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ABSTRACT: Bayesian estimators are proposed for damage identification (localization and quantification) of 
civil infrastructure using vibration measurements. The actual damage occurring in the structure is predicted 
by Bayesian model selection and updating of a family of parameterized, high-fidelity, finite element (FE) 
model classes with the members in the model class family introduced to monitor the large number of potential 
damage scenarios covering most critical parts of the structure. Asymptotic approximations as well as efficient 
stochastic simulation techniques are employed for estimating the posterior distribution of the model parame-
ters and multi-dimensional probability integrals arising in the formulation. The proposed Bayesian estimator 
requires a large number of FE model simulations to be carried out which imposes severe computational limi-
tations on the application of the damage identification technique. Component mode synthesis (CMS) tech-
niques are effectively used to drastically reduce the computational effort. The methodology is illustrated by 
applying it to damage identification of a bridge using simulated damage scenarios. 

 
1 INTRODUCTION 
 
Bayesian inference is used for quantifying and cali-
brating uncertainty models in structural dynamics 
based on vibration measurements, as well as propa-
gating these modeling uncertainties in structural dy-
namics simulations to achieve updated robust pre-
dictions of system performance, reliability and 
safety (Papadimitriou et al. 2001). The Bayesian 
tools for identifying system and uncertainty models 
as well as performing robust prediction analyses are 
Laplace methods of asymptotic approximation and 
more accurate stochastic simulation algorithms, such 
as MCMC (Beck & Au 2002) and Transitional 
MCMC (Ching & Chen 2007).  

In the present work, Bayesian estimators (Ntot-
sios at al. 2009)  are proposed for damage identifica-
tion (localization and quantification) of civil infra-
structure using vibration measurements. The 
structural damage identification is accomplished by 
associating a FE model class to a damage location 
pattern in the structure, indicative of the location of 
damage. Damage occurring at one or more structural 
components can be monitored by updating an appro-
priately parameterized FE model with parameters 
associated with the properties of the monitored 
structural components. The actual damage occurring 
in the structure is predicted by Bayesian model se-
lection and updating of a family of parameterized 

model classes with the members in the model class 
family introduced to monitor the large number of 
potential damage scenarios covering most critical 
parts of the structure. Bayesian inference ranks the 
plausible damage scenarios according to the poste-
rior probability of the corresponding parameterized 
FE model classes to fit the measurements. The most 
probable FE model class is indicative of the location 
of damage, while the severity of damage is inferred 
from the posterior probability of the model parame-
ters of the most probable model class. 

To reliably estimate damage, high fidelity FE 
model classes, often involving a large number of 
DOFs, should be introduced to simulate structural 
behavior. Computational issues arising in imple-
menting asymptotic approximations as well as sto-
chastic simulation techniques are addressed herein. 
A moderate to very large number of repeated system 
analyses are required to be performed over the space 
of uncertain parameters. CMS techniques (e.g. Craig 
& Bampton 1965) have been successfully employed 
for model reduction in optimization and stochastic 
simulation algorithms involved in model updating 
(Goller 2011, Goller et al. 2011). This study inte-
grates an efficient CMS technique that takes into ac-
count the FE model parameterization to substantially 
alleviate the computational burden associated with 
the methodology for identifying the location and se-
verity of damage.  



2 BAYESIAN INFERENCE FOR MODEL 
CLASS SELECTION AND UPDATING 
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A Bayesian probabilistic framework is used to 
compare two or more competing model classes and 
select the optimal model class based on the available 
data. Before the selection of data, each model class 
i  is assigned a probability iP  of being the ap-

propriate class of models for modeling the structural 
behavior. Using Bayes’ theorem, the posterior prob-
abilities i  of the various model classes 
given the data D  is  
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r r r r r  is a normalization 
constant that accounts for the different scaling be-
tween the measured and the predicted modeshape. 
The model prediction errors are due to modeling er-

ror and measurement noise. Herein, they are mod-
eled as independent Gaussian zero-mean random 
variables with v i  p obabil-
ity distribution 
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2.1 Asymptotic approximation 

