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Abstract: The article presents a new approach based on a strain gradient damage constitutive law for modeling quasi-brittle materials such as
concrete. The authors use a weak type nonlocal formulation of the problem, relying onMindlin’s Form II strain gradient elasticity theory. Gibbs
free energy is used and the influence of the positive and negative principal strains to damage evolution is separated. Additional energy dissipation
due to the gradient of the positive principal strains is introduced. The model requires an internal length, which is treated as an internal variable
dependent on the level of damage. The study shows that the internal length increases with damage, corroborating available experimental results.
Calibration of the gradient internal length evolution with damage is established through experimental data from two independent tests: a uniaxial
tension or compression test to establish the evolution of damage, and a four-point bending (loading-unloading) test to relate the variation of the
internal lengthwith the accumulated level of damage.Anumerical analysis of the responseof a concretebeamspecimenunder four-point bending is
presented to describe the calibration procedure. DOI: 10.1061/(ASCE)EM.1943-7889.0000854. © 2014 American Society of Civil Engineers.

Introduction

This work aims to provide a new approach to a strain gradient
damage constitutive law for modeling quasi-brittle materials and
composites. Two reasons justify such an effort. Materials that ex-
hibit strain softening are size sensitive (Ba�zant and Planas 1997) and
their inelastic response manifesting itself through microcracking
should be nonlocal (Ba�zant 1991). In other words, a length pa-
rameter is necessary not only for modeling any size effect present
but also for ensuring that damage is not localized. A strain gradient
theory can include such a length parameter and can address these
issues in a physically consistent manner. Gradient theories can also
address the issue of size effect in elasticity.

Elasticity and inelasticity for the case of softening materials are
coupled by the very nature of the problem because damage is defined
as a loss of the initial (elastic) stiffness due to material degradation.
This work uses a weak type nonlocal formulation based on strain
gradient elasticity and considers damage as a process affecting the
gradient internal length.

The first issue addressed is whether the gradient internal length
should evolve with damage. Several existing nonlocal damage
theories assume a constant internal length (Pijaudier-Cabot and
Ba�zant 1987; Mazars et al. 1991; Peerlings et al. 1996; Fremond and
Nedjar 1996; de Borst and Gutierrez 1999; Comi 1999; Peerlings
et al. 2001; Addessi et al. 2002; Benvenuti et al. 2002; Borino et al.
2003; Nguyen 2008; Poh and Swaddiwudhipong 2009; Desmorat
et al. 2010) but there is strong evidence that this length is not
constant. Geers et al. (1998) considered a finite-element formulation

of a gradient damage model and concluded that an evolving internal
length with an upper bound limit is necessary to predict a damage
zone of a finite width. Pijaudier-Cabot et al. (2004) used acoustic
emission experiments and micromechanical arguments to show that
the internal length increases with damage starting from an initial
value. Aggelis and Shiotani (2007, 2008) considered Rayleigh wave
propagation in cementitious materials with thin inclusions simu-
lating prescribed levels of damage, and found increasingly stronger
dispersion of the Rayleigh waves with increasing damage. This, in
the context of a gradient elastic damage model, can be explained by
assuming an internal length increasing with damage (Georgiadis
et al. 2004). Li (2011) and Li et al. (2011) arrived at the same
conclusion using a homogenization procedure to derive a strain
gradient constitutive law for the case of linear-elastic materials with
microcracks. The present work uses a thermodynamic formulation to
confirm this. However, it has been shown that, based on thermo-
dynamics (Stamoulis and Giannakopoulos 2010) and experimental
evidence on aluminum and nickel microbreams (Voyiadjis and
Al-Rub 2005), this length should decrease with accumulated plastic
strain. This is because of the inherent differences in the physics of
gradient plasticity and damage theory (see Fig. 1).

Finally, selected experimental results on geometrical similar
plain concrete beams subjected to four-point bending are presented
and through a numerical example the calibration procedure of the
gradient internal length evolution law is described. These experi-
mental results are part of an extensive experimental program per-
formedwithin the framework of this study,which is not the objective
of the work presented here.

Thermodynamic Formulation of the Problem

Mazars and Pijaudier-Cabot (1989), Murakami and Kamiya (1997),
Wu et al. (2006) and many others proposed a thermodynamic for-
mulation of a classical damage model based on the Helmholtz free
energy. However, the present work follows the approach of Ortiz
(1985), based on Gibbs energy (implying isothermal conditions).
Ortiz’s model for concrete was extended to include strain gradient
effects by employing a simplified model with only one length pa-
rameter g, which is the simplest case of Mindlin’s (1964) Form II
strain gradient elasticity theory.

1Ph.D. Candidate, Dept. of Civil Engineering, Univ. of Thessaly, Volos
38334, Greece (corresponding author). E-mail: ant_triantafyllou@yahoo.gr

2Professor, Dept. of Civil Engineering, Univ. of Thessaly, Volos 38334,
Greece.

3Professor, Dept. of Civil Engineering, Univ. of Thessaly, Volos 38334,
Greece.

Note. This manuscript was submitted on May 11, 2014; approved on
July 25, 2014; published online on September 8, 2014. Discussion period
open until February 8, 2015; separate discussions must be submitted for
individual papers. This paper is part of the Journal of Engineering
Mechanics, © ASCE, ISSN 0733-9399/04014139(13)/$25.00.

© ASCE 04014139-1 J. Eng. Mech.

J. Eng. Mech. 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
N

IV
E

R
SI

T
Y

 O
F 

T
H

E
SS

A
L

Y
 o

n 
01

/2
3/

15
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000854
mailto:ant_triantafyllou@yahoo.gr


Gibbs energy density for the isothermal process within the frame-
work of strain gradient elasticity in a Cartesian frame (xk) is

G ¼ 1
2
t :C : tþ 1

2
l[B :l2Ac (1)

where tðtijÞ 5 Cauchy stress; CðCijklÞ 5 fourth-order elasticity
tensor;lðlijkÞ5 double-stress taken asl5 g2=tðlkij 5 g2∂tij=∂xkÞ;
B5 fourth-order tensor taken as B5 ð1=g2ÞC; and Ac 5 free energy
density for microcrack formation. The symbols ð:Þ and ð[Þ denote the
two- and three-index product, respectively, i.e., ðB : lÞijk 5Bijmnlkmn,
l[B :l5 lijkBijmnlkmn, ðC : tÞij 5Cijkltkl, t :C : t5 tijCijkltkl (re-
peated indexes imply summation from 1 to 3).

