MOLECULAR PATHWAYS LINKING NON SHIVERING THERMOGENSIS AND OBESITY

Angelica N. Valente¹, Athanasios Z. Jamurtas², Yiannis Koutedakis^{1, 2}, and Andreas D. Flouris¹ ¹FAME Laboratory, Centre for Research and Technology Thessaly, Trikala, Greece. ²Department of Exercise Sciences, University of Thessaly, Trikala, Greece.

Introduction

An increase in energy intake and a decrease in energy expenditure (EE) lead to fat storage, causing overweight and obesity phenotypes. Besides reducing energy intake, increasing EE offers an important alternative approach that may produce even more beneficial effects. This is because EE represents the sum of internal heat production and external work, given that about 20% of the energy intake in food is used to produce heat through the non-shivering thermogenesis (NST) process. NST heat is produced in brown adipose tissue (BAT) by uncoupling protein-1 (UCP1), a mitochondrial inner membrane protein, leading to decreased body weight and fat stored. The purpose of this systematic review is to evaluate the literature and summarize all the recentlypublished evidence regarding the molecular pathways linking NST and obesity.

Methodology

PubMed and Scopus databases were scanned from 2006 to September 2012 using "brown adipose tissue" AND "uncoupling protein-1" AND "mammalian thermoregulation" AND "obesity" as key words. A total of 48 articles were retrieved using the search criteria.

Results

The articles were separated into two categories based on research methodology: "knockout gene analysis was performed (Table 1), and "other studies" in which the analysis was carried out using various substances, molecules and agonists treatments, as well as different temperature and diet conditions (Table 2).

