cost of his own clients. Thus, its objective
function now becomes the following:

Tv(H) =

M∑
m=1

smrmv dvym
, (4)

where ym the closest replica of item m. Given the new
objective function, though the performance gain and loss ex-
pressions change, the main steps of myopic algorithm remains
the same with the holistic one. For brevity, we do not present
the myopic algorithm in detail; we highlight their differences
in the section that follows.

The myopic algorithm captures also the scenario of inter-
connected CDNs of different providers, where each provider
is primarily concerned with his own clients and offers his
services to the others in a best-effort manner.

C. Information exchange in the pub/sub paradigm

In this section we focus on the information exchange
required for the proper execution of our algorithms and high-
light their distinguishing characteristics. The main difference
between the two approaches lies in the amount of information
exchanged. In particular, since the myopic one requires less
information for the decision making, it is applicable to more
network scenarios and incurs less communication overhead.

Both approaches require the current storage configuration to
be known at every node. Actually, every node needs to know
the size of each item and the cost to the closest replica. Such
information is available at contemporary CDNs [6] and could
be easily provided by a pub/sub architecture. Moreover, Web
caches can keep a digest [22] or summary [23] of the content
of the other caches in the network.

In addition, the holistic approach requires the request rates
per item to be globally known. The request rates can be
estimated based on recent request history, which is locally
available [24] and nodes periodically exchange metadata in-
formation regarding the request patterns. This information can
be forwarded to every node of the network using a special
purpose publish packet, flooded throughout the network. The
size of such a packet is typically a few tens of bytes and is
negligible compared to the size of an item. For environments
where the request rate pattern varies insignificantly or slowly
over time, the required frequency of flooding will be quite
small. Hence, the memory and the network traffic overhead of
maintaining and exchanging those packets will be quite small.

In the myopic approach, on the other hand, each node makes
its decisions based only on local information, namely the
request rates of its own clients. Thus, this algorithm fits best
to highly volatile scenarios, where the timescale of storage
updates is comparable to the timescale that the request rate
patterns change. In such a setting the holistic approach would

2 4 6 8 1 00 , 0

5 0 , 0 k

1 0 0 , 0 k

1 5 0 , 0 k

2 0 0 , 0 k

2 5 0 , 0 k

 h o l _ n o n u n i f
 m p c _ n o n u n i f
 h o l _ u n i f
 m p c _ u n i f

V = 1 2 0 , M = 2 0 , C = 5 0 , z p o p = 0 . 7 , z s i z e = 0 . 3

ON

T

 p

2 4 6 8 1 00

1

2

3
 h o l _ n o n u n i f
 m p c _ n o n u n i f
 h o l _ u n i f
 m p c _ u n i f

V = 1 2 0 , M = 2 0 , C = 5 0 , z p o p = 0 . 7 , z s i z e = 0 . 3

RE

p

2 4 6 8 1 00
1
2
3
4
5
6
7

 h o l _ n o n u n i f
 m p c _ n o n u n i f
 h o l _ u n i f
 m p c _ u n i f

V = 1 2 0 , M = 2 0 , C = 5 0 , z p o p = 0 . 7 , z s i z e = 0 . 3

IT

p
Fig. 2. The performance of the proposed storage management algorithms vs.
the ratio of the total size of the items to storage capacity (p =

∑M
m=1 s

m/C)
for our random topology of 120 nodes.

always operate in the transient phase and convergence would
not be achieved. Besides, the incurred overhead cost would
become significant.

V. PERFORMANCE EVALUATION

In order to evaluate the performance of the proposed storage
management algorithms we simulate in MATLAB a random
network topology of V = 120 storage nodes, serving a set
of one-hop clients each. Our graph also contains cycles. Each
node has a storage capacity of C = 50 storage units and we
assume a set of M = 20 information items. Throughout this
section, we will use the abbreviations hol and mpc for the
holistic and the myopic approach respectively.

Initially, we assume uniform request rates for each item at
each storage node. That is, the traffic request pattern of the
clients of storage node y for item m is rmy = rm, the same
∀y ∈ V . The request rates lie between 0 and 25 requests/sec
and the popularities of the items come from a Zipf-like
distribution (of default parameter zpop = 0.7), whereas the
size of each item also follows a Zipf distribution (of default
parameter zsize = 0.3). Regarding popularity, values between
0.6 and 0.8 have been observed in the Web [25]-[26]. Next,
we consider the impact of non-uniform request rates per item
for each node of the network.