The stress-strain relations corresponding to Gibbs energy
density [Eq. (1)] are given by ɛ5 ∂G=∂t5C : t5 ɛe 1 ɛi and
k5∂G=∂l5C :=t5=ɛ5=ðɛe1ɛiÞ, where ɛðɛijÞ5 infinitesimal
strain tensor; and k5=ɛðkkij5∂ɛij=∂xkÞ 5 strain gradient third-
order tensor. Also, the total stress is s5t2=l5t2g2=2t. The
equilibrium equations and the kinematic boundary conditions origi-
nating from the total stress expression can be found in Georgiadis
and Grentzelou (2006).

The stress-strain time rate relations are given by: _ɛ5C : _t
1 _C : t5 _ɛe 1 _ɛi and _k5= _ɛe 1= _ɛi 5 _ke 1 _ki, where ð_Þ5 ∂=∂t
and the superscripts e and i denote the elastic and inelastic rate of
deformation due to degradation of the elastic material properties,
respectively.

Microcracking can be physically viewed as added flexibility to
the initial flexibility of an uncracked material. Following Ortiz
(1985), the elastic compliance tensor is taken as a characterization
of the state of material damage. Therefore, the elastic compliance
can be described by an additive formulation

C ¼ C0 þ Cc (2)

where C05 elasticity tensor of the uncracked material initially as-
sumed as isotropic; and Cc 5 added flexibility due to microcrack
opening under the current applied stress field.

In essence, the inelastic flexibility is the sum of the initial plus
the additional flexibility due to the presence of distributed micro-
cracking in the material, which is justifiable in terms of the softening
and is in line with self-consistent calculations of the overall elastic
compliance of elastic media with distributed cracking (Budiansky
and O’Connell 1976; Kachanov 1980; Horii and Nemat-Nasser

1983). Hence, the total strain and strain gradient due to cracking
can be written as

ɛ ¼ �
C0 þ Cc� : t ¼ ɛ0 þ ɛc

k ¼ =ɛ0 þ =ɛc ¼ k0 þ kc
(3)

Opening and Closing of Microcracks

Cracks in concrete, as well as in other quasi-brittle materials, can
develop even under compressive stress conditions. Also, opened
cracks can at some point close and not propagate. The closing of
cracks and the resulting stiffening of the material explains the
characteristic S-shaped hysteretic loops that are observed experi-
mentally in flexural members subjected to cyclic loading.

To mathematically model opening or closing microcracks, the
positive and negative orthogonal projections P1 and P2 of the
strain space onto the positive and negative cones C1 and C2 are
introduced. This operator assigns to every state of strain ɛ its point
P1ɛ andP2ɛ onC1 andC2, respectively. If ɛðaÞ and dðaÞ (a5 1, 2, 3)
denote the eigenvalues and eigenvectors of the total strain ɛ, re-
spectively, so that ɛij 5

P3
a51ɛ

ðaÞdðaÞi dðaÞj , then the positive projec-
tion of ɛ is given by ðP1 ɛÞij 5 ɛ1ij 5

P3
a51hɛðaÞidðaÞi dðaÞj , where

hxi5 ðx1 jxjÞ=2 is the Macauley bracket, and the negative pro-
jection is P2 5 I2P1 (I 5 identity tensor).

For a given state of stress t consistent with the closing mode of
microcracks, the following minimization problem must be satisfied:

minimize :
1
2
ɛ :

�
C0 þ Cc�21

: ɛ2 t : ɛ subject to : ɛcðaÞ $ 0 (4)

whereCc is the added flexibility due to the opening of all microcracks
and ɛcðaÞ are the eigenvalues of the inelastic strain, ɛc 5 ɛ2C0 : t.

For a given state of stress gradient =t, the minimization problem
is

minimize :
1
2
=ɛ[

�
C0 þ Cc�21

:=ɛ2=t[=ɛ subject to :=ɛcðaÞ$ 0

(5)

The solution toEqs. (4) and (5) can be approximated, respectively as

ɛ�C0 : tþ Pþ�Cc : tþ
�

(6a)

and

=ɛ�C0 :=tþ Pþ�Cc : ð=tÞþ
�

(6b)

where t1ij 5 P1ðtijÞ 5
P3

a51htðaÞiqðaÞi qðaÞj ; tðaÞ and qðaÞ 5 ei-
genvalues and eigenvectors of t; and ð=tÞ1ijk � P3

a51ð∂htðaÞi
=∂xiÞ1qðaÞj qðaÞk [for Eq. (6a), see Ortiz 1985].

For the stress-strain relations to be consistent with Eq. (6), it must
be true that ɛc 5Cc : t5P1ðCc : t1Þ and =ɛc 5Cc :=t5P1ðCc :
ð=tÞ1Þ. Finally, the added flexibility tensor due to the opening of
microcracks can be approximated as

Cc ¼ Pþ :Cc :Pþ
�
Cc
ijkl ¼ Pþ

ijmnC
c
mnpqP

þ
pqkl

�
(7)

Recalling thatɛc 5Cc : t, the positive and negative strain projections
based on the positive and negative stress projections can be ap-
proximated as P1ðɛcÞ5P1½Cc :P1ðtÞ�5P1ðCc : t1Þ and P2ðɛcÞ
5P2ðCc : t2Þ, respectively.

Fig. 1. Stress-strain diagram illustrating loading-unloading cycle for
(a) plasticity and (b) damage; el 5 elastic; pl 5 plastic; d 5 damage
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To further illustrate the necessity of the previous mathematical
manipulations, a microcrack normal to a unit vector n is considered.
Any stress acting upon a planarmicrocrack can be analyzed in any of
the four possible loading configurations depicted in Fig. 2. The cases
in Figs. 2(b and d) refer to nonzero positive projections (t5 t1)
whereas the cases in Figs. 2(a and c) refer to nonzero negative
projections (t5 t2). The orientation of the stress in Figs. 2(b and c)
is normal to the crack plane; that is, n × t1 × n5 0 and n × t2 × n5 0,
respectively, preventing crack propagation. Therefore, microcrack
opening occurs due to a tensile stress in Fig. 2(d) and a compressive
one in Fig. 2(a). These two cases correspond to a tensile and a
compressive opening mode IT and IC, respectively. Thus, the added
flexibility tensor due to microcrack opening can be decomposed as
Cc 5Cc

IT
1Cc

IC
, and the inelastic deformation due to microcracking

can be expressed as ɛc 5 ɛcIT 1 ɛcIC . Microcrack opening under
modes IT and IC implies that ɛcIT $ 0 and ɛcIC # 0, respectively.

Summarizing, Gibbs energy becomes

G ¼ 1
2
t :C0 : tþ 1

2
tþ :Cc

IT : t
þ þ 1

2
t2 :Cc

IC : t
2

þ 1
2
g2=t[C0 :=tþ 1

2
g2ð=tÞþ[Cc

IT : ð=tÞþ 2Ac (8)

It is true that the stress gradient in Eq. (8) induces only mode IT crack
opening because there are no terms of the type ð=tÞ2. This is further
clarified in Appendix I.

