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This paper identifies the optimal pollution level under the assumptions of linear,
quadratic and exponential damage and abatement cost functions and investigates
analytically the certain restrictions that the existence of this optimal level requires.
The evaluation of the benefit area is discussed and the mathematical formulation
provides the appropriate methods for that to be calculated. The positive, at least from
a theoretical point of view, is that both the quadratic and the exponential case obey the
same form for evaluating the benefit area. These benefit area estimations can be used
as indexes between different rival policies, and depending on the environmental
problem, the policy that produces the maximum area will be the beneficial policy.
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1. Introduction

Rationality in the formulation and applicability of environmental policies depends on

careful consideration of their consequences on nature and on society. For this reason it is

important to quantify the costs and benefits in the most accurate way. However, the

validity of any cost benefit analysis (hereafter CBA) is ambiguous as the results may

have large uncertainties. Uncertainty is present in all environmental problems and this

underscores the need for thoughtful policy design and evaluation. There may be

uncertainty in the underlying physical or ecological processes, as well as about the

economic consequences of the change in environmental quality.

These sources of uncertainty and their impact on policy formulation may be

represented by the non-linear nature of the damage and abatement cost functions.

Damage or external costs can be estimated by an analysis of the chain of pollution

emissions, their dispersion and ‘transportation’ (in cases of transboundary pollution such

as the acid rain problem), their effect measured among others with a dose-response

function and their final (if feasible) monetary valuation. A similar picture is realised

when referring to abatement costs, which may be less uncertain, compared to damage

costs, but they are quite severe. The main problem in this case is related to technological

change which may be essentially difficult to predict or sometimes even to characterise.1

Uncertainty is obvious not only in the parameters’ estimation, but also in the choice of

the appropriate model that ‘fits’ the problem. To make parameters’ uncertainty clearer,

we may think in terms of the fitted model assumed for the damage and abatement curves

in a regression analysis that ‘lies’ between the upper and the lower bound of a 95%
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confidence interval. That is, there are two curves creating an interval of values for the

fitted model and in this way uncertainty due to variation of the estimated coefficients.

As uncertainty may be due to the lack of appropriate abatement and damage cost data,

here we apply a method of calibrating non-existing damage cost estimates relying on

individual country abatement cost functions. In this way a ‘calibrated’ Benefit Area

(BAc) is estimated. Specifically, we try to identify the optimal pollution level under the

assumptions of linear, quadratic and exponential abatement and damage cost functions.

As far as the parameters are concerned, the first two are linear while the third is a non-

linear function. That is, we consider the number of different model approximations of

abatement and damage cost functions and in this way the assumed correct model

eliminates uncertainty about curve fitting. The aim of this paper is to develop the

appropriate theory whatever the model choice is.

The paper is structured as follows: section 2 discusses the background of the problem

and reviews the relative existing literature. Section 3 identifies analytically the

intersection of the marginal abatement cost curve (hereafter MAC) with the marginal

damage cost curve (hereafter MD), in order to examine when and if an optimal pollution

level exists. The existence of the intersection, despite the general belief, is not always

true and the conditions are analytically examined here. In section 4 an empirical

application for a sample of European countries, with different industrial structures, is

presented. For these countries, the ‘calibrated’ Benefit Area (BAc) is evaluated explicitly,

provided there is an intersection of MD and MAC functions. The last section concludes

the paper and comments on the policy implications related to this analysis providing

evidence useful to researchers and policy makers.

2. Background to the problem

Abatement and damage cost functions are highly non-linear and the precise shapes of the

functions are unknown. At the same time, environmental policies are related to

significant irreversibilities, which usually interact in a very complex way with

uncertainty. This complexity becomes worse if we think of the very long-term character

of many environmental problems.

The damage cost function relates pollution and emissions of a specific pollutant.

Damages are measured as the effect of these emissions on health, monuments,

recreational activities, lakes, buildings etc. Efforts to measure the existence or other

indirect use values are made with the help of contingent valuation and other methods

(Freeman 1993; Grosclaude and Soguel 1994; Bjornstad and Kahn 1996; Von Blottnitz

et al. 2006; Lavee and Becker 2009; Halkos and Jones 2012; Halkos and Matsiori 2012).

As expected, the accurate measurement of damage is significant but also difficult due to

many practical problems as presented in Georgiou et al. (1997), Barbier (1998) and

Farmer et al. (2001). Ulph (2004) addressed the uncertainty in damage costs and the

possible effects that may stem from resolving this uncertainty, leading countries to join

an international environmental agreement.

Uncertainties in the functions of damage and control costs influence policy design in a

number of ways. The first effect is in terms of the choice of the appropriate policy

instrument. Weitzman (1974), in his seminal paper, showed that in the presence of

uncertainty in cost functions, the instrument choice depends on the slopes of the curves.

In certainty conditions either instrument will be equally effective but in uncertainty the

choice is important and depends on the slopes of the marginal damage and abatement

cost curves. In the case of steep marginal damage and flat marginal control cost curves,
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quantity-based instruments are more adequate, while in the case of steep marginal

abatement and flat marginal damage cost curves a price-based instrument is to be chosen.

A number of studies have extended Weitzman’s thesis and showed that in the case of

uncertainty ‘hybrid’ policies of combining both instruments will dominate over the single

instrument (Roberts and Spence 1976; Weitzman 1978; Pizer 2002; Jacoby and Ellerman

2004). It is worth mentioning that uncertainty may also affect the optimal timing of

policy implementation if there are sunk costs in the implementation of that policy or the

environmental damage from the lack of any policy is at least partly irreversible. The

consequences of irreversibility have been studied extensively in the literature (Fisher and

Hanemann 1990; Kolstad 1996; Ulph and Ulph 1997; Gollier, Bruno, and Treich 2000;

Pindyck 2000, 2002).

As previously mentioned, damage and abatement cost functions seem to have a large

curvature and in many cases are non-linear functions. A number of studies have tried to

assess the cause and extent of the uncertainty over the benefits from a reduction in

emissions.2 Rabl, Spadaro, and van der Zwaan (2005) compared damage and abatement

costs for a number of air pollutants. They distinguished between discrete and continuous

policy choices. Setting a limit for sulphur dioxide emissions from power plants is an

example of a continuous choice while the decision to demand a specific abatement

method associated with a constant rate of emissions may be considered as a case of a

discrete choice.