For both scenarios, we perform a set of experiments to study
the impact of the following parameters on the performance of
the proposed algorithms:
• the ratio of the total size of the items to storage capacity

(p). Under the assumption of equal capacity storages,
i.e. Cv = C ∀v ∈ V , this can be expressed as p =∑M

m=1 s
m/C. From an alternative point of view 1/p is

the fraction of items that can be stored in a cache.
• The exponent of the popularity of the items zpop.
• The exponent of the size of the items zsize.
In order to quantify the performance of the proposed algo-

rithms we consider the following metrics:
• The overall network traffic (ONT) (in req · hops/sec) at

the equilibrium.
• The total number of replacements per storage (RE)

required to reach the equilibrium.
• The total number of iterations per node (IT) required to

reach the equilibrium. IT is the number of times that
each storage has to execute the proposed algorithms,
performing beneficial replacements until an equilibrium
is reached.

Each point of the figures depicts the average out of 20
random instances, starting from different initial storage con-
figurations H for the particular topology defined earlier.
Figure 2 depicts the performance of the proposed storage
management algorithms as an expression of the percentage
metric p. As expected, the holistic approach outperforms its
myopic counterpart by 1% − 8% regarding the ONT when
the request rates are non-uniformly distributed to the storage
nodes, and by 9%−34% when the request rates are uniformly
distributed. This is due the additional (global) information
that is available in the holistic approach. Both the absolute
performance and the performance gap become more significant
as percentage of stored messages decreases. In this point, we
should mention that the uniform and non-uniform plots are

0 , 2 0 , 4 0 , 6 0 , 8 1 , 0 1 , 25 0 k

6 0 k

7 0 k

8 0 k

 h o l _ n o n u n i f
 m p c _ n o n u n i f
 h o l _ u n i f
 m p c _ u n i f

V = 1 2 0 , M = 2 0 , C = 5 0 , p = 4 , z s i z e = 0 . 3

ON

T

z p o p

0 , 2 0 , 4 0 , 6 0 , 8 1 , 0 1 , 20

1

2

3

 h o l _ n o n u n i f
 m p c _ n o n u n i f
 h o l _ u n i f
 m p c _ u n i f

V = 1 2 0 , M = 2 0 , C = 5 0 , p = 4 , z s i z e = 0 . 3

RE

z p o p

0 , 2 0 , 4 0 , 6 0 , 8 1 , 0 1 , 20
1
2
3
4
5
6

 h o l _ n o n u n i f
 m p c _ n o n u n i f
 h o l _ u n i f
 m p c _ u n i f

V = 1 2 0 , M = 2 0 , C = 5 0 , p = 4 , z s i z e = 0 . 3

IT

z p o p

Fig. 3. The performance of the proposed storage management algorithms vs.
the popularity exponent of the items zpop for our random topology of 120
nodes.

not directly comparable, since they actually refer to different
network instances, but are included in the same graph for
brevity.

Regarding the average number of replacements the holistic
approach requires on average 10%−150% more replacements
from each storage node to reach the equilibrium point. A

- 0 , 6 - 0 , 4 - 0 , 2 0 , 0 0 , 2 0 , 4 0 , 6

4 0 , 0 k

6 0 , 0 k

8 0 , 0 k

1 0 0 , 0 k

 h o l _ n o n u n i f
 m p c _ n o n u n i f
 h o l _ u n i f
 m p c _ u n i f

V = 1 2 0 , M = 2 0 , C = 5 0 , p = 4 , z p o p = 0 . 7

ON
T

z s i z e

- 0 , 6 - 0 , 4 - 0 , 2 0 , 0 0 , 2 0 , 4 0 , 60

1

2

3

4

5

 h o l _ n o n u n i f
 m p c _ n o n u n i f
 h o l _ u n i f
 m p c _ u n i f

V = 1 2 0 , M = 2 0 , C = 5 0 , p = 4 , z p o p = 0 . 7

RE

z s i z e

- 0 , 6 - 0 , 4 - 0 , 2 0 , 0 0 , 2 0 , 4 0 , 60 , 0

3 , 0

6 , 0

9 , 0

1 2 , 0

 h o l _ n o n u n i f
 m p c _ n o n u n i f
 h o l _ u n i f
 m p c _ u n i f

V = 1 2 0 , M = 2 0 , C = 5 0 , p = 4 , z p o p = 0 . 7

IT

z s i z e

Fig. 4. The performance of the proposed storage management algorithms
vs. the popularity exponent of the items zsize for our random topology of
120 nodes.

replacement in the holistic algorithm usually affects most of
the nodes in the network triggering thus a new round of
replacements. On the other hand a replacement in the myopic
algorithm affects mainly the node where the replacement took
place and probably a small number of neighboring nodes.
Similar behavior we may notice regarding the average number

of iterations. Besides, in the holistic algorithm the IT metric
increases along with p, in contrast to the myopic approach,
where a decrease is noticed. This is also a consequence of the
topological impact that a replacement has to the two storage
management algorithms. In particular the myopic approach by
considering only local information is less sensitive to changes
of the environment. This becomes more obvious as the storage
capacity becomes limited, where, given the local decision
making, beneficial replacements are scarce. The product of
the IT and RE metrics is also indicative of the computational
complexity of the two algorithms.

