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Abstract 
Vendor inventory management is a concept which is adapted highly nowadays where the 
decision maker in the process is the supplier. The combination of the inventory 
management with the vehicle routing problem constitutes one of the latest trends of 
logistics and supply chain management and constitutes the backbone of vendor managed 
inventory systems. As new emerging technologies are introduced in the context of freight 
transportation systems, research requires the development of new models and algorithms 
that can incorporate their advantages. In this context, this paper aims to discuss all 
significant elements of inventory routing problem. New valid inequalities are proposed to 
stronger the formulation of the transported quantities and enhance the Maximum Level 
(ML) policy. This approach was motivated by the fact that, nowadays where infrastructures 
were manufactured for much higher consumption rates of goods, retailers are opposed to 
the Order – Up – to level (OU) policy and look for more economic and competitive 
inventory plans. A branch and cut algorithm was developed to solve the problem exactly. 
In order to evaluate the performance of the algorithm the benchmark instances set for the 
single vehicle case created by Arhetti et al. (2007) was used. Computational results have 
shown that this approach improves the optimal solution on an average at least 20%. 
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1. Introduction 
Vendor Managed Inventory (VMI) systems seem to be one of the most tractable business 
model nowadays in global logistics and supply chain operations.  This is increasingly the 
case for electronics and automotive parts manufactured in China and assembled in the 
European Union countries. Most of these parts are assembled in five (5) major plants in 
Central Europe, operating with Just – In – Time production procedures, using the VMI 
principles.  The general concept behind this model is that replenishments and distribution 
making process is centralized at the supplier level. It is characterized as a win – win 
situation for both supplier and manufacturers, or in general retailers due to the fact that it 
provides the ability to the supplier to combine and coordinate the demand and shipments of 
a network of retailers (or more generally stock holding entities, such as manufacturers, 
wholesalers, retailers or 3rd party logistics providers). On the other hand these retailers 
secure the shortage of their inventories without allocating resources to control and manage 
them. Backbone of the VMI system is the solution of inventory routing problem (IRP) 
which is one of the most interesting extensions of routing problems. IRP combines the 



decision process of inventory management and distribution – transportation of goods. The 
decision maker in such a model has to make three decisions: the amount to be transported, 
the frequency of shipments as well as the distribution plan. However, the IRP in practice 
becomes meaningful when customers’ demand is considered to be stochastic instead of 
assuming a fixed usage rate. The basic difference behind the SIRP and the deterministic 
IRP is the level of realism and the difficulty of solving instances given the data in a 
probabilistic sense.  In a two stage stochastic program a long term anticipatory decision 
must be made prior to the full information of the random parameter of the problem and 
short terms decisions are available as recourse actions once the uncertainty has been 
revealed. The overall aim is to make “here and now” a decision which minimizes the total 
expected cost associated with both the long term and the short term decisions (Carøe and 
Tind. ,1998). IRP was introduced 30 years ago by the seminal paper of Bell et al., (1983) 
which studied the case with stochastic demand accounting only for transportation costs. 
They proposed a linear programming model to solve the deterministic version of the 
problem. To the best of our knowledge there are two very recent literature reviews on the 
subject.  We refer to the work of Andersson et al. (2010) which was focused mostly on 
industrial aspects and Coelho et al. (2014) which provides the most up to date overview of 
the problems and methodologies of the VMI problem. Bertazzi, Palettas and Speranza 
(2002) introduced a practical VMI policy, called deterministic order – up – to – level (OU) 
policy for the IRP. Based on the proposed policy Arhetti et al. (2007) developed the fist 
exact algorithm using a branch and cut scheme for the single vehicle. Based on their work 
very recently Coelho and Laporte (2013) and Adulyasak et al. (2014) have solved 
multivehicle version of IRP in a branch and cut fashion under OU and maximum level 
(ML) policies. Solyali and Sural (2011) also based on the work of Arhetti et al. (2007) 
proposed a strong formulation for the inventory replenishment part of the IRP. In this 
paper new valid inequalities are introduced to enhance the computational process of the 
optimal transported quantities under the ML policy. This approach was motivated by the 
fact that in the context of a deterministic model all parameters are known at the beginning 
of the process; thus a vendor can take advantage of the fact that the he knows the total 
demand of each stock keeping venue in advance and can transport quantities in an early 
stage in order to fulfill the future known demand. However, the amounts that he is able to 
transport are bounded by the amounts that are made available to him at each stage. This 
seems to be an important issue for major multinationals that ship parts from China to 
Europe to be assembled in a number of locations in Central Europe, but also keep 
inventory either in 3rd party facilities or at the production sites. Transshipment is in fact a 
recourse action they use in practice in case that there is shortage at a particular venue.  
These important realizations gave us the motivation to introduce new inequalities in order 
to enhance the ML policy. The key deference of ML policy in contrast with the OU policy 
is that the supplier is free to decide about any quantity to be transported to the inventories 
of his retailers (in fact stock keeping venues) bounded only by their capacity or maximum 
level defined by them. On the other hand OU policy restricts the amount to be such that 
fills the inventory to its capacity. However nowadays where infrastructures were 
manufactured for much higher consumption rates of goods retailers are opposed to the OU 
policy and look for more economic and competitive inventory plans. A convenient 
approach to address these particularities is Coelho and Laporte’s (2013) proposed  new 
tactical policy, called optimized target level that yields lower cost and inventory levels than 
the OU policy.  Reviewing their approach in comparison to the strong formulation of 
Solyali and Sural (2011) this paper was motivated to introduce new bound in order to 
determine optimal quantities to be transported. Therefore, we introduce a modification for 
the mixed integer programming model of the IRP. To the best of our knowledge this 



