
Abstract 
 
Sensitivity analyses, model calibration techniques, uncertainty quantification 
methods, reliability computations and design optimization methods require a 
moderate to large number of system re-analyses to be performed for different values 
of system parameters. For finite element models involving hundreds of thousands or 
even million degrees of freedom and localized nonlinear actions activated during 
system operation, the computational demands from repeated system re-analyses may 
be excessive. This study, reported in this paper, develops fast efficient component 
mode synthesis (CMS) algorithms to alleviate the computational burden arising in 
methods involving system re-analyses.  
 
Keywords: component mode synthesis, structural dynamics, Bayesian inference. 
 
 
1  Introduction 
 
Component mode synthesis (CMS) techniques [1-2] are often used to carry out 
dynamic analyses in a reduced coordinate space. CMS techniques can be effective in 
reducing the high computational effort involved in the repeated system evaluations 
for different values of system parameters required in sensitivity analyses, model 
calibration, uncertainty quantification, reliability computations and design 
optimization. For this, one needs to avoid the re-computation of the eigenproperties 
at the component or system level. For small variations of the model parameters from 
a reference model, perturbation techniques [3-4] can be used to provide accurate 
results. For large variation of the model parameters, approximate methods have been 
proposed that approximate the modes at the component or system level in terms of 
the modes of a family of structures corresponding to support points in the parameter 
space [5]. Linear and quadratic interpolations of the structural mass and stiffness 
matrix and the matrix of eigenvectors have been proposed in [6] to achieve this.  

 
 

1 

 
Paper 23 
 
A Fast CMS Technique for Computational Efficient 
System Re-analyses in Structural Dynamics 
 
D.-C. Papadioti and C. Papadimitriou 
Department of Mechanical Engineering 
University of Thessaly, Volos, Greece 

©Civil-Comp Press, 2013 
Proceedings of the Third International Conference on  
Soft Computing Technology in Civil, Structural and 
Environmental Engineering, Y. Tsompanakis, (Editor),  
Civil-Comp Press, Stirlingshire, Scotland. 



Recently, a new efficient method [7] has also been proposed that applies under 
certain parameterization cases. Specifically it applies when the division of the 
structure into components is guided by the FE parameterization scheme so that the 
stiffness matrix that arise for each one of the introduced components to depend 
linearly on only one of the parameters to be estimated. In this case the fixed-
interface and constraint modes of the components for any value of the model 
parameters can be obtained exactly from the fixed-interface and constraint modes 
corresponding to a single reference FE model, avoiding re-analyses at component 
level. Additional substantial reductions in computational effort are obtained by 
reducing the number of interface DOF using characteristic interface modes through a 
Ritz coordinate transformation [8]. The repeated solutions of the component and 
interface eigen-problems are avoided, reducing drastically the computational 
demands in FE formulations, without compromising the solution accuracy. 

In this work, the CMS framework for effective system re-analyses proposed in 
[7] is reviewed and extended to cover more general cases of FE model 
parameterization. The formulation is demonstrated for the case of uncertainty 
quantification and model parameter calibration using Bayesian techniques. 
However, the proposed approach can be applied in other cases requiring system re-
analyses. The computational efficiency of the proposed approach is illustrated by 
using the Bayesian method to update a finite element model of a bridge involving 
hundreds of thousands of degrees of freedom.  
 
 
2  Component Mode Synthesis for System Re-analyses 

 
Dynamic reduction techniques such as CMS can be implemented with Bayesian 
uncertainty quantification and propagation framework [9-10] in order to alleviate the 
computational burden associated with each model run in the re-analyses required in 
the optimization and stochastic simulation methods. CMS techniques 1 divide the 
structure into components with mass and stiffness matrices that are reduced using 
fixed-interface and constrained modes. Dividing the structure into components and 
reducing the number of physical coordinates to a much smaller number of 
generalized coordinates certainly alleviates part of the computational effort. 
However, at each iteration or TMCMC sampling point one needs to re-compute the 
eigen-problem and the interface constrained modes for each component. This 
procedure is usually a very time consuming operation and computationally more 
expensive that solving directly the original matrices for the eigenvalues and the 
eigenvectors. It was recently shown [7] that for certain parameterization schemes for 
which the mass and stiffness matrices of a component depend linearly on only one 
of the free model parameters to be updated, often encountered in finite element 
model updating formulations, the full re-analyses of the component eigen-problems 
are avoided. The eigenproperties and the interface constrained modes as a function 
of the model parameters can be computed inexpensively from the eigenproperties 
and the interface constrained modes that correspond to a nominal value of the model 
parameters.  
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Specifically let j  be the set of structural components that depend on the j -th 
parameter j . Consider the case for which the stiffness matrix of a component 

js   depends linearly om j  and the mass matrix is independent of j , i.e. 
( ) ( )s s

jK K   and ( ) ( )
0

s sM M .  It can be readily derived that the stiffness and mass 
matrices of the Craig-Bampton reduced system admits the representation 
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where the coefficient matrices 0
ˆ CBK , ,