An asymptotic approximation based on Laplace’s 
method is used to give a useful and insightful esti-
mate of the integra
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 q̂i  is the value that minimizes the measure of 
fit q( )i iJ  in (7), 0c  is constant independent of the 
model class iM , and the factor b q̂( )i i  in (9), known 
as the Ockham factor, simplifies for large number of 
data JN  to (Beck and Yuen 2004) 
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ing the uncertainty in the parameters iq  of a model 
class iM  given the data is obtained by applying 
Bayes’ theorem (Beck and Katafygiotis 1998) and 
then finding the marginal distribution of the str

M

tural model parameters (Kata
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The most probable model that maximizes the prob-
ability distribution q( | , )i ip D M  of the structural pa-
rameters of the model class iM  is the q̂i  that also 

 of fi ctionminimizes the measure t fun  q( )i iJ  in (7)  
with respect to qi , provided that qp q p=( )i i  is se-
lected to be constant.  

2.2 Stochastic simulation algorithms 

It should be noted that the asymptotic approximation 
is valid if the optimal q̂i  belongs to the domain i  
of integration in (3). For the cases for which this 
condition is violated or for the case for which more 
accurate estimates of the integral are required, one 
should use stochastic simulation methods to evaluate 
the integral (3). Among the stochastic simulation al-
gorithms available, the transitional MCMC algo-
rithm (Ching & Chen 2007) which is a generaliza-
tion of the MCMC algorithm proposed in (Beck and 
Au 2002) is one of the most promising algorithms 
for selecting the most probable model as well as 
finding and populating with samples the importance 
region of interest of the posterior pdf, even in the 
unidentifiable cases and multi-modal pdfs.  

3 STRUCTURAL DAMAGE LOCALIZATION 

r-

AND QUANTIFICATION 

The Bayesian inference methodology for model 
class selection is next applied to detect the location 
and severity of damage in a structure. A substructure 
approach is followed where it is considered that the 
structure is comprised of a number of substructures. 
It is assumed that damage in the structure causes 
stiffness reduction in one of the substructures. In o
der to identify which substructure contains the dam-
age and predict the level of damage, a family of   
model classes 1, , mM M  is introduced, and the 
damage identification is accomplished by associat-
ing each model class to damage contained within a 
substructure. For this, each model class iM  is as-
sumed to be parameterized by a number of structural 
model parameters qi  controlling the stiffness distri-
bution in the substructure i , while all other substruc-
tures are assumed to have fixed stiffness distribu-
tions equal to those corresponding to the undamaged 
structure. Damage in the substructure i  will cause 
stiffne reduction which will alter the measured 
modal characteristics of the structure. The model 
class iM  that “contains” the damaged substructure i  
will be the most likely model class to observe the 
modal data since the parameter values 

ss 

qi  can adjust 
to the modified stiffness distribution of the substruc-
ture i , while the other modal classes that do not con-
tain the substructure i  will provide a poor fit to the 
modal data. Thus, the model class  can predict 
da

rior prob

i

mage occuring in the substructure i  and provide 
the best fit to the data. 

Using the Bayesian model selection framework, 
the model classes are ranked according to the poste-

abilities based on the modal data. The most 
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The selection of the competitive model classes 
, 1, ,i i m= M  depends on the type and number of 

alternative damage sce s that are expected to 
occur or desired to be monitored in the structure. 
The prior distribution ( )iP M  in  (2) or (9)  of each 
model class or associated damage scenario is se-
lected based on experience for the type of structure 
that is studied. For the case where no prior informa-
tion i

, ,m .

