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Abstract  

Relying on Pigou's view, environmental taxes increase the costs of polluting activities 

reflecting in this way the true social cost imposed to society by the caused 

environmental damage by these activities. The total pollution cost (TPC) is defined by 

adding up the marginal abatement (MAC) and the marginal damage (MD) costs. That 

is the random variable TPC includes the social costs associated with pollution. We 

relate this with contaminated locations and propose a weighted location differentiated 

tax and a corresponding index that adjusts taxation to the damages caused. It is clear 

that the value of the expected total pollution (social) cost, E(TPC), would be of 

interest and therefore we proceed to the evaluation through the use of the γ-order 

Generalized Normal. The value of the variance, Var(TPC), is also evaluated and we 

provide a generalized form of the E(TPC) as far (i) the form of TPC and (ii) the 

probability density function.  
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1. Introduction  

        In the past, command and control regulations (like limiting the use of specific 

fuels or demanding certain pollution sources to use specific methods) dominated 

environmental policies with market based instruments (like taxes and tradable 

permits) to dominate over the last decades. Environmental taxation relies on Pigou’s 

concept of increasing polluters’ private costs to a level that includes the associated 

true social costs imposed to the society by their activities and the resulting related 

environmental damages.  

        Economic theory indicates that the optimal tax rate is determined where 

marginal abatement cost (MAC) equals to marginal damage cost (MD) of pollution to 

be abated. In a first best policy taxes should be differentiated between pollution 

sources according to the size of their resulting damage costs. A second best policy 

relies on the imposition of a high uniform tax rate. Halkos (1993) showed that moving 

from the first best optimum to a uniform tax rate does make a difference. Specifically 

and in the case of the acid rain problem in Europe it was shown that the costs of 

moving from the first-best to the imposition of a high uniform tax rate may not differ 

so much across countries but may be quite different within countries. 

 Pollution control and damage cost functions are non-linear and their exact 

shapes are usually unknown (Halkos and Kitsos, 2005; Halkos and Kitsou, 2014). At 

the same time, environmental effects are associated with significant irreversibilities 

interacting often in a very complex way with uncertainty. This complexity becomes 

even worse when taking into account the very long-run character of many 

environmental problems. Uncertainties in abatement and damage cost functions affect 

policy design in various ways. When marginal abatement costs are known and 

constant, the policy maker of the environmental issues (for instance the local 
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authorities) can minimize social cost by introducing a pollution tax that equalizes 

marginal abatement and damage costs.  

 But firms do not have always an incentive to reveal their true abatement 

costs.
1
 A weighted location adjusted differentiated taxation is introduced, based on the 

principle that when pollution is above “an optimal and accepted level” more taxation 

has to be imposed, while if it is below there is a chance of less taxation. In this way a 

new index to adjust taxation to the damage caused is proposed. 

In the absence of information about costs, the level of emissions taxes needed 

to achieve a target level of pollution abatement is unknown. This problem can be 

overcome by using an iterative procedure in which tax is adjusted. The tax that its tax 

system results in the social optimal pollution level is the differential tax. With 

differential taxation, the marginal emission tax paid by firm i is always equal to 

marginal damage costs and thereby minimizing social costs. The reason why this tax 

system results in the social optimal pollution level is that the firms -faced with a tax 

level that depends on emissions of firms- have an incentive to share information with 

respect to their abatement cost.  

The analysis becomes more complicated when the abatement costs are 

stochastic, i.e. developed around it a probabilistic randomness. In this case or when 

we have changes in the marginal abatement costs, specific environmental policies are 

required, because the results from the changes of the Pigouvian taxation may be 

                                                           
1
 Estimation of damage cost functions is much more complicated compared to abatement costs, as the 

influences of pollution cannot be identified with accuracy and there are many cases where it takes a 

long time to realize the effects of the damage imposed. To extract damage estimates in the case of 

acidification and the related transboundary pollution nature, a model taking account of the distribution of 

the externality among various countries (victims) is needed. As it is difficult to have a direct estimate the 

damage function its parameters may instead be inferred assuming countries equate national MD with 

national MAC and where restrictions on the derivatives of the damage cost function are significant. In 

this way the damage function may be “calibrated” assuming that national authorities act as Nash 

partners in a non-cooperative game with the rest of the world, taking as given deposits originating in 

the rest of the world (Hutton and Halkos, 1995; Halkos, 1996).   
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considered obsolete. Marginal abatement costs may change over time, by changing 

the innovative standards in the industry and by adopting the rapidly evolving new 

technologies. It is worth mentioning that adoption of new technologies reduces or 

aims to reduce emissions.  