Table. 1	able. 1: Results from the "Knockout studies".			Table. 2: Results from the "Other studies".			
Group	Authors	Main Results		Group	Authors	Main Resu	
	Yamashita et al., 2008 Feldmann et al., 2009	FABP3 affects free fatty acid flux and ↑UCP1 thermogenesis. UCP1 activity affects obesity development in mice and humans.		Molecule TreatmentMale-Female and Gene Polymorphisms DifferenceFemperature Difference	Lehr et al., 2009	Brown adipocyte medium => differentiation of WAT strong cells.	
	Inokuma et al., 2006	Anti-obesity effect of β 3-adrenergic stimulation is largely attributable to UCP1 in BAT.			Bartolomucci et al., 2006	TLQP-21 ↑EE and blocks the early phase of high-fat die	
UCP1-KO	Oelkrug et al. 2011	Functional BAT is essential for rapid arousal from torpor.			Kim et al., 2006	PE \uparrow BAT thermogenesis and WAT fatty acid oxidation.	
	Shabalina et al., 2010	$^{\uparrow}$ shivering muscle and ↓heat loss => cold adaptations in UCP1-KO mice.			Ma et al., 2012	TRPM8 stimulation => \uparrow core temperature, \uparrow UCP1, and	
	Anunciado-Koza et al., 2011	SLC25A25 => alternative thermogenesis.			Romero del Mar et al., 2009	OE maintains thermogenic potential.	
	Meyer et al., 2010 Streijger et al., 2009	\downarrow heat loss by \uparrow vasoconstriction and \downarrow thermal conductance in UCP1-KO mice. Inefficient neuronal transmission => dysfunction in NST.			Leitner and Bartness, 2009	MSG \downarrow BAT NST and => obesity.	
		NPY is a neuromodulator of the SNS controlling both WAT lipogenesis and BAT			Moriya et al., 2006	QRFP43 \uparrow feeding, \downarrow EE, and => obesity.	
Brain	Chao et al., 2011 de Jonghe et al., 2011	thermogenesis. PTP1B in POMC influence cold-induce thermogenesis through thyroid axis.			Rodriguez-Cuenca et al., 2007a	Variation of sex steroid receptor expression in BAT of m	
	Korach-Andréa et al., 2011	LXR α and LXR β control EE and BW through UCP1 expression.			Rodriguez-Cuenca et al., 2007b	Sex hormones affect mitochondrial transcription factors	
	Vila-Bedmar 2012	GRK2 homozygous (+/-) => \uparrow NST, \uparrow EE and \downarrow BW.			Rose 2011	UCP1 transcription is \uparrow by progesterone and retinoic ac	
	Pelletier et al., 2008	Chronic muscle shivering in mice with dysfunctional NST.			Nikolic 2011	Sex differences effect of PKG-I activation on BAT therm	
	Hudson-Davies et al., 2009	RIP140 modulates metabolism and thermoregulatory adaptations.			Liu et al., 2009	Low temperature <i><i>î</i>NST, <i>î</i>RMR and <i>î</i>total respiratory ca</i>	
	Ma et al., 2011	GHS-R regulates BAT NST, adiposity, metabolism and energy homeostasis during aging.			Zhang et al., 2009	Cold exposure $\uparrow EE$, $\uparrow thermogenic capacity, and \uparrow EI.$	
	Lin et al., 2011	GHS-R is involved in insulin sensitivity, EE, RMR and ↑ UCP1 during aging.			Chen et al., 2012	↑ T3 and \downarrow leptin => ↑ UCP1, NST, EI and RMR.	
	Mano-Otagiri 2010	GHS-R/ghrelin => \downarrow EE and \uparrow EI by suppressing the SNS innervating BAT.			Kitao et al., 2012	Hibernation => \uparrow UCP1, \uparrow BAT thermogenesis and \downarrow BW photoperiod.	
-	Bauwens et al., 2011	α1-AMPK does not play a key role in NST and BW.			Zhang et al., 2012	Cold exposure => \uparrow UCP1, \uparrow BW, and \downarrow leptin.	
	Gray et al., 2006	PPAR-γ is required for full activation and recruitment of brown adipocytes.			Barger et al., 2006	UCP1 is the only mediator of NST in BAT.	
	Giralt et al., 2011	Sirt3 is essential for the differentiation of fully thermogenic competent brown adipocytes.		Diet and Reproductive State	Xiao et al., 2007	Early postnatal over nutrition => adverse BAT impact re	
	Tseng et al., 2008	Important role of BMP-7 in brown adipocyte differentiation and NST.			Zhao and Wang, 2009	Changes in nutritional fibre content => impact on BAT a	
	Jimenez-Preitner et al.,	Die 20 ie negy ine differentietiene en ditherme energie een esity			Primeaux et al., 2007	Spinal cord injury => \downarrow BW, \downarrow WAT mass, \downarrow UCP1 mRN.	
	2011	Plac8 is required for BAT differentiation and thermogenic capacity.			Zhang et al., 2008	Lactating voles \uparrow caloric intake, \uparrow RMR, \downarrow UCP1 and \downarrow b	
	Kiefer et al., 2012	Inactivation of Aldh1a1 => \uparrow transcription of brown fat markers in WAT.			Cheng et al., 2010	Leucin deprivation => \uparrow EE, \uparrow UCP1, \downarrow EI, \downarrow BW.	
	Bordicchia et al., 2012	ordicchia et al., 2012 Cardiac NPs => BAT thermogenesis, ↑ PGC-1α and UCP1 and ↓ WAT mass via p38			Du et al., 2012	Isoleucin or valine deprivation => \uparrow EE, \uparrow UCP1, \downarrow EI, \downarrow	
		MAPK. Inding protein 3: ↑= increase: UCP1 = uncoupling protein 1: BAT = brown adipose tissue: ↓= decrease			Noatsch et al., 2011	↑ proteins or leucine in diet => no effect on energy home	

