PhD presentation on

"Size Effects in Semi-brittle Materials and Gradient Theories with Application to Concrete"

by

Antonios Triantafyllou

Department of Civil Engineering School of Engineering, University of Thessaly Volos, Greece

Advisor: Prof. Philip C. Perdikaris

Co-advisor: Prof. Antonios E. Giannakopoulos

January, 2015

Images reproduced from the book "Fracture Processes of Concrete" by Van Mier

Complexity of the observed behavior of microcracking

(c)

w=25µm

Mode I fracture cracked area (a) w=25µm x = 22.5 mm37.8 54.9 72.3 89.3 notch crack front

Images reproduced from the book "Fracture Processes of Concrete" by Van Mier

Images reproduced from the book "Fracture Processes of Concrete" by Van Mier

Lattice models: Modeling the full details of the microstructure

most important: particle structure

Images reproduced from "Fracture Processes of Concrete" by Van Mier

Ability to predict the complex behavior of microcracking

Fracture Mechanics for Structural Analysis 381

Figure 8.13 Crack growth observed in experiments with a = d/2 (a), and from lattice analyses (b).⁵⁰⁸

sis 381

Fracture Mechanics for Structural Analysis

383

Images reproduced from "Fracture Processes of Concrete" by Van Mier

Dipolar elasticity

Strain gradient elasticity: $\sigma_{xx} = (1 - g^2 \nabla^2) E \epsilon_{xx}$ (1D, v=0)

Hooke's law extended to the 2nd spatial derivative of the Cauchy strain

Non-local models:

A length scale parameter is needed for modeling materials such as concrete exhibiting size effect

Stress-strain softening law:

$$\frac{\sigma}{f_i} = \frac{\beta_i (\varepsilon/\varepsilon_i)}{\beta_i - 1 + (\varepsilon/\varepsilon_i)^{\beta_i}}$$

Size effect in elasticity:

Stiffer static response than that predicted by classical elasticity if g>0

What is a physical interpretation of the internal length?

HOMOGENIZATION ESTIMATES OF THE INTERNAL LENGTH

The simplest case of composite material (2D case of circular inclusions)

Input parameters Matrix and inclusion elasticity properties Composition value, c=a/b

Effective material properties of composite material

$$\mu = f_1(\mu_m, v_m, \mu_i, v_i, c)$$
$$v = f_2(\mu_m, v_m, \mu_i, v_i, c)$$

Estimation of the internal length

$$U_{cl} = U_{gr}$$

HOMOGENIZATION ESTIMATES OF THE INTERNAL LENGTH

←

←

←

 \rightarrow

0

0

10.0%

1.0%

Composition, c

2

STRUCTURAL ANALYSIS USING A DIPOLAR ELASTIC TIMOSHENKO BEAM

<u>Cauchy</u> <u>stresses</u>
$\overline{\overline{\sigma}}_{xx} = E\varepsilon_{xx}$ $\overline{\overline{\sigma}}_{xz} = kG\gamma_{xz}$

Total strain energy:

Non-zero strains:

Term that should not be omitted

STRUCTURAL ANALYSIS USING A DIPOLAR ELASTIC TIMOSHENKO BEAM

$$\delta U_{tot} = \int_{0}^{L} \begin{cases} \delta \psi \left(-EI \left(1 - g^{2} \frac{d^{2}}{dx^{2}} \right) \frac{d^{2} \psi}{dx^{2}} + kAG \left(1 - g^{2} \frac{d^{2}}{dx^{2}} \right) \left(\frac{dw}{dx} + \psi \right) - EAg^{2} \frac{d^{2} \psi}{dx^{2}} \right) \end{cases} dx$$

$$+ \left[\delta \psi \left(EI \left(1 - g^{2} \frac{d^{2}}{dx^{2}} \right) \frac{d\psi}{dx} + kAGg^{2} \left(\frac{d^{2} w}{dx^{2}} + \frac{d\psi}{dx} \right) \right) + EAg^{2} \frac{d\psi}{dx} \right) \right]_{0}^{L}$$