Figure 3 depicts the performance of the proposed storage
management algorithms as the popularity exponent of the
items varies. The holistic algorithm outperforms the myopic
one by 2%−5% in the non-uniform scenario and by 6%−18%
in the uniform scenario. We notice that the performance gap
is quite insensitive to any popularity changes. Regarding the
complexity, both the RE and IT metrics increase along with
the popularity exponent, but the myopic algorithm is quite
robust to any popularity changes, leading thus much faster to
the equilibrium.

Finally, in Figure 4 we consider the impact of the size
exponent. Negative values of the zsize mean that the less
popular items are those that have larger size. As the size of
popular files increases, the performance of the system degrades
since more storage space is required to store a popular item.
However, the myopic approach manages to perform quite well
in any scenario, especially for the non-uniform case. The
IT and RE metrics indicate a peak for zsize equal to zero
(i.e. the items are of the same size). This can be justified
by the fact that equally sized files make decision making
more challenging, requiring thus more iterations to reach an
equilibrium. In particular, in this case the total number of
iterations and replacements is at least double, since more items
are candidates for replacement and each change leads to a
small improvement.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented two distributed, on-line gra-
dient descent type storage management algorithms, designed
specifically for content-centric networks, that re-assign stored
items with the aim to minimize the total traffic cost. Since the
proposed algorithms are of gradient descent type, they always
converge to an equilibrium, where no further reduction in the
overall network traffic is possible. However, fast convergence
is required in order to adapt to any changes regarding the
popularity and the locality of requests. In particular, the first
one (holistic) tries to minimize the total traffic cost/load of
all items in the network given that storages have storage
limitations and items are of different size, while in the second
one (myopic) each node tries to minimize the traffic of its own
clients only. We also derive structural properties of the optimal
assignment and evaluate the performance of the proposed
storage management algorithms through simulations.

Our simulations indicate that the holistic algorithm performs
better than the myopic regarding the overall network traffic

at the equilibrium, regardless of the storage capacity of each
storage and the Zipf’s-law exponent of the items’ size and
popularity. However, this comes at the cost of increased
complexity and slower convergence rate, since in general it
requires more replacements of items and iterations of the
algorithm to reach the equilibrium. It would be interesting,
as future work, to explore enhancements to the proposed
algorithms that would also take into consideration the cost
of replacing the items at the storages of the network, as well
as the load of each storage when assigning items to them.
Finally, a comparison to the optimal performance for at least
some small network instances will be pursued.

ACKNOWLEDGMENT

V. Sourlas’ and L. Gkatzikis’ work was supported by the
Greek Ministry of National Education and Religious Affairs
(E.S.P.A.- “HRAKLEITOS II”). L. Tassiulas’ contribution is
funded by the European Commission through the FP7-ICT-
2010-257217 PURSUIT and the FP7-ICT-216366 EURO-NF
programs.

REFERENCES

[1] L. Qiu, V.N. Padmanabhan, G. Voelker, “On the placement of web server
replicas,” In IEEE INFOCOM, Anchorage, USA, Apr. 2001.

[2] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala and
V. Pandit, “Local search heuristics for k-median and facility location
problems,” In 33rd ACM Symp. on Theory of Computing, 2001.

[3] M. Charikar, S. Guha, “Improved combinatorial algorithms for facility
location and k-median problems,” In 40th Annual IEEE Symp. on
Foundations of Computer Science, pp. 378–388, Oct. 1999.

[4] D.B. Shmoys, E. Tardos, K.I. Aardal, “Approximation algorithms for
facility location problems,” In 29th Annual ACM Symp. on Theory of
Computing, pp. 265-274, 1997.

[5] E. Cronin, S. Jamin, C. Jin, T. Kurc, D. Raz, Y. Shavitt, “Constrained
mirror placement on the Internet,” IEEE JSAC, 36(2), Sept. 2002.

[6] J. Kangasharju, J. Roberts, K. Ross, “Object replication strategies in
content distribution networks,” Comput. Commun. 25 (4) (2002) pp.
376-383.

[7] X. Tang, J. Xu, “On replica placement for QoS-aware content distribu-
tion,” In IEEE INFOCOM, March 2004.

[8] I.D. Baev, R. Rajaraman, C. Swamy, “Approximation algorithms for data
placement problems,” SIAM J. Computing, vol. 38, 2008.

[9] D. Applegate, A. Archer, V. Gopalakrishnan, “Optimal content place-
ment for a large-scale VoD system,” In ACM CoNEXT, Philadelphia,
USA, Dec. 2010.