Damage Rules

The evolution of the tensorial damage parameter Cc[Eq. (2)] can be
described based on the evolution ofCc according to a damage rule of
the general form _Cc 5 _Cc

IT
1 _Cc

IC
(Ortiz 1985) with

_Cc
IT ¼ _mRIT ðtÞ and _Cc

IC ¼ _mRIC ðtÞ (9)

where RIT ðtÞ, RIC ðtÞ 5 material response functions (fourth-order
dimensionless tensors) that determine the direction in which damage
should occur; and m 5 internal scalar parameter (dimensions area/

force), which may be regarded as a measure of the cumulative damage
resulting in a decrease of the unloading elastic modulus. In plasticity
theory, the parameter m resembles the accumulated equivalent plastic
strain.A localization analysis for the case of uniaxial tension is included
inAppendix I,where it is shown that the proposed nonlocalmodel leads
to objective and mesh-independent results if used in a FEM analysis.

Initially, the material is assumed to be uncracked (m5 0) and
initial conditions reign. The proposed damage rules presented include
only the Cauchy (local) part of the total stress. The proposed model
will be calibrated through experimental strain data and hence the
damage rules will be associated with the energetically conjugate
quantity of strain; that is, the Cauchy part of the total stress. It should
be emphasized that this assumption has a physical justification be-
cause the damage surface of a quasi-brittle material is established
through experimental results of uniaxial tests and in the case of
uniform loading there in no gradient effect. The choice of local stress
inEq. (9) can be further justified from thework of Simone et al. (2004)
who showed that the use of a nonlocal dissipation-driving state
variable (i.e., the total stress or total strain of the gradient formulation)
leads to an incorrect failure characterization in terms of damage
initiation and propagation ahead of a macrocrack. The proposed
approach uses the inelastic strains for the tensorial characterization of
damage. Bui (2010) used a similar approach, introducing a mixed
(local and nonlocal) formulation for damage characterization.

The irreversible character of damage necessitates that _m$ 0. The
condition _m. 0 refers to active damagemechanisms, whereas _m5 0
refers to elastic behavior. Therefore, RIT ðtÞ and RIC ðtÞ must be
positive definite. Furthermore, the internal length of the material, g,
is assumed to be a function of the damage level [that is, g5 gðmÞ],
and the rate of change of the internal length is _g5 _mðdg=dmÞ.

It should be emphasized that the present work is based on gra-
dient elasticity, whereas inelasticity (damage) is treated as a process
affecting the parameters of gradient elasticity, the internal length,
and the classical elastic properties (Rodriguez-Ferran et al. 2011). In
this thermodynamic formulation, there are two internal variables, the
damage parameter, m, and the internal length, g, with a constraint
demand for the internal length to be a function of the damage pa-
rameter. Based on these assumptions, the energy density dissipation
[see Eq. (1)] inequality can be expressed as

d ¼ 1
2
t : _Cc : tþ 1

2
g2=t[ _Cc :=t

þ 1
2

�
g2
�× ð=tÞþ[Cc : ð=tÞþ 2 _Ac $ 0 (10)

where d signifies the rate of energy dissipation density.

Substituting Eq. (9) into Eq. (10), the rate of energy dissipation
becomes

d ¼
�
1
2
tþ :RIT : t

þ þ 1
2
t2 :RIC : t

2 þ 1
2
g2ð=tÞþ[RIT : ð=tÞþ

þ g
dg
dm

ð=tÞþ[Cc : ð=tÞþ
	
_m2 _A

c
$ 0

(11)

The rate of energy dissipation should be positive according to the
second law of thermodynamics. Because RIT , RIC , C

c
IT , and Cc

IC are
positive definite and _m$ 0, it follows that

dg=dm$ 0 (12)

Eq. (12) shows that if the internal length is allowed to evolve with
damage, it must increase or remain constant with increasing damage.

The inelastic free energy density, Ac, associated with microcrack
formation is a function of m. The rate of the free energy coincides

Fig. 2. State of microcracks: (a and d) opening mode; (b and c) closing
mode [Reprinted from Mechanics of Materials, Vol. 4, M. Ortiz, “A
constitutive theory for the inelastic behavior of concrete,” 67–93,
Copyright (1985) with permission from Elsevier]
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with the energy release rate per unit length of microcrack. Using
amicromechanical model of fracture as a justification (seeAppendix
II for diluted microcracking), the rate of the inelastic free energy is
defined as

_A
c ¼ _m

dAc

dm
¼ p

2
tðmÞ2 þ 1

3

�
∂tðmÞ
∂v

jðmÞ
	2( )

_m (13)

where tðmÞ5 critical stress for damage extension; andv5 direction
normal to the critical stress (along the microcrack). Note that jðmÞ is
half the microcrack length and Eq. (13) requires two tests: a uniaxial
test ½∂tðmÞ=∂v5 0� to establish tðmÞ and a pure bending test to
establish ∂tðmÞ=∂v.

Substituting Eq. (13) into Eq. (12) yields

d ¼


1
2
tþ :RIT : t

þ þ 1
2
t2 :RIC : t

2 2
p

2
tðmÞ2

þ 1
2
g2ð=tÞþ[RIT : ð=tÞþ þ g

dg
dm

ð=tÞþ[C
c
: ð=tÞþ

2
1
3

�
∂tðmÞ
∂v

jðmÞ
	2�

_m$ 0 (14)

Because _m$ 0, Eq. (14) necessitates

1
2
tþ :RIT : t

þ þ 1
2
t2 :RIC : t

2 2
p

2
tðmÞ2 $ 0 (15a)

and

1
2
g2ð=tÞþ[RIT : ð=tÞþ þ g

dg
dm

ð=tÞþ[C
c
: ð=tÞþ

2
1
3

�
∂tðmÞ
∂v

jðmÞ
	2

$ 0 (15b)

In Eqs. (15a) and (15b), the effects of stress gradient and damage,
which influence the inelastic response, can be treated separately.
Eq. (15a) corresponds to the case of g5 0 and Eq. (15b) addresses
the influence of the internal length, g, and consequently of the stress
gradient. In the absence of the stress gradient effect in Gibbs energy,
Ortiz’s model (1985) is recovered by Eq. (15a).