$$+ \left[\delta \psi \left(EI \left(1 - g^{2} \frac{d^{2}}{dx^{2}} \right) \frac{d\psi}{dx} + kAGg^{2} \left(\frac{d^{2} w}{dx^{2}} + \frac{d\psi}{dx} \right) + EAg^{2} \frac{d\psi}{dx} \right) \right]_{0}^{L}$$

$$+ \left[\delta \psi \left(eI \left(1 - g^{2} \frac{d^{2}}{dx^{2}} \right) \frac{d\psi}{dx} + kAGg^{2} \left(\frac{d^{2} w}{dx^{2}} + \frac{d\psi}{dx} \right) + EAg^{2} \frac{d\psi}{dx} \right) \right]_{0}^{L}$$

$$+ \left[\delta \psi \left(eI \left(1 - g^{2} \frac{d^{2}}{dx^{2}} \right) \frac{d\psi}{dx} + \psi \right) \right]_{0}^{L}$$

$$+ \left[\delta \psi \left(eI \left(1 - g^{2} \frac{d^{2}}{dx^{2}} \right) \frac{d\psi}{dx} + \psi \right) \frac{d\psi}{dx} \right]_{0}^{L}$$

$$+ \left[\delta \psi \left(eI \left(1 - g^{2} \frac{d^{2}}{dx^{2}} \right) \frac{d\psi}{dx} + \psi \right) \frac{d\psi}{dx} \right]_{0}^{L}$$

$$+ \left[\delta \psi \left(eI \left(1 - g^{2} \frac{d^{2}}{dx^{2}} \right) \frac{d\psi}{dx} + \psi \right) \frac{d\psi}{dx} \right]_{0}^{L}$$

$$+ \left[\delta \psi \left(eI \left(1 - g^{2} \frac{d^{2}}{dx^{2}} \right) \frac{d\psi}{dx} + \psi \frac{d\psi}{dx} \right) \frac{d\psi}{dx} + \psi \frac{d\psi}{dx} \right) \frac{d\psi}{dx} + \psi \frac{d\psi}{dx} \right]_{0}^{L}$$

$$+ \left[\delta \psi \left(eI \left(1 - g^{2} \frac{d^{2}}{dx^{2}} \right) \frac{d\psi}{dx} + \psi \frac{d\psi}{dx} \right) \frac{d\psi}{dx} + \psi \frac{d\psi}{dx} \right) \frac{d\psi}{dx} + \psi \frac{d\psi}{dx} \frac{d\psi}{dx} + \psi \frac{d\psi}{dx} \frac{d\psi}{dx} + \psi \frac{d\psi}{dx} \frac{d\psi}{dx} + \frac{d\psi}{dx} \frac{d\psi}{dx} + \frac{d\psi}{dx} \frac{d\psi}{dx} + \frac{d\psi}{dx} \frac{d\psi}{dx} \frac{d\psi}{dx} + \frac{d\psi}{dx} \frac{d\psi}{dx} \frac{d\psi}{dx} + \frac{d\psi}{dx} \frac{d\psi}{dx} \frac{d\psi}{dx} \frac{d\psi}{dx} + \frac{d\psi}{dx} \frac{d$$

 $\delta W = \int_{0}^{L} q \delta w dx + \left[Q \delta w \right]_{0}^{L} + \left[M \delta \psi \right]_{0}^{L} + \left[Y \delta w' \right]_{0}^{L} + \left[m \delta \psi' \right]_{0}^{L}$

STRUCTURAL ANALYSIS USING A DIPOLAR ELASTIC TIMOSHENKO BEAM

Gibb's energy:
$$G = \frac{1}{2}\boldsymbol{\tau} : \mathbf{C} : \boldsymbol{\tau} + \frac{1}{2}\boldsymbol{\lambda} \therefore \mathbf{B} : \boldsymbol{\lambda} - \mathbf{A}^{c} \qquad \mathbf{\lambda} = g^{2}\nabla\boldsymbol{\tau} \qquad \mathbf{B} = (1/g^{2})\mathbf{C}$$