With regard to air pollution and in the case of GHGs, the first CBA was carried out by

Nordhaus (1991). As found in Tol (2013) there are 16 studies and 17 estimates of the

global welfare impacts of climate change (Nordhaus 1994a, 1994b, 2006, 2008, 2011;

Fankhauser 1994, 1995; Tol 1995, 2002a, 2002b; Mendelsohn et al. 2000; Mendelsohn

Schlesinger, and Williams 2000; Maddison 2003; Rehdanz and Maddison 2005;

Maddison and Rehdanz 2011; Bosello, Eboli, and Pierfederici 2012). The welfare effect

of doubling the atmospheric concentration of GHGs is relatively small (just a small

percentage of GDP).

Tol (2013) presented a list of 75 studies with 588 estimates of the social cost of carbon

emissions. He applied a kernel density estimator to the 588 observations expressed in

2010 US$ and pertaining to emissions in 2010.

Damage costs estimates can be also found among others in three well-known

integrated assessment models (IAMs): the Dynamic Integrated Climate and Economy

(DICE), the Policy Analysis of the Greenhouse Effect (PAGE), and the Climate

Framework for Uncertainty, Negotiation and Distribution (FUND). For emission changes

taking place in 2010, the value of the central social cost of carbon (hereafter SCC) is

$21/t of CO2 emissions increasing to $26/t of CO2 in 2020 (Greenstone, Kopitsy, and

Wolverton 2013).

Nordhaus (1994a) presented estimates of the percentage loss in gross world

product, while Roughgarden and Schneider (1999) relying on Nordhaus’ survey,

together with other surveys, constructed confidence intervals for a damage function.

Similarly Heal and Kristr€om (2002) and Pizer (2006) assessed uncertainty using

subjective analysis and the opinions of experts. Specifically, Pizer (2003) modified the

DICE model developed by Nordhaus (1994b), replacing the original quadratic

relationship between damage and temperature change with a more complex function.

The main conclusion from the empirical studies so far is that although there is a level

of uncertainty, we are unable to quantify it. In terms of marginal damages of pollutants,

Nordhaus (2008) presented a range of between $6 and $65/t carbon with a central

estimate of $27.
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3. Determining the optimal level of pollution

Economic theory suggests that the optimal pollution level occurs when the marginal

damage cost equals the marginal abatement cost. Graphically the optimal pollution level

is presented in Figure 1 where the marginal abatement (MAC ¼ g(z)) and the marginal

damage (MD ¼ ’(z)) are represented as typical mathematical cost functions. The point of

intersection of the two curves, I ¼ I(zo, ko), reflects the optimal level of pollution with k0
corresponding to the optimum cost (benefit) and z0 to the optimum damage restriction. It

is assumed (and we will subsequently investigate the validity of this assumption) that the

curves have an intersection and the area created by these curves (region AIB) is what we

define as Benefit Area (see Kneese 1972, among others).

Halkos and Kitsos (2005) examined only three cases for the abatement cost function

(linear, quadratic and exponential) and only linearity for the marginal damage cost

function. We briefly review it so that the extensions become clearer, and cover all the

possible cases in practice, especially the non-linearity nature of the damage cost function.

Under these assumptions the extracted benefit areas were calculated. In the sequence of

this paper we will examine how this crucial benefit area can be evaluated, providing an

index, when different areas are investigated (such as countries or provinces), adopting

different rival models and policies as they are expressed by the two curves under

consideration.

Let A and B be the points of the intersection of the curves MD and MAC (see

Figure 1) with the ‘Y-axis’. Obviously we are restricted to positive values. For these

points A ¼ A(0, a) and b ¼ b(0, b), the values of a and b are the constant terms of the

Figure 1. Graphical presentation of the optimal pollution level.
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assumed curves that approach MD and MAC, respectively. For the linear case we have

A ¼ A(0, a) and b ¼ b(0, b0) (see Figure 1) and it is assumed that a> b0 in Figure 1,

provided that MAC is an increasing function and MD is a decreasing one.3

Specifically, we are now considering a number of cases in order to examine under

what restrictions the two curves have an intersection, which is presented as I ¼ I(z0, k0).

That is the equivalent mathematical problem: what the values are of the points z0 and k0
in order to have the optimal damage restriction and the corresponding value of the

optimal cost, respectively. It is clear that, in principle, the intersection satisfies that

MAC(z0) ¼ MD(z0), g(z0) ¼ ’(z0), with z0 being the optimal restriction in damages.

We are emphasising that the coefficients of the abatement cost functions (b0, b1, b2) can

be estimated by applying the OLS method to the appropriate dataset. Each assumption

and case will now be examined in turn.

3.1. Case 1: MD and MAC functions are both linear

In the case of linearity of both MAC and MD the intersection I ¼ I(z0, k0) satisfies the

following relationship: b0þ b1zo ¼ aþ bzo and therefore z0 can be evaluated as:

z0 ¼ � b0 � a

b1 � b
ð1Þ

Now we are asking for z0 to be positive, i.e. to lie on the right half of z
0
z axis as in

Figure 1. If both g(z) and ’(z) are linear the intersection exists at z0 as in (1) if b1>b as

already a> b0. The corresponding optimal cost or benefit values should be equal for both

curves.

k0 ¼ f
b0 � a

b� b1

� �
¼ aþ b

b0 � a

b� b1

or k0 ¼ g
b0 � a

b� b1

� �
¼ b0 þ b1

b0 � a

b� b1

This is true as their difference is zero. The benefit area, BA, is evaluated, in principle,

through the following relation:

BA ¼ ðABIÞ ¼ ðAIz00Þ � ðBIz00Þ ð2Þ

where the parenthesis are the corresponding evaluated areas of Figure 1.

