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Abstract. It is well known from St. Venant’s torsion theory that when a torque is applied at the ends of a pris-

matic beam then the cross sections will, firstly, rotate about the centroid axis of the beam and, secondly, each 

cross section will warp in the longitudinal direction. Rotation is depicted through the angle of twist per unit 

length, while the warping is depicted through an appropriate warping function of the unrotated cross sections. 

In the present study we considered a prismatic beam with constant initial twist along its length and at the beam 

ends axial forces and torsional moments were applied. The governing equations of equilibrium and the boundary 

conditions are obtained using an energy variational statement. Focusing on the axial deformation, the results of 

the present study exhibit similarities with the results obtained from the analysis of prismatic beams subjected to 

axial tension using a dipolar gradient elasticity theory. The advantageous aspect of the present study is that the 

microstructural lengths emerge in a natural way from the geometrical characteristics of the beam cross section 

and the elastic material properties. The present results are extremely useful in modeling textile yarns with initial 

pretwist, as well in smart textiles where initial twist can be introduced deliberately.    

 

1    INTRODUCTION   

      Textiles are used in numerous advanced technological applications such as airbags, seat belts and body armor 

vests. The widespread usage of textile composites is mainly twofold. Primarily, their favorable mechanical prop-

erties classify them as very sufficient load carrying components. Secondarily, their low cost production and their 

easy handling make them very competitive structural materials. 

     The mechanics of textile composite materials can be addressed at three different scales: a) the macroscopic 

scale where textile is treated as an anisotropic, non-linear continuum medium, b) the mesoscopic scale where the 

overall mechanical behavior of the composite is characterized by the interactions between the yarns, c) the mi-

croscopic scale where interactions between the fibers inside yarns are taken into account. The present study fo-

cuses on the microscopic scale in the sense that the micromechanical parameters of the yarns are considered. 

      It is well known that most yarns are formed by the assemblage of a large number of fibers, usually some 

hundreds, which are pretwisted together about the longitudinal axis, Fig.1. In addition, the textile composite is 

subjected to tensile forces which tend to stretch the fiber in the longitudinal direction. So, the fiber’s mechanical 

behavior is equivalent to a prismatic bar with initial twist subjected to an axial force at the same time.  

     Biot 
[1]

 was the first who mentioned that the torsional rigidity of a prismatic bar is increased when the bar is 

subjected to a tensile load. Chen 
[2]

 ascertains that, when a prismatic or a cylindrical thin walled bar possess an 

initial twist, the torsional rigidity of the bar is greater than the bar without initial twist. He concluded that  the 

increase is due to the magnitude of the initial twist, the shape and the thickness of the thin wall cross section, as 

well as the material of the bar. The main goal of Chen’s study was to estimate the torsional rigidity of steel thin 

wall prismatic bars and his findings were in good agreement with experimental results. The only handicap of his 

approach was that for a cyclic cross section he predicted an increase in torsional rigidity which is not true. The 

study of pretwisted prismatic bars intensified in the ‘70s, when the problems in helicopter blades came in the 

foreground (see for example 
[3, 4, 5]

). Rosen 
[6]

 conducted a thorough report in which he verified the increase of 

torsional rigidity and he attributed it to the interference of the initial twist with the axial loading through the 

warping function of the cross section of the bar. This conclusion comes to recover the gap in Chen’s theory, be-

cause it is in accordance with the well-known result that a cyclic cross section does not warp and generally it is 

not influenced by the twist of the beam.   
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2    KINEMATICS AND LINEAR STRAIN ANALYSIS 

      Consider a uniform bar of any cross section twisted by couples at the ends, Fig.2. An orthogonal coordinate 

system Oxyz is adjusted at the center of an end cross section in such a way that the axis of the fiber coincides 

with the z axis. The displacement field of the cross section is defined as  
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where       are the displacement components in          respectively, and    is an additional displacement 

due to the application of the tension load. For a pretwisted bar with initial twist    and length  , the Cartesian 

coordinates (     ) are local to the cross section and are related to the global coordinates       as 
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since small deformation theory requires |   |   . From the assumed displacement field it is easy to evaluate 

the linear normal and shear strains in the cross sections: 

 

  
   

   
  

     
       
     

                
                 

               

2 *
*1

2

* *

                    0   ,   0   ,  

1 1 1 1 1
0  ,    ,  

2 2 2 2 2

xx yy zz

xy xz yz

wu v w

x y z z z zz

u v u w v w
y x

y x z x z x z y z y



 (3) 

The function    can be found from solving the classic Saint Venant problem in the (     ) system 
[6]

: 
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with boundary conditions 
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and 

 * 0dxdy   (6) 

3    THE ELASTIC STRAIN ENERGY OF A PRETWISTED FIBER 

      The elastic strain energy stored in the fiber will be 
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 Substituting the strain components in the above equation we take 
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where in the last equation the following notations were introduced 
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where    is the initial twist in the fiber,         are cross sectional constants,    is the areal torsional constant 

of the cross section, is an internal length related to the geometry of the fiber cross section and   is the torsional 

constant of the cross section. Note that 
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Also, for cross sections with at least one axis of symmetry  
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4  CHARACTERISTIC EQUATIONS AND CORRESPONDING BOUNDARY CONDITIONS OF THE 