assumption was not proposed before.  The remainder of this paper is organized as 
followed. In §2, we give the formal description of the deterministic IPR model and the 
branch and cut. Computational results are provided in §3. Significant remarks as well as 
conclusions are given in§4. 
2. Inventory routing problem deterministic model 
We consider an inventory routing problem where a supplier denoted by node 1 is 
distributed to N-1 retailers over a finite discrete time T, using a single vehicle of capacity 
C. Traditionally the problem is defined on an undirected graph G=(V,E) where {1} is the 
vertex  representing the supplier  and vertices V’ = {2,3,…,N-1} represent the set of stock 
keeping venues (will be called retailers from thereafter as it is commonly called in the 
literature).  is the set of arcs . Inventory holding cost occurs for both 
supplier and set of retailers and is denoted as  per period and each vertex has and 
inventory capacity . The length of the discrete planning horizon is H 
where . At the beginning of the planning horizon the decision maker 
knows that (1) each period the quantities  is made available to the supplier in order to 
fulfill the request of his retailers; (2)the initial inventory levels of both supplier and t 
retailers are known { }  (3) of each retailer at each period is denoted with 

. A single vehicle can perform the route one at each period with capacity C, and a 
routing cost is associated with arc . Throughout the paper we assume that since 
the supplier has the information of the demand of his retailers in advance he can transport 
the quantities  to meet the demand of period t and subsequent periods as well. However 
the available quantities  shall be added to the total available quantities at period t can be 
used for deliveries to retailer in the same period t and subsequent periods. The objective 
function is defined in a way to minimize the total transportation and inventory cost of the 
whole planning horizon while meeting the demand of each retailer.  
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Constraints (2) and (3) are related to the inventory level at the supplier’s site. The first one 
expresses the fact that inventory level at the supplier level cannot be negative in any 
period, thus avoiding a stock out situation. The second one defines the inventory level at 
the supplier at the end of period t by the inventory level at the end of period t-1, minus the 
total quantities to be transported at period t, plus the quantities that are made available at 
time t. Constraint (4) secures the stock out avoidance of each retailer as well. Constraint 
(5) defines the inventory level at each retailer at the end of period t by the inventory level 
at the end of period t-1, plus the quantities that is made available at period t – the demand 
at period t as well. Constraint (6) secures that the inventory level of each retailer cannot 
exceed its capacity. Constraint (7) – (10) defined the quantities delivered. These set of 
constrains are opposed to the OU policy instead they aim to secure the ML policy.  More 
precisely constraint (7) secures that for each period the quantities to distribute cannot 
exceed the capacity of the vehicle. Constraint (8) declares that the total quantities to be 
transported to each retailer are equal to the total demand over the whole planning horizon 
minus the starting inventory level. Constraint (9) expresses the fact that the quantities to be 
transported to each retailer at period t can be less or equal to the demand requested at 
period t and subsequent periods when the retailer is served at period t. Constraint (10) 