s available,
to 

prior pro
be equal, ( ) 1/iP m=M , for all damage scenar-

ios.  
The effectiveness of the methodology depends on 

several factors, including the model classes and 
parameterization that are introduced to simulate the 
possible damage scenarios, the type, location and 
magnitude of damage or damages in relation to the 
sensor network configuration, as well as the model 
and measurement errors in relation to the magnitude 
of damage. Damages of relatively small magnitude 
may be hidden and difficult to be identified. Damage 
predictions can be improved by intro

M

delity FE model classes th
values of the modal charact

3.1 Computational issues 

The asymptotic approximations and the stochastic 
simulation algorithms, involve solving optimization 
problems, generating samples for tracing and then 
populating the important uncertainty region in the 
parameter space, as well as evaluating integrals over 
high-dimensional spaces of the uncertain model pa-
rameters. They require a moderate to very large 
number of repeated system analyses to be performed 
over the space of uncertain parameters. Conse-
quently, the computational demands depend highly 
on the number of system analyses and the time re-
quired for performing a system analysis. The pro-
posed Bayesian estimators requires a large number 
of FE model simulations to be carried out which im-
poses severe computational limitations on the appli-
cation of the damage identification technique. For 



FE models involving hundreds of thousands or even 
million degrees of freedom and localized nonlinear 
actions activated during system operation these 
computational demands for repeatedly solving the 
lar

putational demands in FE 
model updating formulations, without compromising 
the solution accuracy.  

to stiffness matrices that depend linearly on the 
model parameters 

ge-scale eigen-problems and the gradient of the 
eigensolutions may be excessive.  

The objective of this work is to examine the con-
ditions under which substantial reductions in the 
computational effort can be achieved using dynamic 
reduction techniques such as CMS. Dividing the 
structure into components and reducing the number 
of physical coordinates to a much smaller number of 
generalized coordinates certainly alleviates part of 
the computational effort. However, at each iteration 
one needs to re-compute the eigen-problem and the 
interface constrained modes for each component. 
This procedure is usually a very time consuming op-
eration and computationally more expensive that 
solving directly the original matrices for the eigen-
values and the eigenvectors. It is shown in this study 
that for certain parameterization schemes for which 
the mass and stiffness matrices of a component de-
pend linearly on only one of the free model parame-
ters to be updated, often encountered in FE model 
updating formulations, the repeated solutions of the 
component eigen-problems are avoided, reducing 
substantially the com

4 MODEL UPDATING USING CMS 

Without loss of generality, we limit the formulation 
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In CMC techniques (Craig & Bampton 1965), a 
structure is divided into several components. Reduc-
tion techniques are applied on a number of these 
components, while the rest are the non-reduced parts 
of the structure which could be left un-altered. For 
each component, the unconstrained DOFs are parti-
tioned into the boundary DOFs, denoted by the sub-
script b  and the internal DOFs, denoted by the sub-
script i . The boundary DOFs of a component are 
common with the boundary DOFs of adjacent com-
ponents, while the internal DOFs of a component are
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where the indices i  and b  are sets containing the in-
ternal and boundary DOFs. According to the Craig-
Bampton fixed-interface mode metho sical 
coordinates 
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The matrices 0

ˆ CBK  and ,
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jK  are independent of 
the values of q . In order to save computational time, 
these constant matrices are computed and assembled 
once and, therefore, there is no need this computa-
tion to be repeated during the iterations involved in 
optimization and stochastic simulation algorithms. 
At each iteration step involved in model updating for 
which the value of the parameter set q  changes, this 
procedure saves significant computational time since 
it avoids (a) re-computing the fixed-interface and 
constrained modes, and (b) assembling the reduced 
matrices from these components.  

It should be noted that in the case of model updat-
ing, the modal frequency and mode shape residuals 
to be computed have the same exactly form as in (7)  
with ( )r   in (1) replaced by ˆ ( )rq   and L  replaced 
by ˆL S S= Y . Available model updating software 
can thus be readily used to handle the parameter es-
timation using the reduced mass and stiffness matri-
ces by just replacing the eigenvalue problem of the 
original mass and stiffness mat ices ith the eigen-
value problem (27) of the reduced system matrices 
and also replacing the matrix L  of zeros and ones in 
(1) by the constant matrix ˆL S S= Y .  

