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Microbubbles (Contrast Agents) 

 Bubbles surrounded by an elastic membrane for 

stability 

 Low density internal gas that is soluble in blood 

 Diameter from 1 to 10 μm 

 Polymer, lipid or protein (e.g. albumin) monolayer 

shell of  thickness from 1 to 30 nm 

Motivation 

• Contrast perfusion imaging   check the 

circulatory system by means of  contrast 

enhancers in the presence of  ultrasound     

(Sboros et al. 2002,   Frinking & de Jong, 

      Postema et al., Ultrasound Med. Bio. 1998, 2004) 
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 Need for specially designed contrast agents: 

• Controlled pulsation and break-up for imaging and perfusion measurements 

• Chemical shell treatment for controlled wall adhesion for targeted drug delivery 

 Need for models covering a wider range of  CA behavior  (nonlinear material 

behavior, shape deformation, buckling, interfacial mass transport etc., 

compression vs. expansion only behavior, nonlinear resonance frequency-

thresholding) 

 Need to understand experimental observations and standardize measurements 

in order to characterize CA’s 

• Sonoporation   reinforcement of  drug delivery to 

nearby cells that stretch open by oscillating contrast 

agents 

     (Marmottant & Hilgenfeldt, Nature 2003) 

 

• Micro-bubbles act as vectors for drug or gene delivery 

to targeted cells 

     (Klibanov et al., adv. Drug Delivery Rev., 1999, 

      Ferrara et al. Annu. Rev. Biomed., 2007) 



Asymmetric oscillations of  a microbubble near a wall 

 Experiments have shown that the presence of  a nearby wall affects the 

bubble’s oscillations. In particular its maximum expansion 

 Asymmetric oscillations, toroidal bubble shapes during jet inception have 

been observed 

 The bubble oscillates asymmetrically in the plane normal to the wall, while it 

oscillates symmetrically in the plane parallel to the wall (i.e. deformation has 

an orientation perpendicular to the wall) 

(H. J. Vos et al., Ultrasound in Med. & Biol., 2008) 

(S. Zhao et al., Applied Physics, 2005) 



Axisymmetric Pulsations 
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 Axisymmetry 

 Ideal, irrotational flow of  high Reynolds number 

 Incompressible surrounding fluid with a sinusoidal pressure change in the far field 

 Ideal gas in the microbubble undergoing adiabatic pulsations 

 Very thin viscoelastic shell whose behavior is characterized by the constitutive law (e.g. 

     Hooke, Mooney-Rivlin or Skalak) 

 The shell exhibits bending modulus that determines bending stresses along with 

     curvature variations 

 Shell parameters: area dilatation modulus χ=3Gsδ, dilatational viscosity μs, degree of 

     softness b for strain softening shells or area compressibility C for strain hardening ones 

     and the bending modulus kB 

n



 Shell viscosity dominates liquid viscosity, Res<<Rel and we can drop viscous 

stresses on the liquid side 

 Therefore the tangential force balance is satisfied on the shell with the 

viscous and elastic stresses in the shell balancing each other 
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Shell Constitutive Laws – Isotropic Tension 

 Linear behavior  Hooke’s law         

Kelvin–Voigt law with viscous stresses: 

 

      Κ: area dilatation modulus 

      Gs: shear modulus 

      νs: surface Poisson ratio 

      ΔΑ/Α: relative area change 

 

 Strain softening material (e.g. lipid 

monolayer) 

      2D Mooney–Rivlin law: 

 

      Ψ=1-b : degree of  smoothness 

 Strain hardening material 

      (e.g. red blood-cell membrane that consist 

      of  a lipid bilayer) 

      Skalak law: 
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Phase Diagrams of  Polymeric and Lipid Shells 

The behavior of  polymeric shells, 

large area dilatation, conforms with 

the concept of  a viscoelastic solid 

with stretching and bending 

stiffness 

• Lower and upper solid lines -> threshold for 

buckling and transient break-up based on 

experiments (Bouakaz et al. 2005)  

• Lower dotted line, crosses and solid squares  -> 

buckling threshold obtained via static stability, 

finite element analysis and surface evolver  

• Upper dotted line -> static rupture criterion due to 

stretching at expansion (too high) 

• Open circles -> transient break-up based on the 

revised Marmottant model (requires unrealistically 

large shell thickness) 

• Solid triangles -> Threshold of  dynamic buckling 

based on linear stability and simulations 

t 

0

1

2

3

4

5

0 2 4 6 8 10 12

Contrast agent BR14 subject to 2.4 MHz ultrasound    

k
b
=1.5x10

-13
 Nt m, b=0.5,  χ=0.54Nt/m, μ

s
=1.54χ10

-8
Kg/s

 P
4

 P
3

 P
2

 Static buckling

 Dynamic buckling after 6 periods

 Dynamic buckling after 4 periods

 

 

 
ε

R
0
 in μm

Parametric excitation of  shape modes 

takes place at lower amplitudes than 

those required for dynamic and static 

buckling 

Based on the amplitude threshold for 

shape deformations kB can be estimated 

Gas bubbles 

BR14 



-0,2

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

 

 

 

 R(t)

 P
4

Parametric Stability – Resonance 

0 50 100 150 200 250 300 350
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

 

 

270 275 280 285 290 295 300
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

 

 

P
0

P
4

P
6

P
0

P
4

P
6

A

M

P

L

I

T

U

D

E 

t 
0 5 10 15 20 25 30 35 40 45

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

 

