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 

Abstract— p38 mitogen activated protein kinase (p38 

MAPK) signaling appears to play a significant role in the 

regulation of immune-mediated inflammatory responses 

and therefore has been linked with several autoimmune 

diseases. This review discusses the current data regarding 

the involvement of p38 MAP in rheumatic diseases 

characterized by arthritis, with special attention in 

psoriatic arthritis, an arthritis with no apparent 

autoimmune features, and rheumatoid arthritis, an 

arthritis with apparent autoimmune features. 

 
Keywords — autoimmunity, inflammation, psoriatic arthritis 

signaling, rheumatoid arthritis.  

 

 

I. INTRODUCTION 

 

Inflammation epitomizes an ordered sequence of events 

that establish and resolve a successful protective innate 

immune response against pathogens. Auto-inflammatory 

processes are sustained hyperactive immune response to 

self-antigens causing damage to tissues and organs [1-3]. 

Autoimmune rheumatic diseases (ARD) are 

heterogeneous, chronic auto-aggressive inflammatory 

disorders of the skin, connective tissue, and joints. ARD 

include among others rheumatoid arthritis, systemic 

sclerosis, and systemic lupus erythematosus [4]. 

Understanding the mechanisms responsible for the 
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regulation of inflammation is of paramount importance to 

better design targeted treatment strategies [5-8]. 

The innate immune system being quite sophisticated, 

can orchestrate the initiation, continuation, and cessation of 

inflammatory responses. Antigen presenting cells (APCs) 

engulf pathogens, present antigenic peptides to T cells and 

secrete monokines in order to regulate other innate immune 

cells such as neutrophils, dendritic cells, macrophages, 

monocytes and Vγ9/Vδ2 T cells [9, 10]. Yet, the role of 

certain innate participators, such as NK and NKT cells, is 

still largely undermined in ARD [11-14]. This occurs 

mainly due to their low-numbers in peripheral blood and 

tissues, which imposes a significant difficulty in their 

study.  APC function has been recently attributed to NKs 

themselves and to certain hybrid subsets, such as natural 

killer dendritic cells (NKDCs), identified in mouse models 

and humans [15-17]. 

One of the most significant intracellular proteins that can 

initiate, perpetuate and resolve inflammation are 

mitogen-activated protein kinases (MAPKs) p38 primarily 

studied in macrophages [18, 19]. Accumulating evidence 

however suggest that p38 members are also activated 

within several innate cell subsets and may function as a 

critical players in ARD [20-23].  In this review we focus on 

two rheumatic diseases characterized by arthritis, psoriatic 

arthritis (PsA), which has no apparent autoimmune 

features, and rheumatoid arthritis (RA), which has apparent 

autoimmune features (rheumatoid factor, anti-citrullinated 

proteins antibodies [ACPAs]). ACPAs are considered 

pathogenic for RA [24]. 

 

P38 MAPK 

 

Identification 

p38 MAPK was originally described in 1994 as 

the mammalian homologue of the yeast Hog1 gene 

encoded kinase. In the same year it was also independently 

described as a kinase activated (phosphorylated) in 

response to an endotoxin (liposacharide, LPS) and 

interleukin (IL-1) challenge, phosphorylating downstream 

targets, such as heat shock protein (hsp)27 and regulating 

inflammatory gene expression [25-27]. p38 is 

phosphorylated in response to inflammatory and stress 

stimuli, such as cytokines, ultraviolet irradiation, osmotic 
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shock, and heat shock, and is involved in cytokine 

regulation, cell differentiation and apoptosis [28]. 

 

Isoforms 

Four subtypes of p38 proteins have been 

identified: α (MAPK14), β (MAPK11), γ 

(MAPK12/ERK6), and δ (MAPK13/SAPK4) [29-31]. 

p38α and p38β share approximately 75% gene sequence 

homology, whereas γ and δ are more distantly related, 

sharing just over 60% of their gene sequence.  p38α and 

p38β are ubiquitously expressed whereas p38γ and p38δ 

show tissue-specific expression patterns. p38α and p38δ 

are abundantly expressed in macrophages, neutrophils and 

T cells, p38γ is highly expressed in skeletal muscle and 

p38β is abundant in endothelial cells [31, 32]. 