Given innovation outcome (X), the Total Pollution Cost (TPC) is defined by 

the sum of the marginal abatement (MAC) and the marginal damage (MD) costs. That 

is the random variable TPC includes the social costs associated with pollution. In this 

paper we evaluate the expected value of TPC and introduce the estimation of its 

variance. Specifically, choosing as TPC the general form TPC= (κX+λ)
2
 (with κ, λ 

constants and X the introduced technology) coming from the γ-order generalized 

normal distribution
2
 we provide a generalization of the E(TPC) both in the form of 

TPC and the probability density function. The introduced technology represented by X is 

related with the distribution described by a shape parameter, a location parameter (the 

center of the pollution) and a scale parameter (the variance of pollution concentration 

around the center of pollution). In this way we propose a weighted location 

differentiated taxation to existing tax systems and a corresponding ratio to provide us 

with an index adjusting taxation to the damage imposed. 

The structure of the paper is as follows. Section 2 reviews the relative existing 

literature while section 3 explains and defines the proposed weighted location 

adjusted differential taxation. Section 4 discusses the use of the appropriate 

distribution and the evaluation of the expected value and the variance of the total 

pollution social cost. The last section concludes the paper and refers to the associated 

policy implications of the proposed tax differentiation. 

                                                           
2
 For more information on the γ-order generalized normal distribution see Appendix 1 and Kitsos and 

Tavoularis (2009), Kitsos and Toulias (2010) and Kitsos et al. (2012).  
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2.  A brief review of existing relative literature 

        As mentioned, economic efficiency demands that the marginal cost of 

emissions reduction equals to the marginal damage costs imposed. It is obvious that 

the problem of relating taxation and pollution has been considered by many 

researchers. The target is an equitable sharing of charges on polluters. Such a model 

could be used for example in harbors with heavy traffic, where the entrance or exit of 

ships pollutes the environment corresponding to the quality of the vessel. Therefore, 

the technology used, will be associated with the taxation system.  A new tax, which 

depends on innovation and at the same time, is above the expectations of a Pigouvian 

analysis was proposed by Requate (2004). The proposal of Requate under stochastic 

innovation has the same importance as the analysis of the other environmental 

measures.  

            As the distance and the location of GHG emissions’ sources are not related to 

the location of the environmental damages and degradation, they are considered as 

uniformly mixing pollutants
3
 with their concentration levels to be invariant from place 

to place. In the case of uniformly mixing pollutants the pollution levels depend on 

their total emissions levels. Similarly, in the case of non-uniformly mixing pollutants 

locations of their emission sources are significant in determining the spatial 

distribution of ambient levels of pollution (Perman et al., 2003).  

        In the case of non-uniformly mixed damage efficiency demands that the 

marginal costs of emissions control should be different across pollution sources and 

should be determined by the damage caused (Tietenberg, 2006). This may be 

accomplished by taking into consideration the associated marginal damages imposed 

                                                           
3
  Uniformly mixing pollutants take place when physical processes function to disperse them to the 

point where their spatial distribution is uniform (Perman et al. 2003, p. 178).  



6 

 

across sources. Coping with this issue we extend the existing results and propositions 

and introduce the weighted location adjusted tax. 