[10] D. Wessels, K. Claffy, “Applications of Internet Cache Protocol (ICP),
v.2,” http://tools.ietf.org/html/draft-wessels-icp-v2-02, ITF, May 1997.

[11] P. Vixie, D. Wessels, “RFC 2756: Hyper Text Caching Protocol,” Jan.
2000.

[12] A. Carzaniga, D. Rosenblum, A. Wolf, “Design and evaluation of a wide-
area event notification service,” ACM Trans. On Computer Systems, vol.
19, 2001.

[13] B. Segall, D. Arnold, “Elvin has left the building: A publish/subscribe
notification service with quenching,” In AUUG97, Brisbane, Australia,
Sept. 3-5, pp. 243–255, 1997.

[14] G. Cugola, G. Picco, “REDS, A Reconfigurable Dispatching System,”’
In 6th Inter. workshop on Software Engineering and Middleware, pp.
9–16, Oregon, 2006.

[15] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. Briggs,
R. Braynard, “Networking named content,” In. ACM CoNEXT, Rome,
Italy, Dec. 2009.

[16] Named Data Networking project, available at http://named-data.net,
2011.

[17] PURSUIT project, available at http://www.fp7-pursuit.eu, 2011.
[18] B. Ohlman et al, “First NetInf architecture description,” April 2009.

http://www.4ward-project.eu/index.php?s=file download&id=39.
[19] PUBSUBHUBBUB, available at http://pubsubhubbub.googlecode.com

[20] G. Li, A Cheung, S. Hou, S. Hu, v. Muthusamy, R. Sherafat, A. Wun,
H. Jacobsen, S. Manovski, “Historic data access in publish/subscribe,”
In DEBS, pp. 80–84, Toronto, Canada, 2007.

[21] V. Sourlas, P. Flegkas, G. S. Paschos, D. Katsaros, L. Tassiulas, “Storing
and Replication in Topic-Based Publish/Subscribe Networks,” In IEEE
Globecom, Miami, USA, Dec. 2010.

[22] A. Rouskov, D. Wessels, “Cache Digest,” In 3rd Inter. WWW caching
workshop, June 1998.

[23] L. Fan, P. Cao, J. Almeida, A. Broder, “Summary Cache: A Scalable
Wide-Area Web Cache Sharing Protocol,” In SIGCOMM, pp. 254–265,
Feb. 1998.

[24] J. Shim, P. Scheuermann, R. Vingralek, “Proxy Cache Algorithms:
Design, Implementation, and Performance,” IEEE Trans. Knowledge and
Data Eng., vol. 11, no. 4, pp. 549–562, Aug. 1999.

[25] L. Breslau, P. Cao, L. Fan, G. Phillips, S. Shenker, “Web caching and
Zipf-like distributions: evidence and implications,” In IEEE INFOCOM,
NY, March 1999.

[26] V. N. Padmanabhan, L. Qiu, “ The content and access dynamics of a
busy wed site,” In SIGCOMM, Stockholm, Sweden, Aug. 2000.

[27] D. P. Palomar, M. Chiang, “ A tutorial on decomposition methods for
network utility maximization,” In IEEE Journal on Selected Areas in
Communications, 24(8), 1439-1451, 2006.

APPENDIX A
HOLISTIC STORAGE MANAGEMENT ALGORITHM

Require: H: storage configuration
Require: fm replication frequency of item m.
Require: M : number of the different items in the network
Require: V : number of nodes in the network topology
Require: Cv: storage capacity of node v ∈ V

u← V
while u > 0 do

for all v ∈ V do
for all m ∈M do

if v ∈ hm and fm > 1 then
CALCULATE lm
INSERT lm IN Lv

else {v /∈ hm}
CALCULATE gm

end if
end for
I = 0
S = 0
sy {size of item y with the maximum gain (gy)}
for all j ∈ Lv do

if S ≥ sy then
I = I +min(Lv)
S = S + sx {x item in Lv with me minimum loss
(min(Lv) = lx)}
INSERT x IN R {R items candidate to be replaced}
lx = Inf {lx ∈ Lv}

end if
end for
if I < gy then

for all k ∈ R do
DISCARD R(k)

end for
STORE y
ev = Cv − sy + S {free space}
if ev > 0 then

for all m ∈M do
if Hvm = 0 and sm ≤ ev then

CALCULATE gm
INSERT gm IN G

end if
end for
while ev > 0 do

if sy ≥ ev then
STORE y {y the item in D with the maximum
gain}
dy = 0 {dy ∈ G}
ev = ev − sy

end if
end while

end if
UPDATE H
u← V

else
u← u− 1

end if
end for

end while