Table. 1	Table. 1: Results from the "Knockout studies".			Table. 2: Results from the "Other studies".			
Group	Authors	Main Results	Group	Authors	Main Resu		
	Yamashita et al., 2008	FABP3 affects free fatty acid flux and ↑UCP1 thermogenesis.		Lehr et al., 2009	Brown adipocyte medium => differentiation of WAT stron		
	Feldmann et al., 2009	UCP1 activity affects obesity development in mice and humans.			cells.		
	Inokuma et al., 2006	Anti-obesity effect of β 3-adrenergic stimulation is largely attributable to UCP1 in BAT.	Ireatment	Bartolomucci et al., 2006	TLQP-21 ↑EE and blocks the early phase of high-fat die		
UCP1-KO	Oelkrug et al., 2011	Functional BAT is essential for rapid arousal from torpor.		Kim et al., 2006	PE \uparrow BAT thermogenesis and WAT fatty acid oxidation.		
	Shabalina et al., 2010	↑shivering muscle and ↓heat loss => cold adaptations in UCP1-KO mice.		Ma et al., 2012	TRPM8 stimulation => \uparrow core temperature, \uparrow UCP1, and		
	Anunciado-Koza et al., 2011	SLC25A25 => alternative thermogenesis.		Romero del Mar et al., 2009	OE maintains thermogenic potential.		
	Meyer et al., 2010	\downarrow heat loss by \uparrow vasoconstriction and \downarrow thermal conductance in UCP1-KO mice.		Leitner and Bartness, 2009	MSG ↓BAT NST and => obesity.		
	Streijger et al., 2009	Inefficient neuronal transmission => dysfunction in NST.					
Brain	Chao et al., 2011	NPY is a neuromodulator of the SNS controlling both WAT lipogenesis and BAT		Moriya et al., 2006	QRFP43 \uparrow feeding, \downarrow EE, and => obesity.		
Drain	Chao et al., 2011	thermogenesis.		Rodriguez-Cuenca et al.,	Variation of sex steroid receptor expression in BAT of m		
	de Jonghe et al., 2011	PTP1B in POMC influence cold-induce thermogenesis through thyroid axis.	Male-Female and Gene Polymorphisms Difference				
	Korach-Andréa et al., 2011	LXR α and LXR β control EE and BW through UCP1 expression.		Rodriguez-Cuenca et al., 2007b	Sex hormones affect mitochondrial transcription factors		
	Vila-Bedmar 2012	GRK2 homozygous (+/-) => \uparrow NST, \uparrow EE and \downarrow BW.		Rose 2011	UCP1 transcription is \uparrow by progesterone and retinoic ac		
	Pelletier et al., 2008	Chronic muscle shivering in mice with dysfunctional NST.		Nikolic 2011	Sex differences effect of PKG-I activation on BAT therm		
	Hudson-Davies et al., 2009	RIP140 modulates metabolism and thermoregulatory adaptations.		Liu et al., 2009	Low temperature <i>↑</i> NST, <i>↑</i> RMR and <i>↑</i> total respiratory ca		
	Ma et al., 2011	GHS-R regulates BAT NST, adiposity, metabolism and energy homeostasis during aging.		Zhang et al., 2009	Cold exposure $\uparrow EE$, $\uparrow thermogenic capacity, and \uparrow EI.$		
	Lin et al., 2011	GHS-R is involved in insulin sensitivity, EE, RMR and ↑ UCP1 during aging.		Chen et al., 2012	↑ T3 and \downarrow leptin => ↑ UCP1, NST, EI and RMR.		
				Kitao et al., 2012	Hibernation => \uparrow UCP1, \uparrow BAT thermogenesis and \downarrow BW photoperiod.		
	Mano-Otagiri 2010	GHS-R/ghrelin => \downarrow EE and \uparrow EI by suppressing the SNS innervating BAT.					
Receptors	Bauwens et al., 2011	α1-AMPK does not play a key role in NST and BW.		Zhang et al., 2012	Cold exposure => \uparrow UCP1, \uparrow BW, and \downarrow leptin.		
	Gray et al., 2006	PPAR-γ is required for full activation and recruitment of brown adipocytes.		Barger et al., 2006	UCP1 is the only mediator of NST in BAT.		
	Giralt et al., 2011	Sirt3 is essential for the differentiation of fully thermogenic competent brown adipocytes.	Diet and Reproductive State	Xiao et al., 2007	Early postnatal over nutrition => adverse BAT impact re		
	Tseng et al., 2008	Important role of BMP-7 in brown adipocyte differentiation and NST.		Zhao and Wang, 2009	Changes in nutritional fibre content => impact on BAT a		
	Jimenez-Preitner et al.,			Primeaux et al., 2007	Spinal cord injury => \downarrow BW, \downarrow WAT mass, \downarrow UCP1 mRN.		
	2011	Plac8 is required for BAT differentiation and thermogenic capacity.		Zhang et al., 2008	Lactating voles \uparrow caloric intake, \uparrow RMR, \downarrow UCP1 and \downarrow b		
	Kiefer et al., 2012	Inactivation of Aldh1a1 => \uparrow transcription of brown fat markers in WAT.		Cheng et al., 2010	Leucin deprivation => \uparrow EE, \uparrow UCP1, \downarrow EI, \downarrow BW.		
	Dardiachia at al 2010	Cardiac NPs => BAT thermogenesis, \uparrow PGC-1 α and UCP1 and \downarrow WAT mass via p38		Du et al., 2012	Isoleucin or valine deprivation => \uparrow EE, \uparrow UCP1, \downarrow EI, \downarrow		
	Bordicchia et al., 2012	MAPK.		Noatsch et al., 2011	↑ proteins or leucine in diet => no effect on energy hom		
Note: $KO = k$	nockout: FARP3 – fatty acid-bir	nding protein 3: ↑= increase: UCP1 = uncoupling protein 1: BAT = brown adipose tissue: ↓= decrease	= = induce: SI C2 ⁴	5A25 – Solute Carrier Family 25	(Mitochondrial Carrier, Phosphate Carrier), Member 25, NST –		