The benefit area for the case linear-linear (LL), BALL, can be evaluated as the area of

the triangle ABI, namely:

BALL ¼ ðABIÞ ¼ ðABÞðIk0Þ
2

¼ ða� b0Þð0z0Þ
2

¼ ða� b0Þ2
2ðb1 � bÞ ð3Þ

Similarly, using Equation (2) the area can be evaluated by subtraction of the areas of

the two trapezoidals leading up to Equation (3) (for details see Halkos and Kitsos 2005).

3.2. Case 2: MD linear and MAC quadratic functions

Let us consider now the case of a quadratic abatement cost function, which is the most likely

case, i.e. g(z) ¼ MAC(z) ¼ b0þ b1zþ b2z
2. It is assumed that b ¼ MAC(0) ¼ b0> 0 and
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dgðzÞ
dz

¼ b1 þ 2b2z > 0, i.e. positive marginal abatement cost, that is z > � b1
2b2

, which also

means that the function g is increasing. The intersection point with the marginal damage can

be evaluated as: MAC(z0)¼MD(z0)) b0þ b1z0þ b2zo
2 ¼ aþ bz0.

Recall that for the points A ¼ A(0, a), B ¼ B(0, b), and a ¼ a and b ¼ b0, we assume

that a> b0, therefore we have:

ðb0 � aÞ þ ðb1 � bÞz0 þ b2z
2
0 ¼ 0 ð4Þ

If we set K ¼ b0�a, L ¼ b1� b then Equation (4) becomes: b2z0
2 þLz0 þK ¼ 0, with

roots:

z0 ¼ �L� ffiffiffiffi
D

p

2b2

; D ¼ ðb1 � bÞ2 � 4b2ðb0 � aÞ � 0 ð5Þ

The negative D has no economical meaning (as no real roots are evaluated) so a zero

D leads from Equation (4) to a double or unique optimal restriction of damages of the

form:

z0 ¼ � b1 � b

2b2

ð6Þ

When assuming b1 < b the value of z0 is positive, as b2 has been assumed positive

already. Thus the corresponding k0 value, for the evaluated z0 is:

k0 ¼ ’ðz0Þ ¼ a� b
b1 � b

2b2

or

k0 ¼ gðz0Þ ¼ b0 þ b1 � b1 � b

2b2

� �
þ b2 � b1 � b

2b2

� �2

Under the assumptions of b0 –a< 0 and b2> 0 the quantity – 4b2(b0 –a)> 0 and

therefore the value of the determinant is D> 0. This is true because the sum of the roots

(equals to 2z0) is positive, while the product of the roots (equals to [(b0 –a)/b2]) is

negative. We are interested for at least a positive root z0 in Equation (4), which under the

assumption a> b0 can be evaluated only when b1< b and eventually from Equation (5)

we choose the positive z0.

The corresponding benefit area for linear MD and quadratic MAC case, BALQ, is

evaluated through the general form (2) subtracting from the trapezoidal AIzo0 the area

BIz00, namely:

BALQ ¼ ðOAÞ þ ðIz0Þ
2

ð0z0Þ �
Z z0

0

gðzÞdz ¼ aþ gðz0Þ
2

z0 � ½Gðz0Þ � Gð0Þ� ð7Þ

with GðzÞ ¼ b0zþ b1

z2

2
þ b2

z3

3
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which implies that G(0) ¼ 0. So (7) is reduced to:

BALQ ¼ aþ gðz0Þ
2

z0 � Gðz0Þ; gðzÞ ¼ MACðzÞ ð8Þ

The value of z0 is as in Equation (6) and the assumptions b> b1 and a> b0. That is as

in Equation (3) a general form for the benefit area was produced when a linear marginal

abatement cost ’(z) was examined.

3.3. Case 3: MD linear and MAC exponential functions

Let us consider the case of an exponential MAC function, i.e. MAC(z) ¼ b0 exp(b1z). In

such a case b ¼ MAC(0) ¼ b0 with a ¼ a and the general line of thought for the

intersection leads to:

b0e
b1z0¼aþ bz0 , expðb1z0Þ ¼ a� þ b�z0; with a� ¼ a

b0

;b� ¼ b

b0

with b0 6¼ 0:

This results to (Halkos and Kitsos 2005):

b1z0 ¼ lnða� þ b�z0Þ , z0 ¼ 1

b1

lnða� þ b�z0Þ ¼ Fðz0Þ ð9Þ

Now Equation (9) is of the form z0 ¼ F(z0), and can be only solved adopting

numerical analysis techniques through the fixed-point theorem (see Ortega and Rheinbolt

1970; Halkos and Kitsos 2005 for details). The iteration is formed as:

z0;nþ1 ¼ 1

b1

lnða� þ b�z0;nÞ n ¼ 0; 1; 2 ð10Þ

converges to z0, i.e. lim z0;nþ1 ! z0 ¼ Fðz0Þ.4 Specifically, the optimal restriction of

damages level, z0, in the exponential case of MAC only approximately can be evaluated

and therefore the corresponding optimal cost or benefit level is approximately evaluated

too.5

The corresponding benefit area (AIB) for the linear-exponential case, BALE, is then

evaluated through Equation (2) as:

BALE ¼ ðAIz00Þ �
Z z0

0

gðzÞdz ¼ aþ gðz0Þ
2

z0 � ½Gðz0Þ � Gð0Þ� ð11Þ

with : Gðz0Þ � Gð0Þ ¼
Z z0

0

b0e
b1zdz ¼ b0

b1

ðeb1z0 � 1Þ ð11:1Þ

i.e. G(0) ¼ 1, while Equation (7) still holds, providing an index for benefit area for both

quadratic and exponential cases, but with G(z0) as in Equation (11.1) and z0
approximated as in Equation (10).
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3.4. Case 4: MD quadratic and MAC linear functions

Let us now consider that:

MAC ¼ gðzÞ ¼ b0 þ b1z; b1 6¼ 0 and MD ¼ ’ðzÞ ¼ az2 þ bzþ g; a > 0

The intersections of MD and MAC with the Y-axis are b ¼ MAC(0) ¼ bo and a ¼
MD(0) ¼ g (see Figures 2, 3 and 4). To ensure that an intersection between MAC and

MD occurs we need the restriction 0 < b0 < g. Considering a> 0 three cases can be

discussed, through the determinant of ’(z), say D, D ¼ b2 � 4ag. (a) D¼ 0 (see

Figure 2), (b) D> 0 (see Figure 3), and D< 0. Note that the case D< 0 has no

economical interest (due to the complex roots). Therefore the two cases are discussed

below, while for the dual case a<0 see case 4c.

