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| ntroduction w

Gradient elasticity theories include an intrinsic length (£) parameter
and this allows these theories to capture the size effect that has
been shown experimentally to exist in heterogeneous materials.

Constraint couple stress elasticity — gradient of rotations
(or Cosserat theory)

Simplified dipolar elasticity theory —— gradient of the strains
(or grade-two theory)

In both theories the internal length is associated with the
microstructure of the material (e.g. grain size, particle size, etc.).
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| ntroduction e

A typical composite material consists of a matrix and inclusions.

The am of homogenization isto replace the composite material
with an equivalent material of uniform magcroscopic properties.

When gradient theories are considered, an additional material
parameter, the internal length, is added. Nevertheless, the same
strategy of homogenization can be used, only thistime, to yield
an estimate for this new parameter.
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Aim
Estimate the characteristic length as function of the inclusion
radius, volume fraction and e astic constants

Heterogeneous Homogeneous
Cauchy material gradient material
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Plain Strain Classic Elasticity Solutions ws
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Classic Elasticity Solutions e
u(r=a)=0

Rigidd —

Void —_— g=0

Elastic —

Sub-problem 1 Sub-problem 2 Generic problem
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Classic Elasticity Solutions es
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Gradient Solutions ws

The elastic strain energy density function W that incorporates strain
gradient effects is (for in-plane isotropy):
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W(e, k) = y[eij & + =

The stress and double stress quantities T and A are defined as follows:
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Gradient Solutions ws

The dynamic boundary conditions required by the principal of
virtual work, are
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Boundary
Conditions for
compact disc

Solution for the
four constants
Involved in the
annulus problem

Gradient Solutions ws
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Summary

The energy of the heterogeneous material and the energy of the
gradient homogeneous material were determined for the same
boundary conditions.

By equating the energies,
we can derive an estimation
of the internal length of the
gradient material asa
function of the inclusion
radius o, the composition
ratio c and the elastic
Heterogeneouss Homogeneous constants of matrix and
Cauchy material gradient material Inclusion

U o= Ugr
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Classic effective material properties w

The Generalized Self Consistency Method has
been shown to give good estimates not only for
the case of dilute composition (c— 0)but also for
the limiting case of full packing of the inclusion
phase (c—1).

In addition to the physical consistency of the
results, it should be noted that the Generalized
Salf Consistent method is the only complete
exact, closed form solution.

We will assume that these estimates for u and v
hold also for the gradient theory.
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Estimate of the internal length w5

Assumption of a heterogeneous material with elastic
properties, p., vy, W ,v; ahd composition c.

|

Estimation of effective in-plane elastic properties, u and v,
corresponding to each problem (Christensen model)

l

Estimation of interna length based on solving U ,=U
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Estimate of the internal length:

Rigid Inclusions es
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Estimate of theinternal length: Elastic Inclusions ws
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Estimate of theinternal length: Porous materials es

The normalized internal length (b/¢) estimate for this case
Is of the order 108, for the majority of c values. It isalso
noted that for some values of c, the estimate of b/(
becomes negative. These results can not be acceptable
since they lack physical justification. In other words, there
can beno prediction for the internal length for the case
of porous materials or generally when the inclusions are
less stiff than the matrix.
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Conclusions

The homogeni zation of a heterogeneous Cauchy-elastic material was performed and the
internal length parameter used in strain gradient theory was estimated. Soecifically:

1. The maximum estimates were found when inclusions much stiffer than the matrix
were considered.

2. The analysiswas limited to the 2D case of fiber reinforced composites. The interna
length was found to be between 0.5 and 7 times the inclusion radius, for small values of
c, depending on the inclusion to matrix shear modulus ratio.

3. Theinternal length decreases rather rapidly as the composition isincreased and is
approximately zero for ¢ > 70%.

4. No prediction was possible for inclusions less stiff than the matrix and for the
- extreme case which corresponds to porous materials. The opposite has been found by
Bigoni using Cosserat theory.
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Remarks w»

1. Lower bound resultsin the estimate of the internal length
parameter

Energy optimization based on stress boundary conditions represent
an upper bound estimate for the value of the estimated parameter,
whereas estimates based on displacement boundary conditions
represent alower bound.

The lower bound estimate for this caseis simply £=0
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Remarks 2»

2. An important finding regarding the case of spherical particles

When the same methodology is applied to the case of spherical
Inclusions, one finds that the estimate of the internal length
parameter when demanding equality of the two energies is aways
the trivial solution of b/¢=0.

In other words, the elastic energy of the homogeneous gradient
material is always greater than the elastic energy of the

- heterogeneous Cauchy material and the difference between the two
Increases monotonically.

The reason for this failure is that we have used spherically
symmetric solutions for comparison fields.
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Thank you for your attention!
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