 

Phosphorylation 

The structure of p38 kinases consists of a 135 

amino acid N-terminal domain and a 225 amino acid 

C-terminal domain with the catalytic site located in the 

region linking the two domains [33]. p38 isoforms are 

shaped into different three-dimensional structures 

according to the precise orientation of the N- and 

C-terminal domains giving rise to variably sized 

ATP-binding pockets [34]. p38 members are 

phosphorylated within the ATP binding cleft on a single 

threonine (Thr-180) and a single tyrosine residue 

(Tyr-182).  p38 kinases are phosphorylated (activated) 

after treatment with physiological (tumor necrosis factor 

[TNF]-α, IL-12 and IL-18, Toll-like receptor [TLR]-9, and 

TLR-4 ligands) and chemical stimuli, such as phorbol 

12-myristate 13-acetate (PMA) plus ionomycin, sodium 

arsenite and anisomycin. Activation in different cellular 

compartments is dependent on the specificity of each 

stimulus. 

 

Regulation  

Since p38 phosphorylation can be induced by several 

agonists, the receptors and downstream converging 

signaling pathways diversify. Hence, studies have 

confirmed the existence of a classical activation pattern and 

two alternative ones [35, 36]. The classical MAPK 

pathway is evolutionarily conserved and encompasses a 

sequential phosphorylation of MAPK kinase kinases 

(MKKK) which activate a dual-specificity MAPK kinases 

(MKK), which in turn induce p38 MAPK by 

phosphorylating both threonine and tyrosine residues in a 

Thr-Xxx-Tyr motif [37, 38]. In the classical p38 MAPK 

cascade MEKK4 serves as an upstream MKKK and 

activates MKK3, MKK4, and then p38.  MTK1, mixed 

lineage kinase (MLK) 2/3, apoptosis signal-regulating 

kinase (ASK) 1, and transforming growth factor 

β-activated kinase (TAK) 1 are other MKKK kinases 

capable of activating MKK-6 or p38 signaling [39]. Further 

upstream activators of MKKKs include the growth arrest 

and DNA damage-inducible genes 45 (GADD45) proteins, 

that have been studied in detail and described to be of 

fundamental importance in leukocytes [40].  

An increasing number of important substrates occur also 

downstream of p38. MAP kinase-activated protein kinase 2 

(MK2) and MK3 are phosphorylated and can activate a 

variety of mediators, such as small HSP27, 

cAMP-response element-binding protein (CREB), and 

activating transcription factor (ATF) 1 [41, 42]. So far, 

various proteins have been identified as downstream 

substrates of p38, such as mitogen- and stress-activated 

kinase (MSK), p38-regulated/activated kinase (PRAK), 

and MAP kinase interaction protein kinase (MNK1) [43, 

44].  Several novel proteins have also been identified in 

whole lysates of myoblasts as direct targets of p38α, 

including Ahnak, Iws1, Grp78, Pgrmc, Prdx6, and Ranbp2  

[45]. Moreover, TPL2/ERK1/2 kinases can also be 

regulated by p38 γ and δ isoforms [46]. 

Post-transcriptional regulation of gene expression by p38 

MAPK is very important in the regulation of inflammatory 

responses  [47]. Genome-wide analyses have demonstrated 

that only half of the alterations in gene expression during 

the immune response can be accounted for by 

transcriptional regulation. The rest are dependent on 

changes in mRNA stability [22, 48]. The modulation of 

mRNA stability is a powerful mechanism for bringing 

about rapid changes of gene expression, such as those that 

occur when the innate immune system first encounters a 

pathogen. Determinants of mRNA stability are usually 

located within the 3’ untranslated region (UTR), and are 

tandem repeats of the sequence AUUUA termed 

adenosine/uridine-rich elements (AREs) [49, 50]. AREs 

contain, and are recognized by mRNA destabilizing 

proteins including tristetraprolin (TTP) and several others 

[51]. 

Phosphatases also exist to deactivate p38 so that 

p38 is not ad infinitum activated. Mitogen-activated protein 

kinase phosphatases (MKPs) can dephosphorylate MAPKs 

by binding to the TXY amino acid motif [52]. MKP-1, 

MKP-4, MKP-5, and MKP7 have been identified to 

effectively dephosphorylate p38α and p38β [53, 54]. MKPs 

however, are unable to dephosphorylate p38γ or p38δ [55]. 

 

P38 knock-outs 

p38α deficiency results in embryonic death due to 

defects in placental development and erythropoietin 

expression [56]. However, p38β−/− mice are viable and 

exhibit no obvious defects in neither gene expression nor 

lymphocyte development [57]. Single knockouts of either 
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p38γ or p38δ, and the double knockout are also viable. 