It should be pointed out that the significant sav-
ings arising partly from the reduction of the size of 
the eigenvalue problem from n  to qn  in the CMS 
technique and partly from the fact that the estimation 
of the the component fixed-interface modes and the 
constrained interface modes need not to be repeated 
for each iteration involved in the opti
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mization. The 
ize of the re-

 m rices, the n
e nu ber

es. he inte

urther 

computational savings depend on the s
duced system. This size is controlled by the number 
of fixed interface modes needed to describe the de-
formation of the component as well as the number of 
interface DOFs for each component.   

4.1 Reduction of the interface DOFs  

After the CMS technique has been used to reduce 
the system at umber of interface DOFs 
may be large compared to th m  of the fixed 
interface mod T rface DOFs may control 
the size of the reduced mass and stiffness matrices. 
F reduction in the generalized coordinates can 



be achieved by replacing the interface DOFs 
{ } { } { }i i i , 1, ,i N=  ,b b duced number of 

constraint interface modes 
u V z=  by a re

( ){ } i
kmiz Î , where the 

columns of 
( ) ( )( ) i i
b km miV ´Î  form the reduced basis of 

b formathe ce. The trans tion ( )im -dimensional spa
q Vu=  from the CMS generalize  coordinated s q  to 
the reduced order model g neralized coordinates e

{ }(1) ( ) {1}[ , , , , , ]bN TT S T T T
k kp pu z z=   , that contains 

the kept fixed interface modes and the kept con-
straint interface modes, is introduced, where 

(1) ( )

{ }{1}

ˆ ˆ
( , , , , , )b

Ns
k k

N

n n
lockdiag I I V V   and nV b= I  is 

the identity matrix o dimension n . { }i  to 
be constant, independent of 

f Selecting V
q , the formulation sig-

nificantly simplifies since the modal frequency and 
mode shape residuals in the model updating formu-
lation have exactly the same form as in (7) with 

( )r   in (1) replaced by the eigenvectors of the re-
duced system and L  replaced by ˆL S SV= Y . The 
reduced basis forming { }iV  can be kept con

ization algorithm
stant at 

 
or updated every few iterations in order to improve 

-
rate method is the technique proposed by Castanier 

ted data 
E models are 
ron quadratic 

n Figure 1. 
Ea

ment length of the order of 

is selected 

are 
tained for o ponents. The total number of 

odel is 8.325 which consist 
of 276 fixed interface generalized coordinates and 

ponents. 
agnitude reduction 

in the number of DOFs is achieved using CMS.   
 

each iteration involved in the optim

convergence and maintain accuracy. A more accu

(2001) to reduce the number of interface DOFs by 
replacing them by the constraint modes.  

5 APPLICATION TO A BRIDGE STRUCTURE 

The computational efficiency and accuracy of the 
CMS technique for FE model updating and damage 
identification is demonstrated using simula
from the Metsovo bridge. Detailed F
created using 3-dimensional tetrahed
Lagrange FEs to model the whole bridge. An extra 
coarse mesh is chosen to predict the lowest 20 modal 
frequencies and mode shapes of the bridge. The 
model has 97.636 FEs and 563.586 DOFs.  

5.1 Effectiveness of CMS technique  

For demonstration purposes, the bridge is divided 
into fifteen physical components with eight inter-
faces between components as shown i

ch deck component consists of several 4-5m deck 
sections. The tallest pier also consists of several sec-
tions. The size of the elements in the extra coarse 
mesh is the maximum possible one that can be con-
sidered, with typical ele
the thickness of the deck cross-section.  