        In cases of existing regulations implementations are performed as spatially 

uniform with undifferentiated policies and with emissions being penalized at the same 

tax rate and permit prices (Fowlie and Muller, 2013). Theoretically, market based 

policies may tackle non-uniformly mixed pollutants (like NOX, SO2) with the optimal 

tax to be calculated by the marginal damage imposed. Taxes are different by pollution 

source for different levels of damage imposed. Differentiation will be profitable 

depending on the variation in damages caused across sources as well as the slopes of 

MACs (Mendelsohm, 1986; Halkos, 1993, 1994; Fowlie and Muller, 2013).  

In general, almost all tax systems involve differentiated tax rates among the 

various sectors (industry, commerce, households etc). In the case of uniform taxation 

the same marginal abatement costs are assumed with the economy in total to use the 

cheapest pollutant control methods in each sector. Reducing the tax rate in a sector 

may impose increases in the taxes imposed in the other sectors to attain the imposed 

environmental target. This implies that any deviation from uniform taxation may 

impose excess costs. Thus differentiated taxation among different sectors of an 

economy is optimal due to, among others, initial tax distortions, distributional 

concerns, trade terms and leakage motives (Böhringer and Rutherford, 2002).  

That is why we adopt the generalized γ-order Normal distribution for the 

analysis bellow. This distribution is based on an extra, shape parameter γ, which 

under different values of γ coincides with a number of well known distributions. 

Among them, and as it will be shown in the next section, with γ=1 is the Uniform 

distribution, with γ=2 is the well known Normal distribution and with γ=infinity, 

practically very large (or very small) coincides with the Laplace distribution. 
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Pre-existing tax distortions influence the efficiency effects of newly imposed 

environmental taxes. Among others, Bovenberg and van der Ploeg (1994), Bovenberg 

and Goulder (1996) and Goulder et al. (1997) propose that tax interaction leads to 

higher efficiency costs (net of environmental benefits) of environmental taxation 

compared to a first-best case leading to optimal second-best environmental tax rates 

lower than the Pigouvian rate. At the same time, revenues raised by the imposition of 

environmental taxes may be used to reduce the distortions of the existing taxes 

(Terkla 1984; Oates 1995) offsetting in this way part of potentially negative tax 

interaction effects (Goulder 1995). 

 

3.  The weighed location adjusted differential tax 

The way we move on is by defining the “weighted location differential tax”. 

Theoretically this tax will be non-linear (since high pollutants should face appropriate 

taxes i.e. exponential greater and not linear) and non–time consistent (as pollution is 

not time constant depending for instance on weather conditions, amount of 

production, etc). This new indicator for environmental policy is based on a 

generalization of the differential taxation (Halkos, 1993, 1994; Kim and Chang, 1993; 

Mc Kitrick, 1999) and provides another look of differentiation in taxation, based on 

the location and the assumed distribution the new introduced technologies follow (see 

the definition of TPC above).  

  Our argument is that around the pollution center (source of pollution) the 

pollution is distributed according to a (possible) statistical model, related with the 

actual situation. In such a case it may be uniformly distributed i.e. in a distance, left or 

right from the pollution center the pollution to remain constant. That might be a 

helpful, mathematically, assumption, but it is difficult to be true. Another approach is 
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to consider a normally distributed pollution, with the mean being at the pollution 

center, so plus or minus it one standard deviation concentrates approximately the 0.68 

of the pollution. In cases of 0.99 levels of pollution concentration we may consider a 

±3σ confidence interval (or L=6σ) as essential. This is near to be true, as the tails 

contain a very small probability level to allow a pollution influence.  

Similarly, the Laplace distribution offers a solution to provide a “strong” 

pollution center and fat tails. All these three distributions are special cases of the γ-

order Generalized Normal distribution
4
. In this particular distribution, the third 

involved parameter, the shape one, called γ, taking all real values, but not within [0, 

1], offers a number of different distributions with fat tails mainly. With the value of 

γ=1, it is reduced to Uniform; with the value γ=2 is reduced to Normal; with the value 

of γ “infinity” practically very large is Laplace. In Proposition 1, in section 4, we 

obtain the appropriate evaluations for the total pollution (social) cost (TPC). 