ensures that the transported quantities at period t cannot exceed the suppliers staring 
inventory level plus the product made available since period t. Constraints (11) – (20) 
serves the routing counterpart of the problem. More specifically, constraint (11) secures 
that the total number of routes cannot exceed the number of periods of the planning 
horizon, however it is not necessary to perform a route for each period. Constraint (12) 
ensures that   if a route is performed at time t it will start from the supplier and will visit 
only one retailer. Constraints (13) and (14) secure the flow of the route among intermediate 
retailers.  Constraints (15) and (16) define the relationship of the two indexed of the three 
indexed variables of the routing constrains and stated that when a retailer is served at time t 
he will be an origin or a destination of a valid path. Constraints (17) – (19)   is the well 
known sub tour elimination constrains based on the Miller-Tucker-Zemlin (MTZ) 
constraint formulation also suggested by Anken et. al. (2012); this is achieved by 
introducing extra variables   that express the quantities that are in the vehicle until 
retailer i. Constraint (20) secures that if a route is performed at period t , then there will be 
intermediate points in the route. Constraints (21) – (23) enforce integrality and non - 
negativity conditions. The IRP is NP – hard since it contains the VRP as a special case. If 
the problem size is relatively small the formulation can be solved by the framework of a 
branch and cut algorithm as follows: Initially at a generic node of the search tree the 
relaxed linear program defined by the (1) – (16) and (20) to (23) is solved. Next a search of 
violated sub tour elimination constraints (17) – (19) is made and sequentially those 
constraints are generated and introduced to the current problem which is then re - 
optimized. The process is repeated until a feasible or dominated solution is reached, or 
until there are no more cuts to added and then branching on fractional variables is 
performed.  
 
3. Computational results  
The algorithm described above was coded in C++ using IBM Concert Technology and 
CPEX 12.4 with 2 threads. All computations were executed in an Intel Atom 1.83 GHz and 
2 GB RAM personal laptop with maximum time of 2 hours. To evaluate the performance 
of the algorithm, we have used the benchmark instances set for the single vehicle case 
created by Arhetti et al. (2007). Those instances was used to evaluate the performance of 
the proposed valid inequalities for the ML policy in coherent to the OU policy. The small 



instances up to 20 customers were used for both high and low level of inventory holding 
cost. The small number of experiments is indicative in order to present proposed approach 
potential solutions that yield almost 20% less IRP cost.  The computational results are 
shown in table 1 -2. Table 1 provides optimal solution of each of the 5 instances with 5, 10, 
15 and 20 retailers. Table 1 contains the results of instances with time horizon H = 3 and 
high inventory cost ( ) and results with low inventory cost 
( ). Column 1 shows the corresponding name of the data 
set, columns 2 – 3 contain the CPU time (in sec) and the optimal value of the objective 
function as it was found by Arhetti et al (2007) .  Columns 4 – 5 contain the CPU time (in 
sec) and the optimal value of the objective function of our model, and columns 6 – 7 
contain the difference of the optimal solutions and the percentage of it as well. Analogues 
remain columns contain the results on low inventory cost.    
  High Inventory cost  , Horizon = 3 Low Inventory cost  , Horizon = 3 
  Arhetti et.al.  Chrysochoou& 