Note: KO = knockout; FABP3 = fatty acid-binding protein 3; 1 = increase; UCP1 = uncoupling protein 3; 1 = increase; UCP1 = uncoupling protein 1; BAT = brown adipose tissue; 1 = decrease; 2 = solute Carrier, Phosphate Carrier, Phosphate Carrier, Phosphate Carrier, NST = non-shivering thermogenesis; NPY = hypothalamic neuropeptide Y; SNS = sympathetic nervous system; WAT = white adipose tissue; PTP1B = protein-coupled receptor kinase 2; RIP140 = receptor interacting protein of the system; WAT = white adipose tissue; PTP1B = protein-coupled receptor kinase 2; RIP140 = receptor interacting protein of the system; WAT = white adipose tissue; PTP1B = protein-coupled receptor kinase 2; RIP140 = receptor kinase 2; RIP140 = receptor kinase 1; POMC = protein tyrosine phose tissue; PTP1B = protein tyrosin 140; GHS-R = growth hormone secretagogue receptor; RMR = resting metabolic rate, EI= energy intake; α1-AMP-activated protein 7; Plac8 = placenta-specific 8; Aldh1a1 = aldehyde dehydrogenase 1 family, member A1; NPs = cardiac natriuretic peptides; PE = pinellia ternate; OE = Oleoyl-oestrone; MSG = monosodium glutamate; PKG-I = Cyclic guanosine monophosphate (cGMP)-dependent protein kinase I; T3 = tri-iodothyronine.

Conclusions

Activation of UCP1 can lead to body weight loss by stimulating NST. Different molecules affect the transcription of UCP1, the BAT plasticity and, therefore, NST. Specifically: Tri-iodothyronine hormone and antagonist of aldehyde dehydrogenase 1 family, member A1 enzyme could play an important role in brown adipocyte differentiation and plasticity leading to BAT mass gain.

- Melatonin appears to play an important role in NST and body weight.
- hypothalamus.

References

van Marken Lichtenbelt WD (2011). Am J Physiol Regul Integr Comp Physiol; 301(2):R285-96. Mattson MP et al. (2010). Ageing Res Rev; 9(1):69-76.

Key roles of progesterone/17β-estradiol ratio in the regulation of UCP1 transcription and therefore in both BAT activation and energy balance. Growth hormone secretagogue rec eptor may be activated in BAT during aging playing a key role in the aging-related dysfunction of BAT.

Isoleucine or valine deprivation increases UCP1 gene expression and EE and reduces body weight through affecting orexigenic and anorexigenic neurons activity in the

sults

troma vascular cells in brown adipocytes-like

diet-induced obesity.

and \downarrow BW.

⁴ male, female, pregnant and lactating females.

ors and mitochondriogenesis.

acid but \downarrow by 17- β estradiol.

rmogenesis and WAT lipolysis.

capacity of BAT.

W more than cold exposure and short

reducing NST in adulthood. Factivity, basal metabolic rate, and NST. RNA and \uparrow caloric intake. body fat mass.

↓ BW.

omeostasis and UCP1 expression.

Environmen