Next, a stress function F is defined in the form

FðtÞ ¼ 1
2
tþ :RIT : t

þ þ 1
2
t2 :RIC : t

2 ¼ FIT þ FIC (16)

SubstitutingEq. (16) into Eq. (15a), a damage functionF is obtained
as

Fðt,mÞ ¼ FðtÞ2p

2
tðmÞ2 $ 0 (17)

and if the inequality in Eq. (17) is not satisfied, the material must
behave elastically. For further damage to occur, the equality in
Eq. (17)must be satisfied (see Fig. 3). Therefore,FðtÞ5 ðp=2ÞtðmÞ2
defines the elastodamage boundary in the local stress space. Thus,
the onset of damage is characterized by the following criteria:

Fðt,mÞ ¼ FðtÞ2p

2
tðmÞ2 ¼ 0 and

ð∂F=∂tÞ : _t ¼ ð∂F=∂tÞ : _t. 0
(18)

These relations imply that for further damage the stress point must
lie on the current damage surface and the stress incrementmust point

outward of the elastic domain. A stress point inside the current
damage surface will imply gradient elasticity.

Associated Damage Rule

The damage rule is associated if the following relations hold true for
the damage direction tensors:

RIT ¼ ∂FIT

∂tþ∂tþ
and RIC ¼ ∂FIC

∂t2∂t2
(19)

This assumption reduces the calibration to the determination of the
scalar functions F rather than the tensorial quantities RIT and RIC .
Furthermore, the inelastic strain rate tensor due to damage is

_ɛi ¼ _C : t ¼ _Cc : t ¼
�
Pþ : _Cc :Pþ

�
: t ¼ _m

�
RIT : t

þ þ RIC : t
2
�

(20)

which, using Eq. (19), can be written as

_ɛi ¼ _m

�
∂FIT

∂tþ
þ ∂FIC

∂t2


¼ _m∂F=∂t ¼ _m∂F=∂t (21)

Eq. (21) implies that the inelastic part of the strain rate tensor points
outward and in a normal direction to the damage surface (see Fig. 3).
In the context of a rate independent damage formulation, as sug-
gested by Ortiz (1985)

RIT ¼ tþ Ä tþ

ðtþ : tþÞ and RIC ¼ c
t2Ä t2

ðt2 : t2Þ (22)

where c 5 cross-effect coefficient governing the level of damage
under compression (c5 0 for no cross-effect); ðtÄ tÞijkl 5 tijtkl
5 dyadic product tensor; and ðt : tÞ5 tijtij 5 trace of the (tÄ t)
tensor. The value of the critical stress tðmÞ and the cross-effect
coefficient, c, can be determined from uniaxial test results. Then, the
damage surface simplifies to

F ¼ 1
2
tþ : tþ þ 1

2
ct2 : t2 2

p

2
t2ðmÞ (23)

It is worth noting that in this approach, because the effect of
microcracking is directly linkedwith the elasticity tensor, an initially

Fig. 3. Damage surface and damage criterion in local principal stress
space
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isotropic material would become anisotropic with damage. In the
case of nonassociative damage evolution and/or initially anisotropic
elastic behavior, as observed in rocks, microcracking may not occur
along the principal stress trajectories but localizes along specific
weak surfaces in the material (Chen et al. 2012). Any existing di-
rectionality of microcrack opening, can be included in the response
functions RIT and RIC .

Application to Plain Concrete

The proposed model is applied to plain concrete beams subjected to
four-point bending, with damage occurring in the middle part of the
beam subjected to pure bending, where axial normal stresses are
principal and a uniaxial law for the concrete is assumed to be suf-
ficient for damage characterization.

Uniaxial Response

The uniaxial response of plain concrete under tension or compres-
sion is assumed to be of the form

ti ¼ E0iɛi for ɛi # ɛ0i and

ti ¼ ð12DiÞE0iɛi ¼ E0iɛi
1þ E0imi

for ɛi . ɛ0i
(24)

where E0i 5 Young’s modulus of elasticity of the uncracked ma-
terial; ɛ0i 5 strain value depicting the end of a perfectly elastic
response and initiation of damage; and Di (dimensionless), mi
(stress21) 5 two equivalent damage parameters. The index i5 c, t
is a subscript denoting compression or tension, respectively.

In a thermodynamic formulation,m is used to avoid imposing the
additional constraint D# 1. However, both damage parameters can
be used, given that

D ¼ 12
1

1þ E0m
(25)

It is obvious from Eq. (25) that if m5 0, then D5 0; and if m→‘,
thenD→ 1. In other words, both m andD describe the initiation and
the evolution of damage in the same way; however, the limit for
complete damage is bounded in the case ofD, but this is not true for
m. There is a one-to-one correspondence between D and m and
dD=dmjm50 5E0.

If for the stress-strain response of plain concrete a relationship of
the following form is assumed (Popovics 1973):

ti ¼ fi
biðɛ=ɛiÞ

bi2 1þ ðɛ=ɛiÞbi
(26)

where fi 5 maximum stress; ɛi 5 strain at maximum stress; and bi
5 material parameter that defines the steepness of the softening
branch, a damage law for compression (i5 c) and tension (i5 t) can
be derived based on Eqs. (24) and (26)

Di ¼ 0 for ɛ, ɛ0i and

Di ¼ 12
bi 2 1þ ðɛ0i=ɛiÞbi

bi2 1þ ðɛ=ɛiÞbi
for ɛ$ ɛ0i

(27)

where the Young’s modulus, E0i, is equal to

E0i ¼ bi fih
bi2 1þ ðɛ0i=ɛiÞbi

i
ɛi

(28)

The threshold strain values for uniaxial tension, ɛ0t, and for uniaxial
compression, ɛ0c, are assumed to occur at a stress tt 5 0:8ft (Li and
Li 2000) and tc 5 0:4fc, respectively. Therefore, the critical strain,
ɛ0i, signifying the onset of damage, can be determined using
Eq. (26). Furthermore, assuming that the Young’s modulus is the
same in uniaxial tension and compression, an estimate for the
tensile to compressive strain ratio at the peak stress is obtained as
follows:

ɛt
ɛc

¼
bt ft

h
bc2 1þ ðɛ0c=ɛcÞbc

i
bc fc

h
bt 2 1þ ðɛ0t=ɛtÞbt

i (29)

Flexural Response

The local normal longitudinal strains in the part of the concrete beam
specimens under pure bending are assumed to be linearly distributed
along the depth of the beam’s cross section (z-axis), ɛxx 5 ɛm 1 kz,
where ɛm 5 strain at z5 0, and k5 curvature. In the elastic region of
the beam, ɛm 5 0, and beyond the elastic limit the neutral axis shifts
upward (ɛm � 0).

For a given value of k, and using the assumed law for uniaxial
tension and compression, the value of ɛm that satisfies equilibrium is
determined through an iteration procedure. This implies a one-
dimensional (1D) discretization of the cross section to strips of
depth dz to evaluate numerically the integral,N5 b

Ð h=2
2h=2 sxxdz5 0.