ˆ CB
jK  and 0

ˆ CBM  in the expansion (1) the 
component stiffness and mass matrices. It is important to note that the assembled 
matrices 0

ˆ CBK , ,
ˆ CB

jK  and 0
ˆ CBM  of the Craig-Bampton reduced system in the 

expansion (1) are independent of the values of  . In order to save computational 
time, these constant matrices are computed and assembled once and, therefore, there 
is no need this computation to be repeated during the iterations involved in 
optimization or TMCMC sampling algorithms for model updating due to the 
changes in the values of the parameter vector  . This saves substantial 
computational effort since it avoids (a) re-computing the fixed-interface and 
constrained modes for each component, and (b) assembling the reduced matrices 
from these components.  

Further reduction in the generalized coordinates can be achieved by replacing the 
interface DOFs by a reduced number of constraint interface modes [8] formed by a 
reduced basis. Selecting the reduced basis to be constant, independent of  , the 
formulation significantly simplifies. The reduced basis can be kept constant at each 
iteration involved in the optimization algorithm or updated every few iterations in 
order to improve convergence and maintain accuracy. 

Following the formulation proposed in [7], the aforementioned framework can be 
extended to handle the case for which the component stiffness and mass matrices 
depend nonlinearly on a single parameter j  of the system parameter set  . 
Specifically, consider the case for which the stiffness and mass matrices of a 
component js   depend nonlinearly on j , i.e. ( ) ( ) ( ) ( )s s s

jK K f   and 
( ) ( ) ( ) ( )s s s

jM M g  , where ( ) ( )s
jf   and ( ) ( )s

jg   are nonlinear functions of the 
parameter j . Then the interface modes, the modal frequencies and the interface 
constrained modes of a component can readily be computed by the corresponding 
interface modes, modal frequencies and interface constrained modes of the same 
component for a reference structural configuration corresponding to a particular 
nominal value of the parameter set   as well as the current value of the 
parameter j . In the nonlinear case, a representation similar to (1) is no longer 
applicable and the reduced mass and stiffness matrices of the reduced structure 
should be re-assembled from the component mass and stiffness matrices for the new 
value of j . This procedure also saves substantial computational effort since it 
avoids re-computing the fixed-interface and constrained modes for each component.  
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3  Application to a bridge structure 
 
The computational efficiency and accuracy of the proposed CMS is demonstrated by 
using the Transitional TMCMC [11] stochastic simulation algorithm to update a FE 
model of the Metsovo bridge using simulated modal data. A detailed FE model of 
the bridge is created using 3-dimensional tetrahedron quadratic Lagrange FEs. An 
extra coarse mesh, chosen to predict the lowest 20 modal frequencies and mode 
shapes of the bridge, results in a minimum 97,636 FEs and 562,101 DOF.  
 
3.1 Effectiveness of CMS technique 
 
For demonstration purposes, the bridge is divided into nine physical components 
with eight interfaces between components as shown in Figure 1. Each deck 
component consists of several 4-5m deck sections. The tallest pier also consists of 
several sections. The size of the elements in the extra coarse mesh is the maximum 
possible one that can be considered, with typical element length of the order of the 
thickness of the deck cross-section.  

The cut-off frequency c  is introduced to be the highest modal frequency that is 
of interest in finite element model updating. In this study the cut-off frequency is 
selected to be equal to the 20th modal frequency of the nominal model. i.e. 

c 4.55 Hz. The effectiveness of the CMS technique as a function of the number 
of modes retained for each component is next evaluated. For each component it is 
selected to retain all modes that have frequency less than max c  , where the   
values affect computational efficiency and accuracy of the CMS technique. 
Representative   values range from 2 to 10.  
 

 
 

Figure 1: Components of FE model of Metsovo Bridge 

A large number of generalized coordinates for the reduced system arises from the 
interface DOFs. A further reduction in the number of generalized coordinates for the 
reduced system can be achieved by retaining only a fraction of the constrained 
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interface modes. For each interface, it is selected to retain all modes that have 
frequency less than max c  ,   is user and problem dependent. The total number 
of internal DOFs before the model reduction is applied and the number of modes 
retained for various   values are given in Table 1 .  