Microcracking adds flexibility: $\mathbf{C} = \mathbf{C}^0 + \mathbf{C}^c$

NON-LOCAL DAMAGE MODEL

Damage rules:
$$\dot{\overline{C}}_{I_T}^c = \dot{\mu} \mathbf{R}_{I_T}(\tau)$$
 and $\dot{\overline{C}}_{I_C}^c = \dot{\mu} \mathbf{R}_{I_C}(\tau)$

Irreversible character of damage: $\dot{\mu} \ge 0$

Internal length is assumed to be a function of damage: $g = g(\mu)$

Energy density dissipation:

$$\mathbf{d} = \begin{pmatrix} \frac{1}{2}\boldsymbol{\tau}^{+}: \mathbf{R}_{\mathbf{I}_{\mathrm{T}}}: \boldsymbol{\tau}^{+} + \frac{1}{2}\boldsymbol{\tau}^{-}: \mathbf{R}_{\mathbf{I}_{\mathrm{C}}}: \boldsymbol{\tau}^{-} + \frac{1}{2}g^{2}(\nabla\boldsymbol{\tau})^{+} \therefore \mathbf{R}_{\mathbf{I}_{\mathrm{T}}}: (\nabla\boldsymbol{\tau})^{+} \\ + g\frac{\mathrm{d}g}{\mathrm{d}\mu}(\nabla\boldsymbol{\tau})^{+} \therefore \overline{\mathbf{C}}^{c}: (\nabla\boldsymbol{\tau})^{+} \end{pmatrix} \dot{\boldsymbol{\mu}} - \dot{\mathbf{A}}^{c} \ge 0$$

 $\mathbf{R}_{_{I_{_{T}}}},\mathbf{R}_{_{I_{_{C}}}},\mathbf{C}_{_{I_{_{T}}}}^{^{c}},\mathbf{C}_{_{I_{_{C}}}}^{^{c}} \quad \text{positive definite and} \quad \dot{\mu} \geq 0 \implies dg \,/\, d\mu \geq 0$

Associated damage surface:

$$\Phi = \frac{1}{2}\boldsymbol{\tau}^{+}:\boldsymbol{\tau}^{+} + \frac{1}{2}\boldsymbol{c}\boldsymbol{\tau}^{-}:\boldsymbol{\tau}^{-} - \frac{\pi}{2}\boldsymbol{t}^{2}(\boldsymbol{\mu})$$

4-point bending: an assumed stress-strain law is sufficient input information for damage characterization

Definition of damage

$$\begin{aligned} \tau_{i} &= E_{0i} \varepsilon_{i}, \text{ for } \varepsilon_{i} \leq \varepsilon_{0i} \quad \tau_{i} = (1 - D_{i}) E_{0i} \varepsilon_{i} = \frac{E_{0i} \varepsilon_{i}}{1 + E_{0i} \mu_{i}}, \text{ for } \varepsilon_{i} > \varepsilon_{0i} \end{aligned}$$

$$\underbrace{\text{Assumed stress-strain law:}}_{i} \quad \boxed{\tau_{i} = f_{i} \frac{\beta_{i} (\varepsilon / \varepsilon_{i})}{\beta_{i} - 1 + (\varepsilon / \varepsilon_{i})^{\beta_{i}}}}$$

Damage functions:

$$D_{i} = 0 \text{ for } \varepsilon < \varepsilon_{0i} \qquad D_{i} = 1 - \frac{\beta_{i} - 1 + (\varepsilon_{0i} / \varepsilon_{i})^{\beta_{i}}}{\beta_{i} - 1 + (\varepsilon / \varepsilon_{i})^{\beta_{i}}} \quad \text{for } \varepsilon \ge \varepsilon_{0i}$$