3.4.1. Case 4a:a > 0;D ¼ b2 � 4ag ¼ 0

In this case there is a double real root for MD(z), say r ¼ r1 ¼ r2 ¼ � b
2a
. In principle a

double root means: only one value r exists for the quadratic model, where the optimal

level z0 lies withð0; rÞ. When two roots are evaluated, r1 < r2 we are restricted to

Figure 2. C ¼ C � b
2a
; 0

� �
; a > 0.

Figure 3. C ¼ C � b
2a
; 0

� �
; E ¼ E 0;’ � b

2a

� �� �
; ’ � b

2a

� � ¼ min ’ðzÞ; a > 0.
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investigate the interval ð0; r1Þ the candidate interval where z0 lies. We need the root r> 0

and hence is required that b< 0. To identify the optimal pollution level point Iðz0; k0Þ the
evaluation of point z0 is the one for which:

MDðz0Þ ¼ MACðz0Þ , az20 þ ðb� b1Þz0 þ ðg � b0Þ ¼ 0 ð12Þ

In order for Equation (12) to provide the unique (double) solution we need the

quantity the determinant of Equation (12) D ¼ ðb� b1Þ2 � 4aðg � b0Þ to be zero, i.e.

D ¼ 0 which is equivalent to:

z0 ¼ b1 � b

2a
ð13Þ

As z0 is positive and a > 0 we conclude that b1 > b: So for the conditions are: a > 0,

b1 > b; 0 < b0 < g we can easily calculate

k0 ¼ MACðz0Þ ¼ b0 þ b1

b1 � b

2a
> 0 ð14Þ

and therefore Iðz0; k0Þ is well defined. The corresponding Benefit Area (BAQL) in this

case is:

BAQL¼
Z z0

0

ð’ðzÞ�gðzÞÞdz¼
Z z0

0

ðaz2þðb�b1Þzþðg�b0ÞÞdz¼a
z30
3
þðb�b1Þ

z20
2
þðg�b0Þz0

ð15Þ

3.4.2. Case 4b: a > 0; D ¼ b2 � 4ag > 0

In such a case for the two roots r1; r2 we have jr1j 6¼ jr2j; ’ðr1Þ ¼ ’ðr2Þ ¼ 0 and

we suppose 0 < r1 < r2; (see Figure 3). The fact that D> 0 is equivalent to

0 < ag < b
2

� �2
, while the minimum value of the MD function is:

’ � b

2a

� �
¼ 4ag � b2

4a

Therefore we state:

Proposition 1: The order for the roots 0 < r1 < r2 and the value which provides the

minimum of the MD function is true under the relation:

b < 0 < ag <
b

2

� �2

ð16Þ

The proof is shown in the Appendix.

We can then identify the point of intersection z0: MACðz0Þ ¼ MDðz0Þ as before.

Therefore under Equation (16) and b1 > b0 we evaluate k0 as in (14) and the Benefit

Area BAQL can be evaluated as in Equation (15).

Let us now consider the case a < 0. Under this assumption the restriction D ¼ 0 is not

considered, as the values of ’(z) have to be negative. Consider Figure 2, the graph of ’(z)
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will be symmetric around the point C to this in Figure 2. Therefore we consider the

following case.

3.4.3. Case 4c: a < 0;D ¼ b2 � 4ag > 0

Under the assumption of Case 4c, the value ’ � b
2a

� � ¼ 4ag�b2

4a
corresponds to the

maximum value of ’(z). We consider the situation where r1 < 0 < � b
2a

< r2 (see

Figure 4) while the case 0 < r1 < � b
2a

< r2 has no particular interest (it can be also

considered as in case 4b).

Proposition 2: For the case 4c as above holds: r1 < 0 < � b
2a

< r2 when ag < 0.

The proof is shown in the Appendix.

The imposed assumption is equivalent to a’ð0Þ < 0 , ag < 0 true as r1r2 < 0

a’ � b
2a

� �
< 0 , ag < b

2

� �2
. Therefore the imposed restrictions are ag < 0 < b

2

� �2
.

Actually ag < 0. In case 4c it is now asked b0 < g and b1 > 0: To calculate z0 we

proceed as in Equation (12) and z0 is evaluated as in Equation (13) with

a < 0, therefore b1 � b < 0 i.e. b1 < b. Thus for b1 < b;ag < 0; the BA as in (15) is

still valid.

Therefore the following analysis is now considered, extending case 4 of both MD and

MAC to be quadratic functions.

3.5. Case 5: MD and MAC functions both quadratic

Let us consider that both curves, MAC and MD are of the second order as:

MAC ¼ gðzÞ ¼ b0 þ b1zþ b2z
2; b2 6¼ 0ðwith determinant dÞ

MD ¼ ’ðzÞ ¼ az2 þ bzþ g; a 6¼ 0ðwith determinant DÞ

In this case the intersections of MAC and MD with the Y-axis are b ¼ MAC(0) ¼ b0 and
a ¼MD(0) ¼ g. The following two substances are investigated below.

Figure 4. C ¼ C � b
2a
; 0

� �
; E ¼ E 0;’ � b

2a

� �� �
; ’ � b

2a

� � ¼ min ’ðzÞ; a < 0.
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3.5.1. Case 5a: D ¼ b2 � 4ag ¼ 0; a > 0 and d ¼ b2
1 � 4b2b0 � 0;b2 > 0; (see

Figure 5).

For the identification of the optimal pollution level point Iðz0; k0Þ we need to estimate

z0 such that

’ðz0Þ ¼ gðz0Þ , ða� b2Þz20 þ ðb� b1Þz0 þ ðg � b0Þ ¼ 0 ð17Þ

when the determinant of this equation d is zero,

d ¼ ðb� b1Þ2 � 4ða� b2Þðg � b0Þ ¼ 0

the unique root of ð17Þ equals z0 ¼ � b� b1

2ða� b2Þ
: ð18Þ

Recall case 2 Equation (6). It is asked not only z0 to be positive but to be less than the

(double) root of MD (see Figure 5), i.e.