Essentially, in the proposed model, the input parameter is the
curvature at midspan and the output is the bendingmoment capacity,
M5 b

Ð h=2
2h=2 sxxzdz, corresponding to the assumed linear axial strain

distribution along the height of the cross section. The number of
strips used to discretize the cross-sectional area is chosen based on
a convergence requirement of a mesh refinement so that when the
number of strips is doubled, there is a change of less than 1025 kNm
in the predicted value of M. It is noted that the output of this pro-
cedure is a local M versus k prediction curve, which is size in-
dependent, because it is only a function of the assumed uniaxial
stress-strain response. A 2D mesh refinement study is also included
in Appendix I. The nonlocalM versus k prediction curve is obtained
by scaling the local curvature estimate using Eq. (45) for four-point
bending (see Appendix III). This implies that predicting size effect
for ultimate strength is not feasible for the proposed nonlocal
model.

The localM versus k response prediction can be transformed to
a force versus midspan deflection curve by solving the boundary
value problem for a simply supported Timoshenko beam under four-
point bending (see Appendix III). Combining Eqs. (44) and (46),
a local kinematic expression for the midspan deflection dm is
obtained in terms of the curvature km, dm 5 0:13611L2 km, where dm
is the midspan deflection corresponding to the curvature km. The
nonlocal force versus midspan deflection curve is determined by
imposing a similar kinematic relation between curvature and de-
flection, based on the gradient solution of the boundary problem
[Eqs. (41) and (45)]. Unlike the local (classical) predictions, the
nonlocal kinematic relation is affected by the internal length, g,
which evolves with damage. Therefore, this kinematic relation is
computed for the current value of g.

Regarding the evolution law for the gradient length, the study
assumes an exponential expression of the form

© ASCE 04014139-5 J. Eng. Mech.
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g ¼ g0e
nD for nD. 0 (30)

where g0 5 initial internal length; D 5 damage parameter; and n
5 positive constant that defines the ratio of the gradient value g1 (at
D5 1) to the initial gradient internal length g0 (at D5 0). Because
the initial value of the gradient internal length is based on elasticity,
there is only a single unknown parameter, n, to be determined based
on experimental data in the inelastic region. It is worth noting that,
according to Le Bellego et al. (2003), attempting to calibrate
a gradient damage model assuming a constant internal length (in-
dependent of the damage level) resulted in a lack of objectivity when
experimental data from geometrical similar notched beam speci-
mens were considered. This could be partially remedied if an in-
creasing value for the internal length is assumed with damage.

Experimental Results

In this work, the experimental results of 13 geometrically similar
(L=h5 3) plain concrete beam specimens with a maximum ag-
gregate size, dmax 5 32 mm, subjected to four-point bending (two
equal loads P=2 applied at a distance L=3 from the beam supports)
are considered (see Table 1). The tests were performed using
a 6250 kN MTS hydraulic actuator under midspan deflection
control to get the complete postpeak softening branch of the flexural
response of the beams (see Fig. 4). The midspan deflection was the
average of the measurements of two midspan DC displacement
transducers (DCDTs), one on each side of the specimen, supported by
a special aluminum frame attached to the beam ends above the

supports (see Fig. 4). One of the two DCDTs was used as the con-
trolling displacement sensor. Cylinder (1503 300 mm) and cube
specimens (1503 1503 150 mm) for the concrete mix were tested
under uniaxial compression and indirect tension (splitting). Table 2
summarizes the experimental material properties. This is part of an
extensive research program of four-point bending tests for six dif-
ferent types of cementitious mixes including cement mortar, plain
concrete, andfiber-reinforced concrete, which is not the subject of this
work.

The values of the uniaxial tension parameters ft and bt for the
analysis were calibrated based on the measured peak load and
corresponding deflection values in the four-point bending tests
because uniaxial tension experiments were not performed, whereas
the compression parameter bc was chosen to be consistent with the
measured modulus of elasticity [see Eq. (28)]. The values for the
uniaxial tension and compression parameters used for the analysis
are bt 5 6:5, ft 5 3:09 MPa (c5 12:313), bc 5 3:89, and n5 0:2.
The assumed value for ft appears to be consistent with the average
splitting tensile strength ( ft 5 0:9fsp) as Table 2 shows. The ex-
perimental results of the four-point bending tests for the initial
stiffness showed a stiffer response than the classical elasticity
predictions [Eq. (44)] for all sizes, and the initial gradient internal
length value, g0, corresponding to this deviationwas estimated using
Eq. (41). Based on the experimental results for the concrete mix
considered, an initial value for the internal length of g0 5 86 4 mm
(mean6 SD) was found for all beam specimens considered. Fur-
thermore, regarding the internal length evolution with damage [see
Eq. (30)], a value of n5 2 appeared to give a good agreement with
the experimental results, which corresponds to a mean internal
length value for complete damage (D5 1) of g1 5 59 mm.

The predicted value of g0 can be physically interpreted as
a measure of heterogeneity for the composite material. This het-
erogeneity is due to the presence of stiffer inclusions (aggregates)
inside a matrix material and is governed by both the inclusion size
and the elastic mismatch between the different phases of the
composite (Triantafyllou and Giannakopoulos 2013a). During the
inelastic deformation range, any initial heterogeneity is augmented
because of the development of microcracks and hence the internal
length should increase. However, the correlation between the initial
microstructure of the composite and g0, the justification for the

Table 1. Experimental Program

Specimen size
Nominal dimensions
[b3 h3L (mm)] Number of specimens testeda

S1 1003 1003 300 5 (5)
S2 1503 1503 450 5 (3)
S3 2003 2003 600 3 (2)

Note: b 5 width; h 5 height; L5 length.
aNumber in parentheses denotes number of specimens with recorded post-
peak softening branch.

Fig. 4. Schematic of four-point bending experimental setup
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particular expression of Eq. (30), and the correlation between the
internal length evolution law parameter, n, and other material
properties (strength, brittleness, and fracture energy) cannot be
discussed convincingly based only on the limited experimental
results of a single concrete mix presented in this work. These im-
portant issues are currently under study. The aim of the present work
is to provide experimental evidence for the finding that, based on
the thermodynamic formulation, if g5 gðDÞ, then dg=dD$ 0, and
with this respect the results of a single concrete mix appear to be
sufficient.

Fig. 5 shows the measured flexural strength values, sN 5 3P=bh,
together with the numerical predictions. Note that no size effect is
apparent in the strength values. Fig. 6 shows the experimental
applied load P versus midspan deflection diagrams including the
unloading-reloading paths for the three sizes. Fig. 7 compares the
model predictions with the experimental results for each size. It can
be seen that an increasing internal length with damage improves the
model predictions especially for large deflections, if all beam sizes
are considered because the scatter in size S1 (h=dmax 5 3:125) is
significant.