Now, having the expected value and the variance of the total pollution cost, 

E(TPC) and Var(TPC), approximate 95% confidence intervals (CI) can be obtained – 

which are precise only in the Normal case of the form                

 CI(TPC) = ( E(TPC) -2 (Var(TPC))
0.5

 , E(TPC) + 2(Var(TPC)
0.5

 )  (1) 

The length of this .95 confidence interval is L=4[Var(TPC)]
0.5

. Similarly and in the 

case of a 99% CI, as mentioned, we work with the “distance” D of the end points of 

±3σ (or 6σ) CI with D=6[Var(TPC)]
0.5

 a kind of Quality Control criterion of the 

pollution. That is how far from the center of the pollution the area is contaminated 

with a 99% probability.  

                                                           
4
 See Appendix 1 and Kitsos and Tavoularis (2009), Kitsos and Toulias (2010) and Kitsos et al. (2012). 
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When pollution is at the optimal level the optimal length as above is L
* 

or D
*
. 

Therefore the ratio 

                           
*

( )
L

Tax
L

∆ =  or  
*

( )
D

Tax
D

∆ =     (2) 

is essential and can be a fair index to provide a weighted location differentiated 

taxation, as the case ∆(Tax)>1 is expected to be faced in existing tax system. The tax 

burden will be determined using expression (2) which depends on the optimal level of 

pollution L
*
 or D

* 
based on the choice of the appropriate new technology X and the 

corresponding TPC. More simply, with L
*
 and D

*
 we denote the optimal cases where 

the variance of TPC that is the variability of pollution is as expected and as a 

consequence the confidence limits are also expected. L and D may be the real length 

of the confidence intervals for 95% and 99% respectively. That is the corresponding 

ratio as in (2) provides researchers with an index adjusting taxation to contamination 

caused. If the evaluated in each case L and D are less that the optimal then the tax 

burden will be less. In such a way a source of pollution (industry, firm, etc) has an 

incentive to look for more efficient control methods.  

This idea can be also adopted when the pollution centre (that is the pollution 

source point) might be moving, as an aeroplane or a boat. In such a case around the 

pollution centre a “sphere” of pollution is created of the form 

                          (x-a)
2
 + (y- b)

2
 + (z-c)

2
 = R

2  
  (3) 

With R being the radius of the sphere and K(a,b,c) the pollution centre. If R>R
*
, with 

R
*
 being the optimal pollution level radius, a weighted location differentiated taxation 

is needed, in the sense that a radius of pollution R is accepted, based on the adopted 

technologies, but beyond that, there is a problem. In section 4 we proceed with the 

evaluation of the expected value and the variance of the total pollution cost. 
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4.  Adopting the appropriate distribution 

The easiest way, as far as the mathematical calculations are concerned, despite 

its unrealistic character, is to assume that the stochastic variable X –as a result of the 

R&D procedure, is uniformly distributed in the interval
1 1

,
2 2

δ δ − +  
, say, recalling 

the definition of the Uniform distribution. This means that in this research we suppose 

eventually the variable TPC is derived from the Uniform distribution, i.e. 

1 1
( , )
2 2

u δ δ− +  implying a uniform density function for X of the form  

 
1

( )
2

f X
δ

=   for 
1 1

,
2 2

X δ δ ∈ − +  
    (4) 

From the definition of the expected value the pollution related t- social cost for the 

linear tax, 
lt

TPC Ε   , is equal to 

1

2

1

2

( )TPC f x dx

δ

δ

+

−

∫ . Any general form of TPC=(κX+λ)
2
 

is presenting the appropriate area for TPC. 
  