Young's modulus and isotropy:

$$E_{0i} = \frac{\beta_i f_i}{\left(\beta_i - 1 + (\varepsilon_{0i} / \varepsilon_i)^{\beta_i}\right)\varepsilon_i} \qquad \frac{\varepsilon_t}{\varepsilon_c} = \frac{\beta_t f_t \left(\beta_c - 1 + (\varepsilon_{0c} / \varepsilon_c)^{\beta_c}\right)}{\beta_c f_c \left(\beta_t - 1 + (\varepsilon_{0t} / \varepsilon_t)^{\beta_t}\right)}$$

APPLICATION TO 4-POINT BENDING

Linear strain distribution: $\varepsilon_{xx} = \varepsilon_m + kz$

Input: a given value for curvature, **k**

Find: $\boldsymbol{\epsilon}_{m}$ that satisfies equilibrium (stress-strain law)

Output: **M**, **k** point on the response diagram (size independent)^{h/2}

Input: **k-δ** kinematic relation (boundary value problem)

Final output: Force vs. midspan deflection diagram (size dependent)

h/2

 $N = b \int \sigma_{xx} dz = 0$

h/2

 $M = b \int \sigma_{xx} z dz$

Non-local predictions:

The local **M** vs. **k** is transformed to **M** vs. **k**_{grad} (scaling of curvature-elasticity)

The gradient solution of the boundary value problem is used to obtain the kinematic relation, $\delta_{grad}/k_{grad} = f(g/L)$

This relation is not constant but evolves with damage since g=g(D)

EXPERIMENTAL PROGRAM

3D geometrical similar specimens

MATERIALS

		Quantiti			Air-		
Mix	Cement ^(a)	Aggregates (b)	Water (w/c ratio)	Additives (c)	Dry density (Kg/m ³)	Slump (cm)	content ^(d) (%)
СМ	450) 1350 293 (0.65)		3.6	2100	_ e	2.5
LC	208	1980	162 (0.78)	1.6	2335	25	3.0
NC	276	2080	176 (0.64)	1.5	2365	10	2.5
MC1	448	1720	204 (0.45)	4.0	2410	22.4	2.0
MC2	447	1640	207 (0.46)	6.0	2440	15.6	2.0

Sieve	% passing							
(mm)	LC	NC	MC1	MC2	СМ			
32	100	100	100	100	-			
16	85.8	84.1	80.6	78.7	-			
8	70.7	67.8	60.0	57.7	-			
4	62.7	59.7	49.6	49.1	-			
2	45.4	43.3	35.7	35.5	-			
1	29.6	28.2	23.3	23.2	100			
0.5	-	-	-	-	30			
0.25	12.9	12.3	10.2	10.1	-			
0.075	8.0	7.6	6.3	6.3	-			

Four concrete mixes dmax=32 mm

Low-strength (LC)

Normal-strength (NC)

Medium-strength (MC1 and MC2)

Cement mortar dmax=1 mm

CLASSICAL ELASTICITY PROPERTIES

Classical elasticity properties used in the analysis

Mix	LC	NC	MC1	MC2	СМ			
E, GPa	25.0	30.70	32.7	34.0	22.3			
ν	0.2							

INTERNAL LENGTH AND SIZE EFFECT IN ELASTICITY

INTERNAL LENGTH AND MICROSTRUCTURE

Concrete contains different aggregate sizes in different volume fractions

Average inclusion size ranges between

10 to 20 mm

Fracture surfaces and fractured aggregates

INELASTICITY: PEAK LOAD

	Uniaxial stress-strain law parameters									Young's	
	Compression					Tension				modulus	
MIX	f _c ^(a)	٤ _c	Е_{0с} ^(b)	b _c ^(b)		\mathbf{f}_{t} (c)/ \mathbf{f}_{sp} (a)	b _t ^(c)	$\boldsymbol{\epsilon_{0t}}^{(d)}$	$\boldsymbol{\epsilon_t}^{(d)}$	E (a)	
	(MPa)	(x10 ⁻⁶)	(x10 ⁻⁶)	-		-	-	(x10 ⁻⁶)	(x10 ⁻⁶)	(GPa)	
LC	15.9	1500	250	1.643		0.80	4.5	70	110	25.0	
NC	20.5	1500	270	1.707		0.85	5.0	65	100	30.7	
MC1	34.7	1500	430	3.360		0.88	6.0	80	120	32.7	
MC2	38.0	1500	450	3.890		0.90	6.5	80	110	34.0	
CM (e)	32.4	1800	600	5.183		0.95	10	130	130	22.4	