Furthermore, themeasured softening branch appears steeper than
the one predicted by the local model with increasing damage levels.
This, in the context of gradient theory, can be explained only by an
increasing internal length with damage. If the internal length is as-
sumed constant with damage (dg=dD5 0), the local and nonlocal
predictions are practically identical for all beam sizes.

Unloading and reloading was performed for most of the tests.
The unloading path (P, d) is depicted by an expression of the form,
P5P2 ð12DÞK0ðd2 dÞ, whereP and d are the values on the load
versus midspan deflection curve where unloading starts, D is the
average cross section damage parameter at the point (P, d) and K0 is
the initial stiffness for the uncracked concrete. Thus, the inelastic
(plastic) midspan deflection upon complete unloading is

dpl ¼ d2P
��

12D
�
K0 (31)

Fig. 8 plots the analytical normalized load at unloading with respect
to the peak load, P=Ppeak, versus the normalized inelastic midspan
deflection, dpl=d, together with the experimental results of the three
specimen sizes. Fig. 8 shows both local and nonlocal predictions.
The unloading estimates depend on the initial stiffness of the ma-
terial (K0) and the P versus d diagram model predictions. These

Table 2. Mechanical Properties of Concrete Mix

Material properties Measured valuesa

fsp (MPa) 3:436 0:1 (4)
fc (MPa) 38:06 3:6 (4)
fcube (MPa) 54:76 0:7 (3)
E0 (GPa) 34:06 1 (3)
Strain, ɛc 0.0015 (3)
aNumber in parentheses denotes number of specimens considered.

Fig. 5. Flexural strengthsN versus specimen size (experimental results
and numerical predictions)

Fig. 6. Experimental applied load versus midspan deflection including
unloading-reloading paths: (a) size S1; (b) size S2; (c) size S3
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estimates are closer to the experimental findings when the influence
of the gradient internal length is considered, and this is reflected in
the unloading values shown in Fig. 8.

Conclusions

The current study proposes a strain gradient damage theory based on
the influence of the stress gradient on Gibbs energy. It was shown
that, if a microstructural internal length is related to the level of
damage, this length should either increase with damage or remain
constant. Furthermore, a simple continuous damage model was
proposed for the case of four-point bending. Based on the present
experimental results, the internal length evolution law is calibrated
from standard tests on plain concrete and the resulting numerical
nonlocal predictions are in good agreement with the experimental
results. Furthermore, the deviation of the local model predictions
(classical elasticity) from the experimental results increases with
increasing beam size. This size effect in the inelastic beam response

Fig. 7. Comparison of experimental results with numerical predictions: (a) size S1; (b) size S2; (c) size S3; (d) all sizes

Fig. 8. Inelastic deformation after unloading (experimental results and
numerical predictions)
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(softening) is better captured by the nonlocal model by using the
same internal length evolution law for all sizes.

Appendix I. Objectivity of the Present Model
Predictions

The total strain ɛ, is related to the total displacement u½ɛij
5 ð∂ui=∂xj 1 ∂uj=∂xiÞ=2�, where ɛij is the gradient-enriched strain.
The damage rules of Eq. (9) provide the stiffness evolution as
functions of the Cauchy stress t, which in turn relates to the total
strain as t5C21 : ɛ. For a 1D case, the equilibrium equation
(∂s=∂x5 0) within the framework of the proposed gradient model
becomes

∂s
∂ɛ

∂ɛ
∂x

þ ∂s
∂ɛ,xx

∂ɛ,xx
∂x

¼ ∂s
∂ɛ

∂2u
∂x2

þ ∂s
∂ɛ,xx

∂4u
∂x4

¼ 0 (32)

The constitutive law assumed in this work can be expressed as

s
�
ɛ, ɛ,xx

� ¼ ½12DðɛÞ�E�ɛ2 g2ɛ,xx
�

(33)

where DðɛÞ5 ½ɛuðɛ2 ɛiÞ�=½ɛðɛu 2 ɛiÞ� 5 damage loading function
for uniaxial tension (ɛi 5 strain signifying end of elastic behavior; ɛu
5 strain signifying complete damage; and ɛ5 applied uniform axial
tensile strain equal to ɛt0).

Assuming a harmonic perturbation for the displacement,
u5A cosðwxÞ, where w 5 wave number and A 5 amplitude,
Eq. (32) becomes

Eɛi
ɛu 2 ɛi

��
ɛu
ɛt0

2 1


g2w22 1

	
¼ 0 (34)

It can be seen that Eq. (34) yields a real wave number with a critical
value of wcrit 5 ð1=gÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ɛt0=ðɛu 2 ɛt0Þ
p

, which is identical to that in
Rodriguez-Ferran et al. (2011). Such a result renders a nonlocal
model suitable for regularization if employed in a FEM analysis.

Fig. 9 shows a 2D mesh refinement study of the presented model
for the beam specimen size S3 at a load level of 0:84Ppeak in the
postpeak softening branch. Based on the 1D-discretized midspan
cross section (strips of depth dz), this load level of 0:84Ppeak cor-
responds to the first detection of a damage value of D5 0:95.
Three sizes for an xyz grid are used with a width of b5 200 mm:
(1) 203 2003 20 mm, (2) 103 2003 10 mm, and (3) 53 200
3 5 mm. It can be seen that mesh-independent damage predic-
tions are obtained along the beam’s length. The calculated dam-
age levels are the same for both local and nonlocal P versus d
predictions [see Fig. 7(c)]. A damage value of D$ 0:95, corre-
sponding practically to zero stress transfer capability, may signify
major crack development. Themodel’s prediction that a major crack
forms at a load level of 0:84Ppeak in the postpeak softening branch is
in agreement with acoustic emission findings for concrete beams
under flexure (Zhu et al. 2010) and uniaxial tension (Li and Shah

Fig. 9.Numerical damage level predictions of 2Dmesh refinement study of proposedmodel for specimen size S3 (2003 2003 600 mm) at 0:84Ppeak

in the postpeak softening branch with grids (a) 203 20 mm; (b) 103 10 mm; (c) 53 5 mm
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1994). Also, it is noted that a nonzero midspan damage value D is
computed at 0:74Ppeak in the ascending branch of response. A
damage value of D. 0, signifying softening in uniaxial tension,
can be associated with microcracking activity. Acoustic emission
experiments on notched and unnotched concrete beam specimens
tested under flexure have shown that microcracking activity becomes
detectable before the peak applied load is reached and at load levels
between 70 and 80% of the peak load (Chen and Liu 2004; Zhu et al.
2010).