Importantly, diminished expression of TNF-α, IL-1β, and 

IL-10 was reported in stimulated macrophages isolated 

from p38 γ/δ null mice, which suggests that p38 γ/δ can be 

crucial regulatory constituents of the innate immune 

response [46]. 

 

Inhibitors 

Dissection of the p38 MAPK signaling cascade is 

made possible with the development of specific p38 

inhibitors [58, 59].   An array of pyridinyl imidazole 

anti-inflammatory compounds, such as SKF-86002, 

SB203580, and SB202190 were among the first available 

p38 inhibitors acting through competition for the 

ATP-binding site [60-63]. Pharmaceutical industries have 

invested heavily in developing competitive and specific 

compounds and a number of second and third generation of 

inhibitors, such as SC-79659, SC-80036, VXs, AMG-548, 

ML3403, pamapimod and AS1940477  [64, 65] . Most of 

these inhibitors show specific and strong activity against 

p38 and inhibit the production of proinflammatory 

cytokines, and, therefore, hold promise as therapeutic 

agents for chronic inflammatory diseases.  For example 

pamapimod reduced clinical signs of arthritis, bone loss 

and inhibited TNF-α production in RA synovial explants 

[66]. Other novel compounds, such as GSK-681323, have 

been used to treat RA, SCIO-469 to treat multiple myeloma 

and dental pain, and RWJ67657 has been used as a broad 

anti-inflammatory agent [67]. Currently, efficacy and 

safety of p38 inhibitors are under evaluation in clinical 

trials [68]. 

 

p38 MAPK in psoriasis and psoriatic arthritis 

The p38 MAPK pathway has been implicated in the 

pathogenesis of psoriasis, as it is detected by 

immunohistochemistry and Western blotting in psoriatic 

skin lesions [69, 70].  Kinase assays also confirmed the 

increased activity of p38α, p38β and p38δ isoforms in 

lesional compared to non-lesional psoriatic skin.  

Phosphorylated p38 in lesional psoriatic epidermis, 

exhibited a distinct nuclear localization indicative of the 

kinase participation in the induction of active gene 

expression [70].  Dual specificity phosphatase (DUSP)1 

that can dephosphorylate p38 MAPK and cease its 

function, is also impaired in psoriasis since its mRNA 

expression was significantly down-regulated in lesional 

compared to non-lesional psoriatic skin [71, 72].  

Further downstream targets of p38 MAPK signaling, 

such as MK2, are also activated in the psoriatic epidermis 

[73]. Keratinocytes transfected with MK2-specific small 

interfering RNAs showed diminished MK2 expression and 

significant reduction in the expression of IFN-γ, TNF-α, 

IL-6, and IL-8 proteins. The mechanism by which p38 

MAPK mediates its regulatory effects through downstream 

kinases has been dissected in mice with deleted MK2 [74]. 

These mice are deficient in the LPS-induced biosynthesis 

of several pro-inflammatory cytokines regulated by p38, 

including TNF-α, IFN-γ, IL-6, and IL-1. They survive 

LPS-induced endotoxic shock due to a reduction of the 

secretion of TNF-α by almost 90% [75]. MK2 has been 

considered as a key molecule participating in host defense 

against intracellular bacteria through regulation of both 

TNF-α and IFN-γ production [76, 77]. 

Mitogen- and stress-activated protein kinase 1 (MSK1) 

is another downstream target of p38 which regulates the 

expression of pro-inflammatory cytokine genes through 

activation of transcription factors. Western blotting 

analysis revealed a consistent and significant increase in 

phosphorylated MSK1 (Ser376) in lesional psoriatic skin 

[78, 79]. Cultured human keratinocytes incubated with 

anisomycin or IL-1β resulted in the phosphorylation of 

both p38 MAPK and MSK1 (Ser376) whereas MSK1 

(Ser376) phosphorylation was inhibited by pre-incubation 

with p38 inhibitors or dimethylfumarate [80]. In addition, 

transcription factors, such as cAMP/calcium responsive 

element binding protein (CREB) associated with cellular 

proliferation gene expression, are also phosphorylated in 

psoriatic skin [81].  Activation of CREB through ERK1/2 

is directly linked with the expression of TNF-α, IL-6 and 

IL-8 [82]. These cytokines are also under direct regulation 

of the p38 pathway as well [83, 84]. p38 MAPK-induced 

phosphorylation of STAT-3 and of STAT-1 at serine 727 

has also been demonstrated in lesional psoriatic skin [85, 

86]. STAT-3, in particular, has been described as the 

crucial link between activated keratinocytes and 

immunocytes required for the development of psoriasis in a 

novel transgenic mouse model [87]. 