Ziliaskopoulos 
z*  

Arhetti et.al.   Chrysochoou 
& 

Ziliaskopoulos z*  
Instances CPU z* CPU z* Diff %Diff CPU z* CPU z* Diff %Diff 
abs1n5.dat 0 2149,8 1 1868 281,83 13% 0 1281,7 1 1210,1 71,58 6% 
abs2n5.dat 0 1959,1 1 1583,7 375,39 19% 0 1176,6 1 967,76 208,9 18% 
abs3n5.dat 0 3265,4 1 2533,3 732,14 22% 0 2020,7 1 1633,4 387,3 19% 
abs4n5.dat 0 2034,4 1 1677,8 356,65 18% 0 1449,4 1 1245,89 203,5 14% 
abs5n5.dat 0 2362,2 1 1819,4 542,74 23% 0 1165,4 1 959,4 206 18% 
abs1n10.dat 0 4970,6 13 3678,9 1291,7 26% 0 2167,4 13 2126,44 40,93 2% 
abs2n10.dat 0 4803,2 11 3842,4 960,78 20% 0 2510,1 11 2142,79 367,3 15% 
abs3n10.dat 0 4289,8 3 3425,8 864,03 20% 0 2099,7 3 1802,02 297,7 14% 
abs4n10.dat 0 4347,1 5 3324 1023 24% 0 2188 5 1702,31 485,7 22% 
abs5n10.dat 0 5041,6 6 3835,2 1206,5 24% 0 2178,2 6 1740,55 437,6 20% 
abs1n15.dat 0 5713,8 6 4585 1128,9 20% 0 2236,5 6 1980,18 256,4 12% 
abs2n15.dat 1 5821 520 4593,4 1227,6 21% 1 2506,2 630 2100,03 406,2 16% 
abs3n15.dat 4 6711,3 37 5222 1489,3 22% 1 2841,1 37 2344,44 496,6 18% 
abs4n15.dat 1 5227,6 57 4083,3 1144,2 22% 1 2430,1 110 1980,16 449,9 19% 
abs5n15.dat 3 5210,9 49 3952,2 1258,7 24% 2 2453,5 46 1914,1 539,4 22% 
abs1n20.dat 10 7353,8 42 5585,4 1768,4 24% 12 2793,3 43 2124,09 669,2 24% 
abs2n20.dat 8 7385 605 5821,8 1563,2 21% 6 2799,9 605 2341,76 458,1 16% 
abs3n20.dat 5 7904 133 6006,8 1897,2 24% 8 3101,6 143 2431,14 670,5 22% 
abs4n20.dat 4 7050,9 138 5570,2 1480,7 21% 4 3239,3 132 2580,13 659,2 20% 
abs5n20.dat 11 8405,8 92 6976,8 1429 17% 7 3331 92 2731,41 599,6 18% 

Table 1 Computational Results on instances with time horizon H = 3 and high and low 
inventory cost 

In the set of instances with high inventory cost the average percentage is 21. 3% and yields 
within the interval (13.1 – 26) %.  However in the second case with low inventory cost the 
average percentage of improvement on the optimal solution found is 16.7% and yields 
within the interval (1.9 – 24.1) %. This is due to the fact that the transportation cost is 
higher. Thus our approach can perform significant saving in the cases where the inventory 
cost is high and competitive to the transportation cost.  
 
4. Conclusions 



In this paper the IRP problem was analyzed which constitutes the backbone of the well 
known VMI systems. New valid inequalities were introduced in order to enhance the 
performance of the ML policy in contrast to the OU policy which is used in most recent 
research papers. This approach was motivated by the fact that nowadays retailers are 
opposed to the OU to level policy and seek for more economic and competitive inventory 
plans. In the context of a deterministic model all parameters are known at the beginning of 
the process; thus a vendor can take advantage of the fact that the he knows the total 
demand of each stock keeping venue in advance and can transport quantities in an early 
stage in order to fulfill the future known demand. However, the amounts that he is able to 
transport are bounded by the amounts that are made available to him at each stage. A 
branch and cut algorithm was developed to solve the problem exactly. In order to o 
evaluate the performance of the algorithm the benchmark instances set for the single 
vehicle case created by Arhetti et al. (2007) was used. Computational results have shown 
that this approach improves the optimal solution on an average at least 20%. 
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