 

An extension of the calculation of expected value is needed as it can be either 

normal with the known tails or a “sharp” one around ‘center’ with ‘heavy tails’, a 

Laplace distribution among others. Therefore the γ-order generalized Normal 

distribution was adopted
5
 as the extension of the Uniform distribution. The expected 

value of TPC can be evaluated and it can be seen that that the distribution is not only 

the Uniform but the 2( , )γ µ σΝ .
6
 Figure 1 clarifies the generalization and represents 

the relation between Uniform, Normal and Laplace. This distribution regards a 

number of other distributions which are with ‘fat tails’
7
 and can be used in various 

                                                           
5
 See Kitsos and Tavoularis (2009), Kitsos et al. (2012), Halkos and Kitsou (2014).  

6
 See appendix 1. 

7
 This is why we are referring to “a family of distributions”. 



11 

 

economic analyses like for instance in stock markets. So, the following results are 

proposed for the form (κg+λ)
2 

and ( ; , )f xγ µ Σ  letting X represent a random variable 

describing innovation. 

Figure 1: Graphical presentation of the relationship between  

Uniform, Normal and Laplace  

                         

 Proposition 1: If 2( , )γ µ σΧ Ν∼ it holds that:  

.  
2( )κ λ Ε Χ +  =

1

2 2 2

1
(3 )

( ) ( ) ( 2 )
11

( )

γ
γ

γ
γ γ κδ κµ κµ λ λ

γγ
γ

−

−
Γ

+ + +
−− Γ

  (5)  

2(( ))Var κ λΧ+ =

1

2

4 4 3

2

1 1
(5 ) (3 )

( ) ( ) 4 ( ) ( 4 )
1 11

( ) ( )

γ
γ

γ γ
γ γ γκδ κµ κµ λ

γ γγ
γ γ

−

− − Γ Γ 
− − + 

− −−  Γ Γ
  

 

                       2 2 2

1
(3 )

2 1
2( ) 2 ( ) 2 ( )

11
( )

γ
γ γ γκδ λ κµ κλµ

γγ γ
γ

−
Γ

−
 + − −  −− Γ

         (6) 

Proof in Appendix 2. 
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With different values of κ and λ a number of calculations for the 

corresponding TPC can be obtained. Next we present a number of examples.  

Example 1:  Let us assume that TPC = 2(1/ 4 3 / 8 )X− . Then it holds:  

 

1 1
2

14ˆ
1

1;
E[T ] 9( )

(3 )

( )
t

PC

γ γ
γγ γ

γγ γ
γ

δ
− −

− −

Γ

Γ
= +

ℓ

      (7) 

( )
1 121 1 1

4 2
2

ˆ 1 1; 21 1

4 271
4 1 4

(5 ) (3 ) (3 )
(6 ) 4 13

( ) ( ) ( )
Var ( ) 954 ( )

t
TPC

γ γγ γ γ
γ γ γγ γγ γ

γ γγ γ γ γ
γ γ γ

δ δ
− −− − −

− −− − −

 Γ Γ Γ
− + + 

Γ Γ Γ  
=

ℓ

           (8) 

 

Example 2:  Based on Example 1, for this particular TPC, it holds that the expected 

value and variance of TPC can be evaluated for the Uniform, Normal and Laplace 

distributions as:  

                  
;

1
4

1
4

ˆ

1
4

,3

E[T ] 9

18

, 1,

, , 2,

, , ,

t

Uniform

Normal

Laplace

PC γ

δ γ

δ γ
δ γ

=

=

= ±

+

+
 ∞


= 

+
ℓ

    (9) 

 

( )
211

45
27
4

27
4

2

7
4

;

2

ˆ

2

13 )318 (36

Var 954 (18

1908 2

, 1,

13 ) , 2,

13 ) ,(6 ,

t

Uniform

Normal

Laplac

TPC

e

γ

δ δ γ
δ δ γ
δ δ γ

− =

−

 +


= +


=

= ±∞+ +

ℓ

                (10) 

Example 3:  From (9) it obviously holds that the quantity ,
lt

TPC γ Ε    in the case of 

Uniform distribution is less than the corresponding Normal distribution, which is less 

that the corresponding Laplace distribution. That is:  

      1 ,2, ,
l l lt t tTPC TPC TPC ±∞

     Ε < Ε < Ε        

For (10) and for 0 49.074δ< <  it holds that:
8
  

      ( ) ( ) ( )U N LVar TPC Var TPC Var TPC< <  



13 

 

   Figure 2 shows that with γ=1 (the case of uniform) the expected value is less 

than in the case of γ=2 (the case of normal) and flatter compared to the other two 

cases. Similarly the results for the comparison between γ=2 (Normal) and γ=±∞ (the 

case of Laplace) show that Laplace is sharper among them. This implies that changing 

D the expected value of TPC in the case of the uniform distribution is more stable 

compared to the other cases. With Laplace being the most sensitive in changing 

parameter δ, a small change in δ causes a sharp change in the expected value.    