Thus, keratinocytes in the psoriatic epidermis are 

characterized not only by abnormal proliferation and 

apoptosis, but also by increased expression of 

inflammatory cytokines through interaction with 

immunocytes [84]. This seems to be regulated by the same 

signals arising from the activation of MAPK signaling 

cascades of p38 in immune cells [88].  Apart from the 

classical Th1 mediated response, Th17 cells have recently 

been demonstrated to sustain inflammation in psoriasis and 

psoriatic arthritis   [89, 90].  The antimalarial drug and 

autophagy/lysosome inhibitor chloroquine (CHQ) is 

suggested as potential trigger of drug-induced psoriasis, in 

which Th17 cell mediated cytokine expression occurs in an 

p38-dependend IL-23 expression manner [91]. Dendritic 

cells treated with LPS increase the secretion of both IL-1β 

and IL-23, and stimulate the secretion of IL-17, IFN-γ, and 

IL-22 by innate γδ T cells [92]. IL-12, IL-23 and IL-27 
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production form a activation loop involving cells of innate 

and adaptive immune response [93]. In bone 

marrow-derived dendritic cells IL-23 and IL-27 expression 

is in part regulated by p38 MAPK [94].  

Apart from inflammatory gene expression, 

antimicrobial peptide S100A8, known to be up-regulated in 

lesional psoriatic skin, was found also to be regulated by a 

p38 MAPK-dependent mechanism [95]. Similarly, 

p38-dependent expression was demonstrated for the 

antimicrobial peptides cathelicidin, human β-defensin-2, 

human β-defensin-3, and S100A7 in human keratinocytes  

[96] . 

Information on the involvement of MAPK signaling in 

the pathogenesis of PsA is very scarce, whereas activation 

of MAPKs, specifically p38 and downstream MK2, has 

been described in RA synovium and in the 

collagen-induced arthritis model of RA [64, 75].   Recently, 

in a mouse model it has been shown that psoriatic skin 

inflammation facilitated the development of arthritis and 

enthesitis, both features of PsA [97].  Th1 and Th17 

Inflammatory cytokines are up-regulated in psoriasis, PsA 

and other spondyloarthritides [98-100] and TNF-α 

inhibitors are the mainstay treatment for psoriasis and PsA  

[101-103].  Back in 2000, Danning et al have linked 

elevated pro-inflammatory cytokines with NFκB activation 

in PsA synovium [104].  More recent findings underlined 

the participation of both MAPK signaling and NFκB 

activation in PsA synovium before and after treatment with 

TNFα inhibitor (etanercept) [105].   Activated p38 was 

present in both lining and sub-lining area of the synovial 

membrane and p38 positive cells were detected in 

inflammatory infiltrates and perivascular areas. In addition, 

IL-36α is up-regulated in PsA and RA synovium and leads 

to IL-6 and IL-8 production by synovial fibroblasts through 

p38/NFκB activation [106]. 

 

 

 

 

p38 MAPK pathway in rheumatoid arthritis 

 

The p38 MAPK signaling pathway has been 

implicated in the pathogenesis of RA.  In fact, for several 

years it has been regarded as a potential therapeutic target 

for RA and other chronic immune-mediated inflammatory 

diseases [28, 64]. 

 RA is considered an autoimmune disease. Recent 

findings suggest that ACPAs are autoantigens in RA 

recognized by T cells and B cells and most importantly are 

arthritogenic [24].  Early studies have confirmed the heavy 

infiltration with T cells carrying activation markers in 

inflamed RA synovial membrane [107-109].   Infiltrating T 

cells preferentially expressed IFN-γ, thus aggravating 

chronic inflammation.   Local synthesis of IFN-γ in RA 

joints is largely induced by the synergistic effect of IL-12 

and IL-18 that are produced by activated antigen presenting 

cells (APCs) [110, 111] .  IL-12 and IL-18 induce IFN-γ 

through the p38 MAPK pathway in T and NK cells [22, 

112].  Autoreactive T cells also maintain a spontaneous 

TNF-α production in rheumatoid synovial tissues via cell 

conduct and cytokine activation [113].  Activation of p38 

MAPK is a critical step for the acquisition of effector 

function in T cells [114, 115].   TNF-α is one of the major 

pro-inflammatory mediators in RA and recently, prolactin 

receptor (PRLR) which regulates the expression and 

release of TNF-α from CD14(+) monocytes through p38 

MAPK was found to be markedly increased in RA patients 

[116]. This TNF-α release from CD14(+) monocytes can 

be abolished by PRLR gene silencing or treating with 

MAPK inhibitor. 