Appendix II. Energy Dissipation during
Microcrack Extension

Two 2D isotropic cases are considered, as Fig. 10 shows. Fig. 10(a)
depicts a microcrack subjected to a uniform tensile stress, and Fig.
10(b) depicts a microcrack under a stress gradient. The model pre-
dictions in this study do not assume interaction between the
microcracks and elastic anisotropy.

For a crack of length 2a, loaded by a uniform tensile stress, t, as
shown in Fig. 10(a), the stress intensity factors for Modes I and II,
neglecting Mode III, are (Tada et al. 1973): KI 5 t

ffiffiffiffiffiffi
pa

p
sin2 f

and KII 5 t
ffiffiffiffiffiffi
pa

p
sinf cosf, and the energy release rate is G

5 ðK2
I 1K2

IIÞ=Ep, whereEp 5E for plane stress,Ep 5E=ð12 n2Þ for
plane strain, E is the elastic modulus, and n is Poisson’s ratio.

The crack can occur at an arbitrary angle value f assuming the
same probability of occurrence at all possible angle values. Therefore,
the 2D average energy release rate per unit length of microcrack is

�
dG
da

�
¼ pt2

Ep

1
p

ðp=2
2p=2

sin2ðfÞdf ¼ pt2

2Ep
(35)

where h i denotes the average of the quantity enclosed in the brackets.
For a crack of length 2a, under pure bending, as shown in Fig.

10(b), the stress intensity factors for Modes I and II (Bowie and
Freese 1976) are KI 5 ðdt=dyÞð2a=3Þ3=2 sin3ðfÞ and KII 5 ðdt=dyÞ
ð2a=3Þ3=2 sin2ðfÞcosðfÞ. The average 2D energy release rate per
unit length of a microcrack for all possible angles is

�
dG
da

�
¼ 2

Ep

�
dt
dy

2�2a
3

2 1
p

ðp=2
2p=2

sin4ðfÞdf ¼ 1
3Ep

�
dt
dy

a

2

(36)

Stallybrass (1970) considered crack propagation under a non-
uniform stress field, and Huang and Detournay (2013) used it to

improve the accuracy of crack propagation predictions in quasi-
brittle materials subjected to an indentation.

Damage can be introduced in different ways depending on the
damage parameter definition. The damage parameterm is associated
with the damage parameter D through Eq. (25), and differentiating
both parts yields

dðEpmÞ ¼ dD

ð12DÞ2 (37)

Accounting for the effect of damage on the Young’s modulus, the
free energy density required to form microcracks should be

Ac ¼ 1
12D

�
dG
da

�
(38)

Thus, the energy dissipated during microcrack propagation is

dAc

dD
¼ 1

ð12DÞ2
�
dG
da

�
(39)

Using Eq. (39), the energy dissipated during crack propagation can
be expressed with respect to m as

dAc

dm
¼ ð12DÞ2EpdA

c

dD
¼ Ep

�
dG
da

�
¼ p

2
t2 þ 1

3

�
dt
dy

a

2
(40)

Obviously, the crack length, a, and the internal length, g, are
functions of the damage parameter. Therefore, g5 gðmÞ5cðaÞ
and a5c21ðgÞ5 jðmÞ. It should be noted that a stress gradient
cannot induce crack opening under a compressive mode (see
Fig. 10). The stress gradient is essentially a bending moment and
thus, one half of the crack length will be under a compressive stress
and the other half under a tensile stress. The latter corresponds to
a tensile opening mode IT , whereas the former corresponds to
Fig. 2(c), which does not induce crack extension.

Appendix III. Midspan Deflection for Four-Point
Bending Based on Gradient Elasticity

The boundary value problem for a dipolar elastic Timoshenko simply
supported beam has been solved in closed-form by Triantafyllou
and Giannakopoulos (2013b) and only the relevant work is in-
cluded here.

The expression for the midspan deflection of a simply supported
beam with an orthogonal cross section subjected to two equal con-
centrated loads, P=2, at a distance L=3 from the supports is

Fig. 10. Crack of length 2a under (a) uniaxial tension; (b) pure bending
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d ¼ 23PL3

1,296EI

�
ℓ

g

2"
ð12 fbÞ þ 216

115

�
h
L

2�
g
ℓ

�2� 12 n

12 2n


ð12 fshÞ

#
(41)

where P 5 applied load by the actuator; E5 ½ð12 nÞ=ð11 vÞð12 2nÞ�E0; E0 5 Young’s modulus of elasticity; ℓ5 g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=½11 ðA=IÞg2�

p
, a

shear gradient internal length; and fb, fsh 5 nondimensional functions of the internal length g [see the following equations, Eqs. (42) and (43)]

fsh ¼ 2
g
L

h
e11L=6g

�
6
g
L
2 2

�
þ 3e4L=3g2 e2L=g þ 2eL=6g

�
3
g
L
þ 1

�
2 2e7L=6g

�
3
g
L
þ 1

�
þ e5L=6g

�
22 6

g
L

�
þ 12 3e2L=3g

i
h
2
�
12 e2L=g

� g
L
þ
�
1þ e2L=3g þ e4L=3g þ e2L=g

�i (42)

fb ¼ a1

D1
þ a2 þ a3 þ a4 þ a5 þ a6 þ a7

D
(43)

where

a1 ¼ 32

�
g
L

�
12 eL=6g2 e5L=6g þ e7L=6g þ e11L=6g2 e2L=g

�

a2 ¼ 96

�
ℓ

L

�
1þ e2L=3g þ e4L=3g þ e2L=g

��
21þ e2L=ℓ

�

a3 ¼ 96

�
ℓ

L

�
g
L

�
12 eL=g

��
e2L=3g2 1

�h
32 eL=6g2 e5L=6g þ 3eL=g2 4eL=6ð5=gþ4=ℓÞ 2 eL=6ð5=gþ8=ℓÞ þ 6eL=gþ2L=3ℓ þ 3eL=gþ4L=3ℓ

þ 6e2L=3ℓ þ 3e4L=3ℓ 2 4eLð4gþℓÞ=6gℓ 2 eLð8gþℓÞ=6gℓ
i

a4 ¼ 288eL=6g
�
g
L

�
ℓ

L

2�
eL=g2 1

�h
2þ 2eL=6g2 4eL=6ð1=gþ1=ℓÞ þ 2eLð1=gþ1=ℓÞ þ 4eL=6ð5=gþ3=ℓÞ þ 4eL=6ð5=gþ7=ℓÞ2 4eL=6ð5=gþ9=ℓÞ