 

Figure 2: Graphical presentations of ;E[TP ]tC γ =
ℓ

E 2(1/ 4 3 / 8 )X−  with 2(~ , )Xγ γ µ δN  

as function of the scale parameterδ , for different values of the parameter γ (blue is for 

1γ ≥  while red is for 0γ < ).   

 
5.  Discussion and policy implications 

  Environmental taxes should be targeted to the pollutants and should be related 

to the environmental damage caused. Without any government intervention countries 

(firms) will not take into consideration any environmental damage caused as this may 

be either spread across different regions or countries (as in the case of transfrontier 

pollution) or may be accumulated (stock pollution). For instance GHG emissions from 
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one location may play an important role in global climatic changes. The way to cope 

with the problem is to tax directly the environmental damage costs due to the damages 

imposed.    

Specifically, in this research we have considered a general distribution that the 

random variable X of the new technologies adopted by a firm, and therefore the total 

pollution cost (TPC) follows it covering 3 different lines of thought: a uniform 

approach of pollution around the center of pollution, adopting the new technologies; a 

normal that is most of the pollution around the centre; and a ‘sharp’ portion of 

pollution around the centre, i.e. the Laplace distribution.  

Due to this general distribution a weighted location differential tax was 

introduced. The proposed tax is differentiated according to the “level of distance” 

from the centre of pollution i.e. how far from it has the area being contaminated due 

to this particular source of pollution. As a conclusion it is very clear that we are 

depending on the assumption of the distribution for the (stochastic) TPC variable.  

In this paper as shown the application of the γ-ordered generalized Normal 

provides to the researcher the option to choose among three distributions: The 

Uniform, Normal and Laplace. That is among no-tails, normal tails, and fat tails. The 

decision is also based on the value of δ we choose at the first step – ‘how far’ from the 

‘origin of pollution’ we go.  

The question of what is the shape of the distribution to be followed is 

important. That is why the expected value of the total pollution cost, E(TPC), can be 

related to the appropriately calculated variance, Var(TPC), so that approximate .95 

confidence interval of the form ( ) 2 ( )TSC Var TPCΕ ±  to be evaluated, while for a 

.99 approximate confidence interval the factor 2 is replaced by 3. As the TPC includes 

the social cost related to pollution the greater expected value has to be associated with 
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higher taxation under the weighted location tax while the larger the variance the larger 

the area polluted and affected socially. Therefore the taxation system should take into 

consideration these issues.  

Due to difficulties in having available reliable direct cost estimates this 

approach may be used with various sensitivity scenarios and existing sensitivity maps 

of ecosystems applied to various indirect effects of depositions (see for instance 

Kämäri et al., 1992). It is feasible for every country to estimate the area in a number 

of sensitivity classes with values determined by ecological criteria like geology, 

vegetation, soil type, rainfall amounts etc. For instance acidic depositions vary 

significantly with time and location.  

If the relationship between source and receptor locations is not considered 

then the externality imposed will not be taken into examination. The externality is 

considered by the appropriate consideration of the transfer coefficients as provided by 

the co-operative programme for monitoring and evaluation of the long range 

transmission of air pollutants in Europe (European Monitoring and Evaluation 

Program, EMEP). Then mathematical models may be used by policy makers to define 

the optimal necessary emissions reductions for each pollution source (country) i and 

under the ecosystem sensitivity thresholds (see among others Halkos, 1994).  
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Appendix 1 

   The γ-ordered Normal Distribution 

We remind that the normal distribution 2( , )µ σΝ , with mean µ and 

variance 2σ , is defined as:  

               2

1 2

2

1 1
( ) exp ( )

2
(2 )

f x χ µ
σ

π σ

 = − − 


   (i) 

The multivariate generalization for a multivariate random variable with p-conditions, 

µ mean and matrix covariance Σ is compared with (i) resulting to:  

              1

1

2 2

1 1
( ) exp ( ) ( )

2
(2 )

p
ϕ χ χ µ χ µ

π

Τ − = − − Σ − 
Σ

   (ii) 

We denote this with ( , )pN µ Σ , Σ =det(Σ). 