 
 Full 

Model Reduced Model (Retained Modes) 

  8   5   2   8   
200   

5   
200   

2   
200   

Internal DOF  558,801     286     100       31     286     100       31 
Interface DOF     3,300  3,300  3,300  3,300     306     306     306 

Total DOF  562,101  3,586  3,400  3,331     592     406     337 
Highest 

Percentage 
Error [%] 

0.00 0.02 0.17 1.10 0.20 0.30 1.20 

Table 1: Number of DOF and percentage modal frequency error for the full 
(unreduced) and reduced models 

Figure 2 shows the fractional error between the modal frequencies computed 
using the complete finite element model and the modal frequencies computed using 
the CMS technique as a function of the mode number for 2 , 5 and 8. It can be 
seen that the error for the lowest 20 modes fall below 510  for 8 , 410  for 

5  and 310  for 2 . A very good accuracy is achieved even for the case of 
2 . Results are also shown in Figure 2 for 200  . It can be seen that the 

fractional error for the lowest 20 modes of the structure fall below 310  for 
200  . Obviously the number of generalized coordinates is drastically reduced.  
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Figure 2: Fractional modal frequency error between predictions of the reduced and 
the full model. 
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3.2 Finite element model updating using CMS 

The finite element model is parameterized using five parameters associated with the 
modulus of elasticity of one or more structural components shown in Figure 3 
Specifically, the first two parameters 

1
  and 

2
  account respectively for the modulus 

of elasticity of the pier components 3 and 7 of the bridge. The parameter 
3
  accounts 

for the modulus of elasticity of the components 1 and 2 of the deck, the parameter 
4
  accounts for the components 4 and 5, while the parameter 

5
  accounts for the 

components 6 and 8. The component 9 is not parameterized.  
Simulated, noise contaminated, measured modal frequencies and mode shapes are 

generated by adding a 1% and 3% Gaussian noise to the modal frequencies and 
modeshape components, predicted by the nominal non-reduced finite element 
models. The added Gaussian noise reflects the differences observed in real 
applications between the predictions from a model of a structure and the actual 
(measured) behavior of the structure. A sensor configuration involving 36 sensors is 
considered. The sensors are placed along the deck and the piers, measuring along the 
longitudinal, transverse and vertical directions. The finite element model is updated 
using simulated modal data for the lowest ten modes.  

 

 
Figure 3: FE model parameterization based on 5 parameters.  

The following settings of the parameters of the stochastic simulation algorithm 
TMCMC are used to perform the model updating: tolCov=1.0, 0.2   and 1000 
samples per TMCMC stage. The number of FE model runs for the five-parameter 
model class depends on the number of TMCMC stages which was estimated to be 
19. The resulting number of FE model re-analyses are 19,000. The parallelization 
features of TMCMC [12] were also exploited, taking advantage of the available 
four-core multi-threaded computer unit to simultaneously run eight TMCMC 
samples in parallel. For comparison purposes, the computational effort for solving 
the eigenvalue problem of the original unreduced FE model is approximately 139 
seconds. Multiplying this by the number of 19,000 TMCMC samples and 
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considering parallel implementation in a four-core multi-threaded computer unit, the 
total computational effort for the model class is expected to be of the order 7 days. 
In contrast, for the reduced-order models for 8 , the computational demands for 
running the model class are reduced to approximately 13 hours (759 minutes), while 
for the reduced-order models for 8  and 200   these computational demands 
are drastically reduced to 14 minutes. It is thus evident that a drastic reduction in 
computational effort for performing the structural identification based on a set of 
monitoring data is achieved from approximately 7 days for the unreduced model 
class to 14 minutes for the reduced model classes corresponding to 8  and 

200  , without compromising the predictive capabilities of the proposed 
parameter estimation methodology. This results in a factor of over 500 reduction in 
computational effort.  

It should be noted that surrogate methods can also be used to further reduce the 
computational effort by more than one order of magnitude so that the updating of the 
562,101 DOF finite element model, requiring 19,000 model runs, can be performed 
in less than two minutes which is a remarkable reduction in computational effort.  

 
 
 

4  Conclusions 
 
Sensitivity analyses, model calibration techniques, uncertainty quantification and 
propagation methods, reliability computations and design optimization methods, 
require a moderate to large number of system re-analyses to be performed for 
different values of system parameters. A fast and accurate CMS technique is 
proposed, consistent with the finite element model parameterization schemes, to 
achieve drastic reductions in computational effort. The computational efficiency of 
the proposed CMS technique is demonstrated with applications in model calibration 
of a bridge using the TMCMC stochastic simulation algorithm. Substantial 
reductions in computational effort are achieved. Further computational savings can 
also be achieved by integrating into the formulation surrogate models to substantial 
reduce the number of costly finite element-based function evaluations, as well as 
using parallel computing algorithms to efficiently distribute the computations in 
available multi-core CPUs. 
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