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Introduction (1/2)

Gradient elasticity theories include an intrinsic length (ℓ) parameter 
and this allows these theories to capture the size effect that has 
been shown experimentally to exist in heterogeneous materials.

Constraint couple stress elasticity 
(or Cosserat theory)

Simplified dipolar elasticity theory 
(or grade-two theory)

gradient of rotations

gradient of the strains

In both theories the internal length is associated with the 
microstructure of the material (e.g. grain size, particle size, etc.).
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Introduction (2/2)

A typical composite material consists of a matrix and inclusions.

The aim of homogenization is to replace the composite material 
with an equivalent material of uniform macroscopic properties.

When gradient theories are considered, an additional material 
parameter, the internal length, is added. Nevertheless, the same 
strategy of homogenization can be used, only this time, to yield 
an estimate for this new parameter.
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Aim

Heterogeneous 
Cauchy material

Homogeneous 
gradient material

Estimate the characteristic length as function of the inclusion 
radius, volume fraction and elastic constants
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Plain Strain Classic Elasticity Solutions (1/3)
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Classic Elasticity Solutions (2/3)

Rigid 0)( == arur

Void 0=q
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Classic Elasticity Solutions (3/3)
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Gradient Solutions (1/3)

The elastic strain energy density function W that incorporates strain 
gradient effects is (for in-plane isotropy):
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The stress and double stress quantities τ and λ are defined as follows:
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The elastic energy of the gradient solution is: ijkijk x∂∂= /εκ
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Gradient Solutions (2/3)
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The dynamic boundary conditions required by the principal of 
virtual work, are:

, 

, 

Boundary 
Conditions
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Gradient Solutions (3/3)
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four constants 
involved in the 
annulus problem
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Summary

, 

, 

The energy of the heterogeneous material and the energy of the 
gradient homogeneous material were determined for the same 
boundary conditions.

Heterogeneous 
Cauchy material

Homogeneous 

gradient material

grcl UU =

By equating the energies, 
we can derive an estimation 
of the internal length of the 
gradient material as a 
function of the inclusion 
radius α, the composition 
ratio c and the elastic 
constants of matrix and 
inclusion
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Classic effective material properties (1/2)

, 

, 

The Generalized Self Consistency Method has 
been shown to give good estimates not only for 
the case of dilute composition (c    0)but also for 
the limiting case of full packing of the inclusion 
phase (c   1). 

In addition to the physical consistency of the 
results, it should be noted that the Generalized 
Self Consistent method is the only complete 
exact, closed form solution.

We will assume that these estimates for μ and v 
hold also for the gradient theory.
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Effective material properties (2/2)
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Estimate of the internal length (1/5)

, 

, 

Assumption of a heterogeneous material with elastic 
properties, μm, νm, μi ,νi and composition c.

Estimation of effective in-plane elastic properties, μ and ν, 
corresponding to each problem (Christensen model)

Estimation of internal length based on solving grcl UU =
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Estimate of the internal length: Rigid Inclusions (3/5)
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Estimate of the internal length: Elastic Inclusions (4/5)
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Estimate of the internal length: Porous materials (5/5)

, 

, 

The normalized internal length (b/ℓ) estimate for this case 
is of the order 10-8, for the majority of c values. It is also 
noted that for some values of c, the estimate of b/ℓ 
becomes negative. These results can not be acceptable 
since they lack physical justification. In other words, there 
can be no prediction for the internal length for the case 
of porous materials or generally when the inclusions are 
less stiff than the matrix.
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Conclusions

, 

, 

The homogenization of a heterogeneous Cauchy-elastic material was performed and the 
internal length parameter used in strain gradient theory was estimated. Specifically: 

1. The maximum estimates were found when inclusions much stiffer than the matrix 
were considered. 

2. The analysis was limited to the 2D case of fiber reinforced composites. The internal 
length was found to be between 0.5 and 7 times the inclusion radius, for small values of 
c, depending on the inclusion to matrix shear modulus ratio. 

3. The internal length decreases rather rapidly as the composition is increased and is 
approximately zero for               .

4. No prediction was possible for inclusions less stiff than the matrix and for the 
extreme case which corresponds to porous materials. The opposite has been found by 
Bigoni using Cosserat theory. 

%70>c
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Remarks (1/2)

, 

, 

1. Lower bound results in the estimate of the internal length 
parameter

Energy optimization based on stress boundary conditions represent 
an upper bound estimate for the value of the estimated parameter, 
whereas estimates based on displacement boundary conditions 
represent a lower bound.

The lower bound estimate for this case is simply ℓ=0



University of Thessaly                                                                                   Dept. of Civil Engineering

ICCESMM11

Remarks (2/2)

, 

, 

2. An important finding regarding the case of spherical particles

When the same methodology is applied to the case of spherical 
inclusions, one finds that the estimate of the internal length 
parameter when demanding equality of the two energies is always 
the trivial solution of b/ℓ=0.

In other words, the elastic energy of the homogeneous gradient 
material is always greater than the elastic energy of the 
heterogeneous Cauchy material and the difference between the two 
increases monotonically. 
The reason for this failure is that we have used spherically 
symmetric solutions for comparison fields.
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, 

, 

Thank you for your attention!