A more general form of the multivariate distribution was investigated with an extra 

shape parameter. Indeed Kitsos and Tavoularis (2009) introduced through Logarithm 

Sobolev Inequalities (LSI) a new family of univariate γ-ordered Normal distribution 

the ( , )ρ
γ µΝ Σ , which generalizes the Normal Distribution ( , )ρ µΝ Σ , through an 

additional parameter [ ]0,1γ ∈ −ℝ . The new generalized Normal distribution 

commonly referred as γ-ordered Normal distribution.   

When ( )f x is the probability density function of a random variable 

( , )ρ
γ µΧ Ν Σ∼  then, compared with (ii) above, ( )f x is defined as: 

  [ ]
1

2( 1)2
1

( ; ) det exp ( )pf x C Q x
γ
γ

γ γ

γ
µ

γ
−

−
 −

Σ = Σ − 


 with x ρ∈ℝ   (iii) 

Where 1( ) ( ) ( )Q x x xµ µ− Τ= − Σ − as in (ii) with the normality factor  

               

1

2

( 1)
12 ( )

1
( 1)

p

p p

p

C

p

γ
γ

γ

γ
π

γ γ
γ

−
−

Γ + −
=

−
Γ +

    (iv) 

Where if we set γ=2, i.e. 2 ( , )ρ µΝ Σ  it follows that:  

2
2

( 1)
12 ( )
2

( 1)
2

p

p p

p

C
p

π
−

Γ +
=

Γ +
 = 2

2

1
(2 )

2

p

p
π

π

−
=     (v) 

Theorem 1: It holds that the multivariate γ-ordered Normal distribution ( , )ρ
γ µΝ Σ for 

order values of γ=1,2±∞  coincides with  

( , )ρ
γ µΝ Σ =

( )

( , )

( , )

( , )

D

U

L

ρ

ρ

ρ

ρ

µ

µ

µ

µ




Σ

Ν Σ
 Σ

       

0

1

2

γ
γ
γ
γ

=

=

=

= ±∞

1, 2p Dirac distribution

Uniform distibution

Normal distibution

Laplace distibution

=

 

Proof: In Kitsos et al. (2012, page 52). 
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     Appendix 2  

                   Proof of Proposition 1 

We have seen that:    

 ( )2 2 2 2 2 2 2E[( ) ] E[ ] 2 E[ ] Var( ) E [ ] 2 E[ ]X X X X X Xκ λ κ κλ λ κ κλ λ+ = + + = + + + ,   

Assuming 2~ , )(X γ µ δN  and using the variance of the γ -order Normal distribution, 

(see Kitsos and Toulias, 2010) we have that 

 ( )2 2 2 2E[( ) ] Var( ) 2X Xκ λ κ µ µκλ λ+ = + + + .  (7) 

For the variance of  2( )Y Xκ λ= +  we have  

2 2 2

4 3 2 3 4 2

4 2 2 2 3 4 2

4 2

4 3 2 2

2

Var( ) E[ ] E [ ] E[( ) ] E [( ) ]

E[ ] 4 λE[ ] 6( ) E[ ] 4 E[ ] E [( ) ]

Kurt( )Var ( ) 6( ) Var( ) 6( ) 4 E [( ) ]

Y Y Y X X

X X X X X

X X X X

κ λ κ λ

κ κ κλ κλ λ κ λ

κ κ µ µλ κλ κλ λ κ λ

= − = + − + =

= + + + + − + =

= + + + + − +

As 3E[ ] 0X =  ( 2 ),(γ µ δN  is symmetric distribution i.e. has zero obliquity), thus 

eventually, the above equation can be written sequentially as 

 