Over the last few years, the importance of IL-17 and 

Th17 cells in the pathogenesis of RA has become apparent 

[117, 118]. Recent data suggest that engagement of TLR2 

enhances IL-17(+) autoreactive T cell responses via p38 

MAPK signaling in dendritic cells [119].  Inhibition of p38 

MAPK activity dramatically decreased IL-17 gene 

expression and antigen-specific Th17 responses.  In 

addition, increased salt solutions, found locally under 

physiological conditions, have been shown to activate the 

p38/MAPK pathway involving nuclear factor of activated 

T cells 5 (NFAT5); and serum/glucocorticoid-regulated 

kinase 1 (SGK1) during cytokine-induced Th17 

polarization.  In addition, increased dietary salt aggravated 

experimental autoimmune encephalomyelitis through 

Th17 cells [120]. 

Of the p38 MAPK isoforms p38α is the one that 

strongly expressed in RA synovial tissue and mostly 

implicated in the pathogenesis of RA [66, 121]. 

Preferential activation of upstream MKK3 or MKK6 

leading to p38MAPK activation in synovial fibroblasts has 

also been described [122, 123].  Deletion of p38β does not 

affect experimental arthritis, whereas deletion of the 

Mapk14 (p38α) confers protection against inflammatory 

bone loss. In the rat streptococcal cell wall arthritis model, 

inhibition of p38 MAPK leads to significant reduction of 

inflammation and cartilage breakdown [124]. Similar 

findings are also reported in other murine arthritic models, 

such as adjuvant-induced arthritis and collagen-induced 

arthritis [125, 126].  Animal models enable the prediction 

and testing of therapeutic targets, but the pathogenetic 

mechanisms involved may not be quite similar to those in 

human RA.  Still, studies in animal models suggest that p38 

MAPK and upstream kinase inhibition controls 

well-established arthritis [127]. In these models, several 
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early and new generation p38 MAPK inhibitors have been 

proven to be effective in reducing the disease severity.   

Disappointingly enough, none of p38 inhibitors have 

successfully passed late clinical trials for the treatment of 

RA thus far [68]. Untoward effects that limited their use 

was significant liver toxicity, and their undesirable ability 

to cross blood-brain barrier [128]. Therefore, certain early 

inhibitors such as VX-745 (with promising results in phase 

II trials for RA) were soon discontinued [129]. Newer 

inhibitors, such as SCIO469, BIRB796, pamapimod, 

KR-00348 and AS1940477, are more selective at targeting 

p38, but show transient inhibition of pro-inflammatory 

markers [130, 131].  

In order to explain the apparent failure of p38 

inhibitors in RA, it is important to better understand the 

complexities of the p38 pathway and its communication 

with other cellular signaling pathways [28]. Targeting the 

upstream or MAP kinase kinases, may provide a viable 

alternative [127].  For example, MKK3 and MKK6, has 

been shown to partially maintain p38-mediated 

anti-inflammatory responses in bone marrow-derived 

macrophages (BMDM) [132].  Conventional p38α 

inhibitors have limited efficacy in RA, possibly because 

p38 blockade suppresses the counter-regulatory 

mechanisms that limit inflammation.  For instance, recent 

data revealed the existence of CD8+FoxP3+ Treg cells in 

peripheral blood of patients with RA [133]. Unlike their 

CD4+ counterparts, CD8+FoxP3+ Treg cells inhibited 

Th17 inflammatory responses thereby limit a wider range 

of inflammatory pathways. CD8+FoxP3+ Treg cell 

induction was supported both by p38 phosphorylation 

intrinsic to naive CD8+ T cells and by monocytes via 

CD86 and membrane TNFα.  In contrast to conventional 

CD4+ T cells, freshly isolated natural Tregs exhibit marked 

activation of p38 MAPK [134]. The p38 MAPK pathway is 

also involved in the conversion of naive T cells into 

induced Tregs [135]. Inhibition of p38 MAPK activity 

prevents the TGFβ-dependent conversion of CD4+CD25- 

T cells into Foxp3+ iTreg in vitro [136].  It follows that, 

p38 MAPK targeting (such as that through 

pharmacological inhibitors) potentially prevents the 

induction of iTreg in vivo and this may account for the 

inability of these antagonists per se to control the 

exacerbation of autoimmune disease. 