0 < z0 ¼ � b� b1

2ða� b2Þ
< � b

2a
;

Therefore we have the restriction
b

a
<

b� b1

a� b2

:

Thus the corresponding to the optimal restriction in damage z0; optimal cost k0 point

is:

k0 ¼ ’ðz0Þ ¼ a
ðb� b1Þ2
4ða� b2Þ2

� b0

b� b1

a� b2

þ g ð19Þ

Thus the corresponding Benefit Area, BAQQ, can be evaluated as:

BAQQ ¼
Z z0

0

ð’ðzÞ � gðzÞÞdz ¼ ða� b2Þ
z30
3
þ ðb� b1Þ

z20
2
þ ðg � b0Þz0 ð20Þ

Figure 5. C ¼ r1 ¼ r2 ¼ C � b
2a
; 0

� �
; ’ � b

2a

� � ¼ 0; a > 0.
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It is worth mentioning that in all cases investigated in this paper the MAC and MD are

evaluated by using appropriate regression models for the former and by the use of

calibrations for the latter. Therefore all parameter estimates are under error, implying that

the Benefit Area evaluations are just approximations. The better fit modelling the less

error in parameters and to Benefit Area eventually. This justifies why the appropriate

model specification is essential in any empirical study.

Another interesting case is the following.

3.5.2. Case 5b: D ¼ b2 � 4ag > 0; a > 0 and d ¼ b2
1 � 4b2b0 � 0;b2 > 0 (see

Figure 6).

In this case we need the order of the points to be 0 < z0 < r1 < � b
2a

< r2. Recall also

case 4b (see Figure 6). Therefore we need the following conditions a’ � b
2a

� �
< 0; which

holds and D > 0; a’ðz0Þ > 0; z0 < � b

2a
:

Eventually is needed to have the restrictions:

a’ðz0Þ > 0 and z0 < � b

2a
:

The point z0 is eventually as in Equation (18) and the corresponding k0 as in Equation (19)

so Iðz0; k0Þ is identified. The BA is evaluated as in Equation (20).

3.6. Case 6: MD quadratic and MAC exponential functions

We now assume that MD is quadratic function and MAC is exponential, that is:

MACðzÞ ¼ gðzÞ ¼ b0e
b1z; b0 > 0

MDðzÞ ¼ ’ðzÞ ¼ az2 þ bzþ g; a > 0

Here b ¼ MAC(0) ¼ b0, and a ¼ MD(0) ¼ g. In particular we are investigating the

following sub-cases, which are within our target.

Figure 6. C ¼ C � b

2a
; 0

� �
; E ¼ E 0;’ � b

2a

� �� �
; ’ � b

2a

� �
¼ min’ðzÞ; a > 0

0 < z0 < r1 < � b

2a
< r2:

12 G.E. Halkos and D.C. Kitsou



3.6.1. Case 6a: For MD it is D ¼ b2 � 4ag > 0.

Evaluating I (z0, k0), z0 has to obey to the relationship:

’ðz0Þ ¼ gðz0Þ , az20 þ bz0 þ g ¼ b0e
b1z0 , az20 þ bz0 þ g � b0e

b1z0 ¼ 0 ð21Þ

Equation (21) is non-linear so we have to prove that there is one solution, which can

be evaluated numerically.6

Proposition 3: There is a value z02( 0, r1) for the damage reduction where MD and

MAC coincide, i.e. MD(z0) ¼MAC(z0).

The proof is shown in the Appendix.

If we consider the equation FðzÞ ¼ aðz� r1Þðz� r2Þ � b0e
b1z then under the

imposed restrictions Fð0Þ ¼ g � b0 > 0 as r1r2 ¼
g

a
and Fðr1Þ ¼ �b0e

b1r1 < 0.

Therefore as Fð0ÞFðr1Þ < 0 there exists a number z0 2 ð0; r1Þ : Fðz0Þ ¼ 0 and therefore

Equation (21) is true that there exists a real solution (root) z0 for it.

The evaluation of the root z0of Equation (21) can be numerically calculated and one

way is by adopting the Bisction method. The corresponding k0 ¼ gðz0Þ ¼ b0e
b1z0 can be

easily evaluated, as the corresponding Benefit Area (BAEQ) is calculated as:

BAEQ ¼
Z z0

0

ð’ðzÞ � gðzÞÞdz ¼ a
z30
3
þ b

z20
2
þ gz0 � b0

b1

ðeb1z0 � 1Þ ð22Þ

The last case is to have both MAC and MD functions exponential as follows.

3.7. Case 7: MD and MAC both exponential functions

In this case it is assumed that both MB and MAC are exponential of the form7:

MACðzÞ ¼ gðzÞ ¼ b0e
b1z; b0 > 0

MDðzÞ ¼ ’ðzÞ ¼ u0e
u1z; u0 > b0 > 0

The target is to evaluate the z0 point of the optimal pollution level as:

’ðz0Þ ¼ gðz0Þ , b0e
b1z0 ¼ u0e

u1z0 , b0

u0
¼ eðu1�b1Þz0 , z0 ¼ 1

ðb1 � u1Þ ln
u0

b0

From the above relation it is clear that there is no intersection when u1 ¼ b1. The

corresponding Benefit Area (BAEE) is evaluated as:

BAEE ¼
Z z0

0

ð’ðzÞ � gðzÞÞdz ¼ b0

b1

ðeb1z0 � 1Þ � u0

u1
ðeu1z0 � 1Þ ð23Þ

Finally, the case that ’ðzÞ is exponential and gðzÞ is of second order is the dual of case
6a. In this way we have investigated all possible cases modelling MAC and MD. A

compact view of all the cases is presented in Table 1. The results obtained above have

been adopted in an empirical application discussed in the next section.
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4. An empirical application

In our empirical application we will use estimates for the available data for different

European countries. For this purpose we discuss how the two curves, the abatement cost

g(z) and the damage cost ’(z), can be approximated. The abatement cost function

measures the cost of reducing tonnes of emissions of a pollutant, such as sulphur (S), and

differs from country to country depending on the local costs of implementing best

practice abatement techniques as well as on the existing power generation technology.