( )

( )
( ) ( )

4 2 2 2 3 4

2
2 2

4 2 2 2 3 4

2
2 2

3 2 2 2

2

4

3

4

4

Var( ) Kurt( )Var ( ) 6( ) Var( ) 6( ) 4

Var( ) 2

Kurt( )Var ( ) 6( ) Var( ) 6( ) 4

Var( ) 4(

4 Var( ) 2( ) Var( ) 4

Kurt( )Va

)

Y X X X

X

X X X

X

X X

X

κ κλ κλ κλ λ

κ κλ λ

κ κλ

µ µ

µ µ

µ µ

µ µ

µ µ

κλ κλ λ

κ κλ λ

κ λ κλ κλµ µ

κ

= + + + +

 − + + + = 

= + + + +

=

=

− + − −

− + − + −

2 2 2 3 4

4 2 4 4 2 2

3 3 2 3

4

2

r ( ) 6( ) Var( ) 6( ) 4

Var ( ) ( 2 Var( ) 4(

4( 4 Var( ) 2(

)

) Var( ) 2

)

( )) 4

X X

X X

X X

µ µ

µ µ µ

µ µ µ µ

κλ κλ κλ λ

κ κ κ κλ λ

κ λ κ λ κλ κλ κλ

+ + + +

− − − − −

− − − − −

 

And so 

4 2 2 4 2 3 3Var( ) [Kurt( ) 1]Var ( ) [4( ) 2 4 ]Var( ) ( ( 4 ))Y X X Xµ µ µκ κλ κ κ λ κ κµ λ= − + − − − +
 

Since 2~ , )(X γ µ δN , the above equation can be written finally in the form of (6) 

using the variance and the convexity of the γ-order Normal distribution (For more 

details, see Kitsos and Toulias, 2010). 
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Appendix 3   

    Checking the differences in variances 

Evaluating the differences between the variances of Uniform, Normal and Laplace 

distributions we may see which are positive or negative, so that to rearrange the order 

among them. 

 

(A) Between Uniform and Normal (take the difference from (10)) 
212.96 636 0

0

(12.96 636) 0 636
49.074

12.96

δ δ

δ
δ δ

δ

− = ⇔

=


− = ⇔ 
= =

 

0

0
U N

>
− = 

<
  

0, 49.074

0 49.074

δ δ
δ

< >

< <
 

The Normal distribution is greater than the Uniform distribution when (0, 49.074)δ ∈  

Otherwise, when 49.074δ > , the Uniform distribution of TPC is greater than its 

Normal distribution.  

( ) ( )

0 49.074

U NVar TPC Var TPC

δ
<

< <
 

(B) Between Laplace and Normal (take the difference from (10)) 
2954 396 0

0

(396 954) 0 954
2.40

396

δ δ

δ
δ δ

δ

− − =

=


+ = ⇔ 
= − = −

 

0

0
N L

<
− = 

>

( 2.40,0)

2.40

δ
δ
∈ −

< − or 0δ >
 

Because δ is taken always positive, we are interested in the case where δ>0, so the 

Normal distribution is grater that the Laplace distribution. 

( ) ( )N LVar TPC Var TPC<  

(C) Between Uniform and Laplace (take the difference from (10)) 

   

21590 383.04

0

(383.04 1590) 1590
4.15

383.04

δ δ

δ
δ δ

δ

− −

=


= − + ⇔ 
= − = −

 

0

0
U L

>
− = 

<

( 4.15,0)

4.15

δ
δ
∈ −

< − or 0δ >
 

So, for δ>0, the PSC Uniform distribution is less than the Laplace distribution. 

( ) ( )U LVar TPC Var TPC<  

From (A), (B) and (C) we have that for 0 49.074δ< <  holds:  

      ( ) ( ) ( )U N LVar TPC Var TPC Var TPC< <  