The cut-off frequency cw  is introduced to be the 
highest modal frequency that is of interest in FE 
model updating. In this study the cut-off frequency 

to be equal to t  20he th modal frequency of 
the nominal model. i.e. cw =4.55 Hz. The effective-
ness of the CMS technique as a function of the num-
ber of modes retained for each component is next 
evaluated. For each component it is selected to re-
tain all modes that have frequency less than 

max cw rw= , where the r  values affect computa-

tional efficiency and accuracy of the CMS tech-
nique. Representative r  values range from 2 to 10. 
The total number of internal DOFs per component 
before the model reduction is applied are shown in 
Figure 2. The number of modes retained per compo-
nents for various r  values is also given in Figure 2. 
For the case 8r= , a total of 276 internal modes 
re all 1
DOFs of the reduced m

It is clear that a two orders of m

5 c m

8.049 constraint interface DOFs for all com

 
Figure 1. Components of FE  model of Metsovo bridge. 

 
 

modal frequencies computed using the let
Figure 3 shows the fractional error between the 

comp e FE 
model and the modal frequencies computed using 
the CMS technique as a function of the mode num-
ber for , 5 and 8. It can be seen that the error 
fo all below  for 

 for  for . A very good ac-
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Figure 2. Num er of DOFs per component of FE model. b



 
Figure 3. Fractional modal frequency error between predictions 
of the full and reduced model.  

 
It is thus obvious that a large number of general-

ized coordinates for the reduced system arises from 
the interface DOFs. A further reduction in the num-
ber of generalized coordinates for the reduced sys-
tem can be achieved by retaining only a fraction of 
the constrained interface modes. For each interface, 
it is selected to retain all modes that have frequency 
less than max cw n ,  is user and problem de-
pendent. Results are shown in Figure 3 for  
and 5. It can be seen that the fractional error for the 
lowest 20 modes of the structure fall below 10  for 

. The number of modes retained for different 
 values is given in Table 1. The value of  

and  gives accurate results and the number of 
retained interfaces modes for all interfaces is 54. 
The reduced system has 155 DOFs from which 101 
generalized coordinates are fixed-interface modes 
for all components and the rest 54 generalized coor-
dinates are constrained interface modes. Obviously 
the number of generalized coordinates is drastically 
reduced.  

w

is

= n
2n =

3-

5n =
5n =

n
r 5=

 
Table 1.  Number of internal and boundary DOFs. __________________________________________________    
T tal DOFs Original   Reduced        Reduced       Reduced                _______   _______      ________      ________            o                                                         
                                              8n = 5n = 2n =
                                         &                    &                   &  
                                      8r=             5r=             2r=   __________________________________________________ 
Boundary   8.049      84             54            31 
Internal    554.052     276           101            35 
Total     562.101     360           155            66 
__________________________________________ 

 
The computational time needed to estimate the 

lowest 20 modal properties using CMS with r£  
five times less than the time required to solve the 
complete FE model. Reducing the constrained inter-
face modes ( ), the computational time reduces 
by three to four orders of magnitude. It is thus obvi-
ous that CMS drastically reduces the computational 
effort without sacrificing in accuracy.  

8  

5n £

 
Figure 4. Sensor configuration involving 38 sensors. 

5.2 Damage identification  

In order to demonstrate the methodology, a number 
of competitive model classes i  and ,i jM are intro-
duced to monitor various probable damage scenarios 
corresponding to single and multiple damages at dif-
ferent substructures. The model class iM  contains 
one parameter related to the stiffness (modulus of 
elasticity) of component i  shown in Figure 1. It can 
monitor damage associated with the stiffness reduc-
tion in the  component. The model class ,i jM  con-
tains two parameters related to the stiffness of com-
ponents  and 

M

i

i j . It can monitor damage associated 
with the stiffness reduction in either components i  
and j  or simultaneously at both components. All 
model classes are generated from the updated FE 
model of the undamaged structure. For each model 
class, CMS is used to reduce the number of modes 
per component using . This result in three to 
four orders of magnitude reduction in the number of 
DOFs compared to the DOFs of the un-reduced FE 
model. The model parameters are introduced to scale 
the nominal values of the properties that they model 
so that the value of the parameters equal to one cor-
responds to the nominal value of the FE model.  