For abating sulphur emissions various control methods exist with different cost and

applicability levels such as gas oil desulphurisation, heavy fuel oil desulphurisation, hard

coal washing, in furnace direct limestone injection, flue gas desulphurisation and

fluidised bed combustion (Halkos 1995).

To calculate total emissions of the pollutant after (any) control from each source

(TEp) the annual emissions for a given pollutant in each sector for each European country

are calculated. Total emissions are then determined as:

TEp ¼
X

½PRijt � ð1� atÞEpij � ARijtf � ð24Þ

where i stands for country, j for sector, t for technology, f for fuel and p for pollutant.

Similarly, PR stands for production levels; at for the abatement efficiency of method t

and AR for the application rate (Halkos 2013).

In the same way, given the generic engineering capital and operating control cost

functions for each efficient abatement technology, total and marginal costs of different

Table 1. The compact presentation of the results.

Case MD ¼ ’(z) MAC ¼ g(z) z0> 0 BA Restrictions

1 aþ bz b0 þb1z � b0�a
b1�b

(3) a>b0
b1> b

2 aþ bz b0 þb1zþb2z
2 � b1�b

2b2
(7), (8) b2> 0 b > b1

a>b0

3 aþ bz b0e
b1z Numerically (10) (11) b1> 0

4 az2þbzþ g b0 þb1z 0< b0< g

4a a> 0 D ¼ 0

Z0 ¼ b1�b
2a

(15)

b1>b b< 0
0<b0< g

4b a> 0 D> 0 b< 0<ag< (b/2)2

b1> b0

4c a< 0 D> 0 b1<b
ag< 0

5 az2þbzþ g b0 þb1zþb2z
2 a 6¼ 0 b2 6¼ 0

5a a> 0 D ¼ 0 b2> 0 d� 0
Z0 ¼ � b�b1

2ða�b2Þ (20) b1 > b a > b2
5b a> 0 D> 0 b2> 0 d� 0

6 az2þbzþ g b0e
b1z (20) b0> 0 a> 0

6a a> 0, D> 0 Numerically (22) g>b0

7 u0e
u1z b0e

b1z z0 ¼ 1
b1�u1

ln u0
b0

(23) b1 6¼ u1

14 G.E. Halkos and D.C. Kitsou



levels of pollutant’s reduction at each individual source and in the national (country) level

can be constructed. According to Halkos (1995, 2013), the cost of an emission abatement

option is given by the total annualised cost (TAC) of this abatement option, including

capital and operating cost components. Specifically:

TAC ¼ fðTCCÞ½r=ð1� ð1þ rÞ�nÞ�g þ VOMC þ FOMC ð25Þ

Where TCC is the total capital cost; VOMC and FOMC stand for the variable and fixed

operating and maintenance cost, respectively; r/[1�(1þr)�n] is the capital recovery

factor at real discount rate r, which converts a capital cost to an equivalent stream of

equal annual future payments, considering the time value of money (represented by r).

Finally, n stands for the economic life of the asset (in years).

For every European country a least cost curve is derived by finding the technology on

each pollution source with the lowest marginal cost per tonne of pollutant removed in the

country and the amount of pollutant removed by that method on that pollution source. In

this way the first step on the country’s abatement curve is constructed. Iteratively the next

highest marginal cost is found and is added to the country curve with the amount of

pollutant (say sulphur) removed on the X-axis. In the national cost curve each step

corresponds to a control measure that leads to an emission reduction of an extra unit at

the least cost. Figure 7 shows the Total Abatement Cost curve for Austria in the year

2000.

For analytical purposes, it is important to approximate the cost curves of each country

by adopting a functional form. Extending the mathematical models described above to

stochastic models (as the error term from the Normal distribution with mean zero and

variance s2) we have found that least squares equations of the form

gðzÞ ¼ ACi ¼ b0i þ b1iSRi þ ei ð26:1Þ

or

gðzÞ ¼ ACi ¼ b0i þ b1iSRi þ b2iSR
2
i þ ei ð26:2Þ

lead to satisfactory approximations for all the countries analysed in this paper.8 In these

equations SRi represents sulphur removed in country i, ACi abatement cost in country i

and ei the disturbance term with the usual hypotheses.

Figure 7. Total Abatement Cost curves for Austria in the year 2000.
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Next, the calculation of the damage function ’(z) is necessary. The problem of

estimating damage cost functions is far more difficult compared to the estimation of

abatement costs, as the effects of pollution cannot be identified with any accuracy and

sometimes it takes a long time to realise the consequences. In our case and in order to

extract the damage estimates we use the case of acidification which is related to

transboundary pollution, requiring that the model takes account of the distribution of the

externality among the various countries (victims).

Each country receives a certain number of pollutant’s units whose deposition is due to

the other countries’ emissions as well as its own emissions. The deposition of sulphur in

country i is given by:

Di ¼ Bi þ diið1� aiÞEi þ
X

i 6¼j
dijð1� ajÞEj ¼ Bi þ

X
j
dijð1� ajÞEj ð27Þ

where Ej is the total annual sulphur emission in country j; Di is the total Annual sulphur

Deposition in country i; ai is the abatement efficiency coefficient in country i and dij is

the transfer coefficient from country j to i, indicating what proportions of emissions from

any source country are ultimately deposited in any receiving country; Bi is the level of the

so-called background deposition attributable to natural sources (such as volcanoes, forest

fires, biological decay, etc.) in receptor-country i, or to pollution remaining too long in

the atmosphere to be tracked by the model, i.e. is probably attributable not only to natural

sources but also to emissions whose origin cannot be determined. This assignment is

summarised in the European Monitoring and Evaluation Programme transfer coefficient

matrix (EMEP).