All these data collectively define a largely unknown 

p38-dependent mechanism of FoxP3+ Treg cell induction. 

It seems that inhibition of p38 MAPK through 

pharmacological antagonists exerts two distinct functions. 

First, they act as potent anti-inflammatory agents by 

diminishing p38 MAPK mediated IFN-γ, IL-6, and IL-17 

expression and; second they lead to functional impairment 

of suppressor cells, such as regulatory T and probably B 

cells. While the former function of p38 MAPK antagonists 

is undisputed, the latter is largely unexplored but certainly 

unwanted.  

 

Peripheral blood signature studies are of great importance 

and can provide a lot of information regarding new 

immune regulatory molecules [137]. Meticulous 

assessment of cellular populations their signaling pathways 

and associated gene expressions is necessary in order to 

advance our knowledge on the pathogenesis of rheumatic 

diseases and to successfully identify novel molecular 

therapeutic targets. Application of optimized protocols 

based on sensitive phospho flow cytometry have been 

recognized as promising alternatives for the investigation 

of the phosphorylation of p38 MAPK within different 

peripheral blood mononuclear cell (PBMC) populations 

[138-140]. For instance, we have optimized a flow 

cytometry-based assay that details cellular phenotypic 

status, signaling status and gene expression analysis, all 

combined [141, 142]. The availability of multiplexing 

technologies capable of simultaneously quantifying 

multiple biomarkers has been particularly helpful in 

dissecting changes in soluble cytokine and chemokine  

networks in clinical samples. (Fig. 1). Flow cytometry has 

been so far useful in revealing the phenotype of rare cells 

infiltrating psoriatic lesion and their secreted cytokines 

[143]. One such study in PBMC of patients with PsA 

identified a unique gene expression signature of MAPK 

signaling members [144]. These observations could be 

carefully projected and analyzed in relation to infiltrating 

lymphocytes from psoriatic skin biopsies [145, 146].  

 

 
 

 

Fig.1 Flow cytometric analysis of P38 MAPK. 

Representative flow cytometric analysis of p38 MAPK 

phosphorylation in NK (CD56 positive) cells from a 

healthy donor following stimulation with PMA and 

Ionomycin 
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Yet, there is very little information available on the kinases 

and signaling pathways activated in the rare NK and NKT 

cells of PsA patients (Fig. 2). As shown in figure we are 

currently able to successfully detect several surface 

epitopes together with phosphorylated kinases such as p38 

and Stats and subsequent intracellular gene expression.  

We have previously shown that p38 MAPK regulates 

post-transcriptional IFN-γ gene expression in human NK 

and NKT cells [22]. This possibly occurs via an 

MKK6/p38/MK2-dependent mechanism for the 

stabilization of IFN-γ mRNA in NK and NKT cells, and 

may play an important role in host defense as well. We 

have previously applied the optimized methodology for the 

successful application of phospho-specific flow cytometry 

in order to detect phosphorylated p38 MAPK within 

peripheral and intrahepatic innate immune cells, such as 

NK and NKT [147].  Because of the critical and 

bi-directional role of the p38 MAPK / IFN-γ axis in 

inflammation and autoimmunity, the elucidation of the 

molecular mechanisms controlling its expression is the 

focus of ongoing research by our team [142].  

 
 

Fig 2. Representative histograms of experiments showing 

activation of p38 MAPK in a patients with psoriatic 

arthritis. Surface markers staining includes CD3 (pan-T 

marker), CD56 and CD7 (NK markers). 

 

 

 

II. CONCLUSIONS 

Current data suggest that p38 MAPK plays an important role in 

the pathogenesis of RA and possibly PsA.  However, more 

studies are needed to further advance our knowledge on 

p38MAPK expression in inflammatory as well in suppressor 

cells during the course of arthritis in order to better define 

therapeutic strategies. 
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