 

P
0

P
2

P
6

P
7

P
8

-0,4

-0,2

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

 

 

 R(t)

 P
7

 P
8

t 

3

3.6 , 80 , 1 , 20 , 0, 0.5,

998 , 101325 , 1.07, 1.7 , 3.0 14

eq s s

l st f BD

R m G MPa nm Pa s b

kg
P Pa v MHz K d Nm

m

   

 

      

     

Stability, ε=2 Stability, ε=3 

Simulation 
ε=3 

Strain Softening membrane 
v0=1.1 MHz, v4=2 MHz 

Simulation 
ε=2 

Saturation - Harmonic resonance 
Transient Break-up 



     

     

       

0 0 0 0

0 0 0 0

0 0 0 0

, , , , , , ,

, , , , , , ,

, , , , , , , , , ,

b

b

w w

b

S

b

S

w w

S S

r z t r z t G r z r z dS
n

G
r z t r z t r z r z dS

n

G
r z t G r z r z dS r z t r z r z dS

n n


  




      

 
  

 





 

Boundary integral equation of  the interface: 

Kinematic conditions of  the bubble’s interface: 
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Axisymmetric pulsations of  a bubble near a surface 

Governing  Equations  (cylindrical coordinate system) 



1st assumption: Surface as a rigid wall: 

In this case a second symmetric bubble with respect to 

r-axis is considered 

We calculate the two kinematic conditions and 

dynamic condition by means of  Finite Element 

Method in order to compute the position of  bubble’s 

interface and the velocity potential. Owing to 

symmetry, we solve only for the first bubble. 

We calculate the boundary integral equation by means 

of  Boundary Element Method in order to compute the 

normal velocity of  the interfaces: 
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Dynamic condition on the surface/liquid interface: 

Boundary conditions due to axisymmetry : 
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Governing Equations (cont.) 

The kinematic conditions are the same for the surface 

3rd assumption: Surface as an elastic wall 
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Dynamic condition on the surface/liquid interface: 

We consider an elastic wall of  very small thickness 

Similar approach as in the case of  bubble’s shell (i.e. 

modeling via classical shell theory) 



Numerical Methodology 
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Numerical Results 
Benchmark – Interaction  between two similar uncoated bubbles: 

 Actually, this is the case of  an uncoated bubble 

near a rigid wall (i.e. the 1st assumption) and how it 

responds to a step change in pressure in the far 

field 

 The position of  the interface (i.e. r(t) , z(t)) is 

computed via the continuity of  normal and 

tangential velocity:  

 

 In the dynamic condition the elastic stresses are 

excluded in the absence of  coating: 
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 The results are very close to those in the literature 

(N. A. Pelekasis & J. A. Tsamopoulos, 1991) 



Numerical Results (cont.) 
Interaction  between two similar coated bubbles: 

 This is the case of  a coated bubble near a rigid wall (i.e. the 1st assumption) and how it 

responds to a step change in pressure in the far field 

 The position of  the interface (i.e. r(t) , z(t)) is computed via the continuity of  normal 

velocity and the tangential force balance:  

 

 

 Dynamic condition on the bubble’s interface contains elastic stresses: 

 

 

 In this case, coupling of  continuity of  normal velocity with the tangential force balance 

fails due to growth of  short waves 

 

 We also tried to compute z(t) via the kinematic condition in z-direction and r(t) via 

tangential force balance, with similar problems 
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Conclusions 

 Nonlinear shell properties, e.g. strain softening vs. strain hardening membrane 

material, significantly affect contrast agent response  

 Allowing for bending elasticity shape deformation and buckling are captured. Bending 

elasticity is independent from area dilatation modulus due to non-isotropy of  the 

membrane 

 Polymeric shells follow a neo-Hookean behavior - Lipid monolayer shells exhibit a 

strain softening behavior (they become softer at expansion as the area density of  the 

monolayer decreases) – Lipid bilayer shells exhibit strain hardening behavior (they 

become softer at compression) 

 Dynamic buckling (equivalent to Rayleigh-Taylor instability for free bubbles) occurs 

exponentially fast. Polymeric shells mainly exhibit this type of  dynamic behavior that 

can be explained by coupling classical shell theory with potential theory for the liquid 

motion  

Ongoing work 
 The assumption of  a local spherical coordinate system with its origin at the centre of  

mass of  the microbubble is to be adopted 

 The coupling of  continuity of  normal velocity and tangential force balance in spherical 

coordinate system is to be tested 



Conclusions (cont.) 

Future work 

 Shell viscosity constitutes the main damping mechanism 

 With the available modeling tools a number of  dynamic effects exhibited by contrast 

agents is understood and captured, e.g. resonance frequencies, abrupt vibration onset, 

rich harmonic content, expansion and compression only behavior 

 Mode saturation is captured above the stability threshold (supercritical growth) for 

parametric excitation -- Growth of  unstable modes occurs mostly during compression - 

As the amplitude increases towards the threshold for dynamic buckling transient break-

up takes place 

 Parametric study of  the distance between the bubble and the surface as well  the 

properties of  the latter in the backscatter signal 



Thanks for your attention 

Acknowledgements 

This research has been co-financed by the European Union (European Social Fund - ESF) 

and Greek national funds through the Operational Program "Education and Lifelong 

Learning" of  the National Strategic Reference Framework (NSRF) - Research Funding 

Program: Heraclitus II. Investing in knowledge society through the European Social Fund.  

Questions 