We do not directly estimate the damage function, but instead we infer its parameters

assuming that countries currently equate national marginal damage cost with national

marginal abatement cost.9 The restrictions on the derivatives of the damage cost function

are important. The total cost resulting from a specific level of pollutant (such as sulphur)

for country i is:

TCi ¼ abatement costþ damage cost ¼ ACi þ DCi:

As previously mentioned, abatement costs are estimated by linear and quadratic functions

of sulphur removed (as in Equations (26.1) and (26.2)) and we also assume that damage

costs are linear and quadratic in deposits.10

Table 2 presents the estimated damage and abatement cost coefficients in the more

complex case of assuming that both cost functions are quadratic.11 Similarly, Table 3

presents the corresponding ‘calibrated’ Benefit Area (BAc) indexes evaluated from the

available parameter estimates in the case of linear-quadratic (LQ) and quadratic-

quadratic (QQ) damage and abatement cost functions, respectively, for 20 European

countries.12 In the first of the two case studies the associated efficiency index13 is

presented.14 The area for which the BA is evaluated can be ‘country’, ‘province’ or

‘municipality’ areas. This is a measure of what percentage of the adopted policy covers

that policy which provides the maximum benefit area. Similarly, the evaluation of the

optimal damage reduction, z0 as has been denoted in this paper, provides evidence that

the larger it is the better the adopted environmental policy.

As can be seen, countries with high optimal damage reductions are the UK and France

(in both cases LQ and QQ) and Former Czechoslovakia, Spain and Turkey (in the LQ

case). On the other hand, countries with low damage reductions are Greece, Hungary,

16 G.E. Halkos and D.C. Kitsou



Italy, Romania (in the case of LQ cost functions), Finland, Sweden, Turkey (in the case of

QQ) and Norway and Switzerland in both cases. Large industrial upwind counties (like

Denmark, France and the UK) seem to have very large benefit areas. Looking at the

EMEP transfer coefficients matrix, it can be seen that the countries with large benefit

areas are those with large numbers on the diagonal. This shows the importance of the

domestic sources of pollution. The large off-diagonal transfer coefficients indicate in

general the major effects one country has on another, and especially the externalities

imposed by the Eastern European countries on the others.

Similarly downwind or near to the sea countries seem to have small benefit areas. In

addition, the damage caused by acidification depends on where the depositions occur. In

the case of occurrence over the sea it is less likely to have much harmful effect, as the sea

is naturally alkaline. In the same way, if it occurs over sparsely populated areas with acid

tolerant soils then the damage is low (Newbery 1990).

5. Conclusions and policy implications

The analysis of the effectiveness of environmental programmes and regulations requires

the comparison of damage and control costs associated with the reduction of different

pollutants. It is worth mentioning that although there is an obvious uncertainty in damage

costs we cannot ignore that uncertainty is also present in the abatement cost functions due

to abatement efficiencies that may differ between countries and between adopted

scenarios.

The typical approach to define the optimal pollution level has been to equate the

marginal damage of an extra unit of pollution with the corresponding marginal abatement

cost. An efficient level of emissions maximises the net benefit that is the difference

Table 2. Coefficient estimates in the case of quadratic MD and MAC functions.

Countries c0 c1 c2 b0 b1 b2

Albania 0.7071 0.01888 0.0001397 �3.3818 0.015 0.0048
Austria 8.57143 0.055012 0.0001145 3.274 �0.221 0.004
Belgium 2.2424 0.03869 0.0001688 0.497 �0.124 0.003
Former

Czechoslovakia
37.794 0.100323 0.000059 11.241 0.2358 0.00018

Denmark 10 0.1923 0.0060811 �2.49 0.099 0.0053
Finland 4.021 0.0781 0.00014587 2.343 �0.098 0.0046
France 33.158 0.277352 0.000197 42.374 �0.053 0.0018
Greece 3.7373 0.034133 0.0000491 �1.614 0.342 0.0006
Hungary 5.101 0.031488 0.0000417 2.506 0.216 0.0004
Italy 21.01 0.030036 0.0000191 12.5 0.36 0.0003
Luxembourg 0.421 0.3161 0.0272381 �0.7272 0.01 0.09234
Netherlands 8.353 0.19513 0.00351442 �6.18 0.41 0.0009
Norway 1.421 0.07852 0.00017008 0.94 �0.244 0.0164
Poland 6.212 0.023153 0.000071 �8.023 0.324 0.00009
Romania 9.091 0.011364 0.00006237 5.502 0.19 0.0001
Spain 11.7 0.007288 0.00497419 10.21 �0.021 0.00014
Sweden 2.4 0.06423 0.0000932 4.074 �0.252 0.004
Switzerland 2.4 0.56027 0.002803 5.7543 �1.6289 0.11203
Turkey 14.9 0.01781 0.00001223 8.0622 0.011 0.00036
UK 19.1 0.06879 0.0000467 15.54 0.0264 0.0003
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between abatement and damage costs. Therefore the identification of this efficient level

shows the level of benefits maximisation, which is the output level resulting if external

costs (damages) are fully internalised.

In this paper the corresponding optimal cost and benefit points were evaluated

analytically. It is shown that this is feasible in the linear and quadratic cases while in the

exponential case only approximated values can be obtained. The explicit evaluation of

the benefit area was also discussed and analytical forms for this particular area were

calculated for different policies. In this way the optimal level was also evaluated.

We show that the optimal pollution level can be evaluated only under certain

conditions, as were derived in section 3. Specifically, it is required that in all of the cases

a> b0 if we assume that MAC is an increasing function and MD is a decreasing function.

That is, the constant term in the damage cost function (we may think of the background

deposition) is bigger than the abatement cost at level z ¼ 0 (we may think of fixed costs

of operating an abatement method at level z ¼ 0). In cases of both linear or both quadratic

functions we have b> b1. The slope of the benefit function must be greater than the

marginal abatement cost at level z ¼ 0. For the quadratic case it is required that b2>0

while for the exponential case b0, b1> 0. Both the quadratic and the exponential cases

obey the same form of evaluating the benefit area.