2 7eL=gþL=2ℓ þ 2eL=gþ2L=3ℓ 2 7eL=gþ7L=6ℓ þ 2eL=gþ5L=3ℓ 2 7eL=2ℓ þ 2e2L=3ℓ þ 2eL=ℓ 2 7e7L=6ℓ þ 2e5L=3ℓ þ 4eLð3gþℓÞ=6gℓ

þ 4eLð7gþℓÞ=6gℓ 2 4eLð9gþℓÞ=6gℓ 2 4eLðgþ5ℓÞ=6gℓ
i

a5 ¼ 144

�
ℓ

L

2h
3e2L=3ð3=gþ1=ℓÞ 2 2eL=6ð4=gþ1=ℓÞ þ 4eL=3ð4=gþ1=ℓÞ þ 4eL=3ð6=gþ1=ℓÞ þ 4eL=3ð2=gþ5=ℓÞ 2 2eL=6ð4=gþ5=ℓÞ þ 4eL=3ð4=gþ5=ℓÞ

2 2eL=6ð8=gþ5=ℓÞ 2 2eL=6ð4=gþ7=ℓÞ 2 2eL=6ð8=gþ7=ℓÞ 2 2eL=6ð4=gþ11=ℓÞ 2 2eL=6ð8=gþ11=ℓÞ 2 2e2L=gþL=6ℓ 2 2e2L=gþ5L=6ℓ 2 2e2L=gþ7L=6ℓ

þ 3e2L=gþ4L=3ℓ þ 4e2L=gþ5L=3ℓ 2 2e2L=gþ11L=6ℓ 2 2eL=6ℓ þ 4eL=3ℓ þ 3e2L=3ℓ 2 2e5L=6ℓ 2 2e7L=6ℓ þ 3e4L=3ℓ þ 4e5L=3ℓ 2 2e11L=6ℓ

þ 3e2LðgþℓÞ=3gℓ þ 3e4LðgþℓÞ=3gℓ þ 3e2Lð2gþℓÞ=3gℓ þ 4eLðgþ2ℓÞ=3gℓ þ 3e2Lðgþ2ℓÞ=3gℓ 2 2eLðgþ8ℓÞ=6gℓ
i

a6 ¼ 432

�
ℓ

L

3�
g
L

h
2þ eL=6g þ e5L=6g 2 e7L=6g2 e11L=6g2 2e2L=g þ 2e2ðL=gþL=ℓÞ 2 2e2=3ð3L=gþL=ℓÞ þ 2e1=2ð4L=gþL=ℓÞ 2 3e1=6ð5L=gþ4L=ℓÞ

þ 3e1=6ð7L=gþ4L=ℓÞ þ 3e1=6ð11L=gþ4L=ℓÞ þ 3e1=6ð5L=gþ8L=ℓÞ 2 3e1=6ð7L=gþ8L=ℓÞ 2 3e1=6ð11L=gþ8L=ℓÞ 2 2eð2L=gþ5L=6ℓÞ þ 2eð2L=gþ7L=6ℓÞ

þ 2eð2L=gþ4L=3ℓÞ 2 2eð2L=gþ3L=2ℓÞ 2 eðL=6gþ2L=ℓÞ 2 eð5L=6gþ2L=ℓÞ þ eð7L=6gþ2L=ℓÞ þ eð11L=6gþ2L=ℓÞ2 2eL=2ℓ þ 2e2L=3ℓ þ 2e5L=6ℓ

2 2e7L=6ℓ 2 2e4L=3ℓ þ 2e3L=2ℓ 2 2e2L=ℓ 2 3e1=6ðL=gþ4L=ℓÞ þ 3e1=6ðL=gþ8L=ℓÞ
i

a7 ¼ 216

�
ℓ

L

3h
3þ 3e2L=3g þ 3e4L=3g þ 3e2L=g2 e2=3ð3L=gþL=ℓÞ 2 2e1=2ð4L=gþL=ℓÞ 2 3e2=3ðL=gþ3L=ℓÞ 2 2e1=6ð4L=gþ3L=ℓÞ 2 2e1=6ð8L=gþ3L=ℓÞ

þ 2e1=6ð4L=gþ5L=ℓÞ þ 2e1=6ð8L=gþ5L=ℓÞ 2 2e1=6ð4L=gþ7L=ℓÞ 2 2e1=6ð8L=gþ7L=ℓÞ þ 2e1=6ð4L=gþ9L=ℓÞ þ 2eð8L=gþ9L=6ℓÞ þ 2eð2L=gþ5L=6ℓÞ

2 2eð2L=gþ7L=6ℓÞ þ 2eð2L=gþ4L=3ℓÞ þ 2eð2L=gþ3L=2ℓÞ 2 3eð4L=3gþ2L=ℓÞ 2 2eL=2ℓ 2 2e2L=3ℓ þ 2e5L=6ℓ 2 2e7L=6ℓ þ e4L=3ℓ þ 2e3L=2ℓ

2 3e2L=ℓ 2 e2=3ðL=gþL=ℓÞ þ e4=3ðL=gþL=ℓÞ 2 3e2ðL=gþL=ℓÞ þ e2=3ðL=gþ2L=ℓÞ 2 e2=3ð2L=gþL=ℓÞ
i

D1 ¼ 23
h�

1þ e2L=3g þ e4L=3g þ e2L=g
�
þ 2

�
g
L

�
12 e2L=g

�i
,

D ¼
�
1þ e2L=3ℓ þ e4L=3ℓ þ e2L=ℓ

�
D1

Note that Eq. (41) accounts for the effect of Poisson’s ratio on the Young’s modulus. In the absence of gradient, i.e., g5 0 (ℓ=g5 1), Eq. (41)
reduces to the classical elasticity solution

© ASCE 04014139-11 J. Eng. Mech.

J. Eng. Mech. 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
N

IV
E

R
SI

T
Y

 O
F 

T
H

E
SS

A
L

Y
 o

n 
01

/2
3/

15
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



d ¼ 23PL3

1,296EI

"
1þ 216

115

�
h
L

2� 12 n

12 2n

#
(44)

The expression for the normal axial strain of the beam at midspan at
a distance z from the neutral axis is given by

ɛxx ¼ kz ¼ PL
6EI

�
ℓ

g

2

�

2
66412

2eL=6ℓ
�
2þ 2eL=ℓ þ 3

ℓ

L
eL=3ℓ 2 3

ℓ

L
e2L=3ℓ


3
�
1þ 4e4L=3ℓ

�
3
775z
(45)

where k5 beam’s curvature; and2h=2# z# h=2. Of course, in the
absence of gradient, i.e., g5 0, Eq. (45) reduces to the classical
expression for the axial strains

ɛxx_cl ¼ kclz ¼ PL
6EI

z (46)
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