2r=

Simulated, noise contaminated, measured modal 
frequencies and mode shapes are generated for the 
damaged and undamaged structure by adding a 1% 
and 3% Gaussian noise to the modal frequencies and 
modeshape components, predicted by the nominal 
non-reduced FE models. The added Gaussian noise 
reflects the differences observed in real applications 
between the predictions from a model of a structure 
and the actual (measured) behavior of the structure.  
38 sensors are placed on the bridge to monitor verti-
cal and transverse accelerations (Figure 4).  

Damage is assumed to occur at the highest pier 
(component 10 in Figure 1), manifested as a stiffness 
reduction of 30% the nominal stiffness value. It is 
expected that the proposed methodology will give as 
the most probable model class the 10M  and 10,i  
since these models classes monitor the stiffness of 
the component i  that contain the actual damage. The  

M

 



Table 2. Damage identification results. __________________________________________________    
Model           

2M      
4M      

5M      
8M      

10M      
10,7M      

10,8M   __________________________________________________ 

i
N             1         1        1         1         1          2           2  
log P( )iM2s 310-

    690    695    731     735     784      780       811 
(x )  16.9    16.6   13.7  13.3    10.0   10.2  8.8 

qD 1 (%)        +7     -7      -37      -24     -27       -32       -21 
qD 2 (%)                +18   -20 __________________________________________________  

 
results for the probability of each model class and 
the corresponding magnitude of damages i  pre-
dicted by each model class are reported in Table 2. 
These results have been obtained using TMCMC 
and CMS techniques to alleviate the computational 
burden associated with the large number of model 
updating problems solved.  

qD

Comparing the logarithm l i  of the un-
normalized probability i  of each model class 
and also the corresponding magnitude of damages 

i  predicted by each model class it is evident that 
the proposed methodology correctly predicts the lo-
cation and magnitude of damage. The most probable 
model class is 10,8M  which predict a 21% reduction 
in stiffness instead of the inflicted 30%. Among all 
alternative model classes 10  and 10,7M  that contain 
the actual damage, the proposed methodology favors 
the model class 10M  with the least number of pa-
rameters, which is consistent with theoretical results 
available for Bayesian model class selection (Beck 
and Yuen 2004). The model class 10M  closely ap-
proximated a damage severity of 27% which is very 
close to the inflicted 30%. The errors in the pre-
dicted the inflicted damage value of 30% from all 
models that contain the damage as well as predicting 
damages at other components in the structure is due 
to the measurement errors assumed and the relative 
low number of contributing modes used in the 
analysis. The model classes that they do not contain 
the damage are not favored by the proposed meth-
odology. Also, it should be noted that the accuracy 
is not compromised due to model reduction using 
CMS.  

og ( )P M
)(P M

M

qD

6 CONCLUSIONS 

A fast Bayesian inference framework for structural 
model selection and updating using vibration meas-
urements was presented and applied to the identifi-
cation of the location and severity of damage of 
structures using measured modal data. CMS meth-
ods are integrated in the framework and shown to be 
very effective in drastically reducing the computa-
tional effort required to identify damage locations 
and severity. The effectiveness of the damage identi-
fication methodology was illustrated using simulated 
vibration data from a real bridge. It can be con-
cluded that the proposed methodology, illustrated in 
this work using computationally efficient stochastic 
simulation algorithms, correctly identifies the loca-

tion and the magnitude of damage. Surrogate models 
can also be incorporated in the formulation to further 
alleviate the computational burden. Finally, parallel 
computing algorithms can be combined with the 
proposed method to efficiently distribute the compu-
tations in available GPUs and multi-core CPUs.  
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