From our empirical findings it is clear that the evaluation of the ‘calibrated’ Benefit

Area, as it was developed, provides an index to compare the different policies adopted

from different countries on the basis of how large calibrated Benefit Area eventually

provides. In this way a comparison of different policies can be performed. Certainly the

policy with the maximum Benefit Area is the best, and the one with the minimum is the

worst. Clearly the index BAc provides a new measure for comparing the adopted policies.

An important finding (in the case of transboundary pollution) is that domestic

pollution sources are important while large industrial upwind counties seem to have a

very large benefit area. On the other hand, countries downwind near to the sea or over

sparsely populated areas with acid tolerant soils seem to have small benefit areas. As

mentioned, the empirical results derived are only indicative and very sensitive to the

assumptions of calibration.
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Notes

1. Rabl and Holland (2008) illustrated an impact pathway framework for analysing external costs
of environmental burdens, together with the inventory stage of life cycle assessment.

2. The cost functions may not behave well or may not satisfy the conditions of convexity or
concavity. In the case of the damage cost function this may take place by threshold effects as
well as by any irreversibility where pollution reaches a critical point at which the receptor
(rivers, lakes, etc.) is damaged completely and cannot sustain any life. If one or both of
the cost functions are not well behaved then our results will be different. At the same time, the

Journal of Environmental Planning and Management 19



distinction between flow and stock pollutants is important because for stock pollutants the
persistence has to be taken into consideration due to the accumulation (and decay) of
pollutant(s) in time (Perman et al. 2011). As an example, we may consider the case of F-
Gases with the very high global warming potentials (Halkos 2013).

3. This is clear as if it is assumed that a<b0 there is no intersection (no benefit area) and if we let
a ¼ b0 the benefit area coincides with the point, namely A ¼ B ¼ I, that a one point area is
created.

4. The numerically evaluated root is under an error e, sayjz0;nþ1 � z0j < 10�6 ¼ e. Therefore the
values ofMACðz0ÞandMDðz0Þare approximated values.

5. Practically that results in the value of the difference MAC(z0)-MD(z0) is not zero, but close to
zero, with a certain accuracy �z, say z ¼ 10�3 or 10�6.

6. The graphical presentation of this case is similar to Figure 6.
7. In such a case there are ‘fast’ increases/decreases of both marginal abatement and marginal

damage costs, indicating possibly for the former the existence of limited and expensive
control methods, and for the latter very high instant damages.

8. Equations were fitted across the range 5-55% of maximum feasible abatement. The estimated
coefficients of both specifications were statistically significant in all cases with only exception
in the estimate of b1 in the quadratic specification of Spain.

9. Rabl, Spadaro, and van der Zwaan (2005) approximated the damage function by a linear
function of the pollution emissions and they claimed that linearity is found to be appropriate
approximation in the case of PM, SO2 and NOX emissions, while for CO2 linearity is probably
acceptable for emissions reductions in the ‘foreseeable’ future period.

10. Damage is a function of deposits, which depend on the transfer coefficients [dij] matrix as
explained before. In the more complex case of both quadratic abatement and damage cost
functions the total cost function may be expressed as:

TCi ¼ [b0i þ b1i SRi þ b2i SRi
2] þ [g0i þ g1i Di þ g2i Di

2] I ¼ 1,2,. . .,n
To ‘calibrate’ the damage function, we assume that national authorities act independently

(as Nash partners in a non-cooperative game with the rest of the world), taking as given
deposits originating in the rest of the world. Specifically, we minimise TCi with respect to SRi

and we calibrate the damage function by taking the first order conditions (for more details see
Hutton and Halkos 1995, 265).

11. Estimates of c0 were derived by assuming countries act in a Nash behaviour.
12. The empirical results presented are indicative and very sensitive to the assumptions of

calibration.
13. Following Halkos and Kitsos (2005) the efficiency (Eff) of the benefit area, in comparison

with the maximum evaluated from the sample of countries under investigation, can be
estimated using as measure of efficiency the expression:

Eff ¼ BA

maxBA

� �
�100

This efficiency is evaluated for the same class of model, referring to different data sets in
each case.

14. Germany dominates the picture in Europe as it has a very high initial abatement level (	42%)
and its calibrated damage function ensures high abatement levels (Hutton and Halkos 1995).
For this reason the efficiency index was constructed on the second highest benefit area
(former Czechoslovakia).
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Appendix

Proof of Proposition 1

The order of the roots 0<r1<r2 is equivalent to the set of relations:

D > 0; a’ � b

2a

� �
< 0; a’ð0Þ > 0; 0 <

r1 þ r2
2

: ð16:1Þ

The first is valid, as we have assumed D > 0. For the imposed second relation from Equation

(16.1) we have a’ � b
2a

� �
< 0 , a 4ag�b2

4a
< 0 , D > 0, which holds. As both the roots are

positive r1; r2 > 0, then the product r1r2 > 0 therefore
g

a
> 0 , ag > 0 which is valid as

0 < ag < b
2

� �2
. The third relation a’ð0Þ ¼ a > 0; in (16.1) is true already and 0 < r1þr2

2
¼ � b

2a

equivalent to b < 0. Therefore we get b < 0 < ag < b
2

� �2
.

Proof of Proposition 2

The imposed assumption is equivalent to a’ð0Þ < 0 , ag < 0 true as r1r2 < 0

a’ � b
2a

� �
< 0 , ag < b

2

� �2
. Therefore the imposed restrictions are ag < 0 < b

2

� �2
Actually ag < 0. Case 4c requires that b0 < g and b1 > 0: To calculate z0 we proceed as in

(12) and z0 is evaluated as in (13) with a < 0, we have therefore b1 � b < 0 i.e. b1 < b. Thus for
b1 < b; ag < 0; the BA as in (15) is still valid.

Proof of Proposition 3

If we consider the equation FðzÞ ¼ aðz� r1Þðz� r2Þ � b0e
b1z then under the imposed restrictions

Fð0Þ ¼ g � b0 > 0 as r1r2 ¼ g
a
and Fðr1Þ ¼ �b0e

b1r1 < 0. Therefore, as Fð0ÞFðr1Þ < 0 there

exists a number z0 2 ð0; r1Þ : Fðz0Þ ¼ 0 and therefore Equation (21) is true that there exists a real
solution (root) z0 for it.
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