INELASTICITY: PEAK LOAD

Model predictions correspond to a size independent flexural strength

Scatter of predicted values corresponds to a +/- 5% deviation of the assumed material's tensile strength LC mix: $g = 17e^{0.9D}$ (mm)

MC2 mix: $g = 8e^{2D}$ (mm)

INELASTICITY: UNLOADING PATH

EVOLUTION LAW OF GRADIENT INTERNAL LENGTH

- Progressively stiffer response if **dg/dD>0** (size effect in inelasticity)
- Cauchy stiffness decreases with damage: dK/dD = -Ko <0

STRAIN GAGE MEASUREMENTS

STRAIN GAGE MEASUREMENTS

Damage characterization

$$\sigma(\varepsilon, \varepsilon_{,xx}) = (1 - D(\varepsilon))E(\varepsilon - g^2 \varepsilon_{,xx})$$

Size effect in elasticity (g>0)

Size effect in inelasticity (g=g(D) with dg/dD>0)

Size effect on strength

Sources/Explanations of size effect on strength

- 1. Fracture mechanics size effect
- 2. Statistical
- 3. Stress redistribution at meso-scale (Lattice models)
- 4. Multi-fractal size effect
- 1. Diffusion phenomena
- 2. Hydration heat microcracking during cooling
- 3. Wall effect due to inhomogeneous boundary layer

SIZE EFFECT ON FLEXURAL STRENGTH

SIZE EFFECT ON FLEXURAL STRENGTH

Limited scale range , **1 : 1.5 : 2**,

for examining size effect on strength

1. Experimental quantification of the internal length assumed by simplified dipolar elasticity

3. Physical correlation between the internal length and material's microstructure

5. Use of SG's and continuous strain gradient models

7. Size effect on strength

2. Concrete can be seen as a model material for studying size effects in elasticity

4. Experimental verification of key assumptions

6. Further experimental work is needed

Introducing size effect on strength in the proposed model for the case of concrete

- Refinement of the model
 Include effect of distributed damage to the Timoshenko model
- •Size dependent damage characterization (Van Vliet & Van Mier)
- Damage characterization not based on Cauchy strains alone: $D(\epsilon, \epsilon_x)$
- Strain gradient lattice models predicting size effect on strength ?

Fiber Reinforced Concrete (FRC)

4-point bending experiments

 g_0 of FRC = 8 mm

 g_0 of matrix = 4 mm

same order of magnitude as predicted by the simplified 2D case

Young's modulus (GPa)

Very ductile softening response – \mathbf{b}_t parameter of stress-strain in the range of **1.5** For FRC, $\mathbf{n} \rightarrow \mathbf{0}$. Therefore, $\mathbf{g}(\mathbf{D})=\mathbf{g}_0$ (the thermodynamic limit of $\mathbf{dg}/\mathbf{dD}=\mathbf{0}$ is recovered)

Micro-inertia length and dynamic loading:

$$\frac{\text{Hamilton's}}{\text{principle:}} \quad \delta \int_{t_0}^{t_1} (U_{\text{tot}} - W - K) dt = 0$$

2 Eqs. of motion and 2 gradient length: stiffness related **g** and inertia related **h**

Laboratory of "Reinforced Concrete Technology and Structures"

(Director: Prof. P. C. Perdikaris)

&

Laboratory for "Strength of Materials and Micromechanics"

(Director: Prof. A. E. Giannakopoulos)

PhD presentation on

"Size Effects in Semi-brittle Materials and Gradient Theories with Application to Concrete"

By

Antonios Triantafyllou

Department of Civil Engineering School of Engineering, University of Thessaly Volos, Greece

Advisor: Prof. Philip C. Perdikaris

Co-advisor: Prof. Antonios E. Giannakopoulos