PROBLEM 

      The variation of the strain energy reads 
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We suppose that there exists a distributed axial force    as mass force and a distributed torsional moment    as 

mass torsion such as 
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where   is the total axial force and   is the total torque at the cross sections of the fiber. The work done by the 

external loads is 
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where   is the energy-conjugated quantity of  (    ⁄ ). The virtual work principal reads 
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The last equation holds for all values of        so from the integrals one gets the equilibrium equations 

 
 

   
 

2 2
1

02 2
0z

w
EA a ES p

z z
 (21) 

  
   

     
  

22 4
2 2 1
0 02 4 2

0z

w
a EK GJ EJ a ES m

z z z
 (22) 

and the energy-conjugated boundary conditions at the ends of the fiber (       ) 
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5   CONSOLIDATION OF THE EQUATIONS AND THE 1D AXIAL MODEL 

     Differentiating equation (  ) twice with respect to   we get 
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Substituting equations (  ) and (  ) to equation (  ) yields 
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where in the last equation the following notation is used 

 
 

    
 


2

2 2 2eff
01    ,    1

J E S
c a K c

J GJ A
 (28) 

 
2

2

2

E
g

G c
 (29) 

where      is the effective torsional constant of the fiber with initial twist. The restriction      stems from the 

fact that the condition         is always true. Equation (  ) shows that the torsional rigidity of the fiber is 

increased by the presence of an initial twist    as has been also experimentally verified 
[2][6]

. Also, equation (  ) 
shows that the internal length   is defined by a natural way through     which are material properties, and     

which are geometrical constants of the cross section of the fiber. Equation (  ) consist the governing equation 

of the problem regarding   . Combining boundary condition equations (  ) and (  ), in view of (  ) stems  
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Combining boundary condition equations (  ) and (  ) in view of (  ) one gets 
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and  
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The quantities     can be thought as generalized force like quantities which can be illustrated by a concentrat-

ed/distributed torque, a concentrated/distributed axial force, a couple stress like force or a combination of all of 

them. The new problem is defined by equation (  ) and the dynamic boundary condition (  ) with the conju-

gate kinematical condition    , and the dynamic condition (  ) with the conjugate kinematical condition 

 (     ⁄ ). 
 

6    1-D STATIC DIPOLAR GRADIENT ELASTIC MODEL 

      Tsepoura et.al.
[7]

 studied the problem of the response of a bar subjected to uniaxial loading using the linear 

dipolar gradient elasticity theory. In this context, the strain energy of the one-dimensional bar is defined as 
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where   is the cross sectional area of the bar,   is the axial strain,    is the strain gradient and     are the Cau-

chy stress and couple stress, respectively. The constitutive equations are assumed to be  
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where   is the axial displacement and primes denote differentiation with respect to longitudinal axis of the bar. 

The positive definiteness of the strain energy implies that 
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 The variation of the strain energy of the bar is expressed as 
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The variation of the work done by external forces is given by 
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where   are body forces,   are traction forces in the classical sense, and   are couple forces. The equilibrium of 

the dipolar gradient elastic bar implies that  (   )    for every virtual kinematical quantity. From this con-

dition stems the governing equation of the bar which reads 
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Comparison of equations(  ) and (  ),(  ) and (  ),(  ) and (  ), results to transparent similarities indicat-

ing the straightforward analogy between the dipolar gradient elastic theory with the present study. The internal 

material length   of the present study corresponds to the internal length   in 
[7]. 
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7    PROBLEM SOLUTION 

      Assuming that        (to simplify the problem) the governing equation (  ) becomes 
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the latter equation has a solution of the form 

  


   1 1 2 3 4

z z

g gw z c e c e c z c  (45) 

where             are integration constants to be determined from the boundary conditions. Assuming that the 

fiber at one end is built –in, then is reasonable to state the displacement at that point to be zero, i.e. 
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The applied axial force on the other end of the fiber causes a specific strain, locally at that end and not along the 

whole length of the fiber, which implies 
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Supposing that on the free end of the fiber(   ), the condition  (   )     holds, then it would be 
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Also, assuming that in the built –in end of the fiber  (   )   , then 
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where     ⁄  is an auxiliary parameter. Equations (  )  (  ) form a system of four equations with four un-

knowns, the solution of which gives 
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In the case where    (   ) the displacement field becomes 
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where  
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For the strain distribution along the fiber would be 
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where    is given by equation(  ). Plots of the displacement and strain field versus the ratio   ⁄ , for    , and 

various values of    are given in Fig. ( )   ( ) and Fig.  ( )   ( ). 
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Figure 1. The angle of pretwist of the fiber is the angle between the fiber and the yarn axis. 

Figure 2. The rotation angle per unit length by couples applied at the ends. 
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Figure 3. Displacement field variation along the fiber axis for various values of   ⁄ , (   ). 

Figure 4. Strain field variation along the fiber versus   ⁄   for various of     and    . 


