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CHAPTER I 

INTRODUCTION 

 

1. SCOPE  

Throughout this work a simplified gradient model with one length parameter, which is the simplest 

case of Mindlin’s Form II strain gradient elasticity theory, is employed. This automatically limits 

the range of considered materials to initially isotropic. The aim of the present thesis is to verify 

experimentally the theoretical findings for a series of problems associated with this gradient model 

and its application to the specific case of semi-brittle materials such as concrete.  

 

2. MICROSTRUCTURE AND DIPOLAR ELASTICITY 

All materials have a microstructure which is visible under specific magnification. The influence of 

microstructure on the macrostructural response is typically neglected under the assumption that the 

material is homogenous. Isotropic homogeneous materials are defined by two material constants, 

the Young’s modulus and Poisson’s ratio and these constants are determined experimentally from 

uniaxial tests. However, in many cases when classical elasticity predictions are applied to structural 

problems, a stiffer response than the one predicted by classical elasticity depending on the member 

size, is measured. A possible physically justifiable explanation for the source of this size effect is 

the existence of a microstructure which has not been accounted in the analysis. Gradient theories 

attempt to account for the presence of a microstructure by assuming that there is an additional 

material constant with dimensions of length.  

The simplest definition of a composite material is that of inclusions embedded inside a 

matrix material. Knowledge of the properties of the different phases and of the inclusion volume 

fraction is the minimum input information required to model the composite microstructure. 

Therefore the first issue to be addresses is how changes in the microstructure of a composite affect 

the internal length assumed by gradient theories. This is explored in Chapter II. It is apparent from 

these theoretical results that the internal length is best viewed as a measure of the heterogeneity of 

the composite and that heterogeneity can not be simply defined by the size of inclusions. It is the 

inclusions size and elastic mismatch combined that determine the magnitude of heterogeneity of a 

composite. 

Concrete is a multi-scale material. At the micrometer scale (10-6 m) cement grains are 

distinguished and in its hardened state cement calcium and silicate hydrates as well as pores are 
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formed. At the meso-scale (10-3 m), sand and aggregate particles can be distinguished and concrete 

can be viewed as a composite consisting of a matrix material and inclusions. The laboratory scale 

(10+0 m) is the beginning of the macro-scale concerning structural use of concrete. At the meso-

scale, concrete is a 3-phase material consisting of the hardened cement paste (hcp), the aggregates 

and the interfacial transition zone (ITZ) between the hcp and the aggregates. The thickness of ITZ is 

typically 50μm but despite its small dimensions, it greatly affects micro-stress concentration 

because it is the weakest link of the bond between the matrix material and the aggregates. However, 

the particle structure is the most important at the meso-scale. At the macro-scale of any structural 

member, at which material constants are assumed in order to model its structural response, the 

material is by definition assumed to be a continuum. Gradient theories do not depart from this 

assumption, since stresses and strains continue to be specified at every material point. Gradient 

theories are continuum theories which introduce an additional constant associated with presence of 

heterogeneity in what otherwise is assumed to be a homogeneous material. The fact that the matrix 

material and the inclusions have different properties is the source of heterogeneity.   On that respect 

concrete can be viewed as a model material in order to study size effect in elasticity.  

Concrete’s heterogeneity is three dimensional and contains various size aggregates of 

irregular shapes in different volume fractions. Hence, its composite nature deviates significantly 

from the idealized case of either circular or spherical inclusions. However, two aspects of its mix 

proportions are of particular interest. One is the maximum aggregate size and the other the strength 

of the matrix material which can be increased by reducing the water-to-cement ratio. In the 

experimental program undertaken, the concrete mixes used had the same maximum aggregate and 

approximately the same volume fraction of aggregates but the relative stiffness of matrix and 

inclusions varied. As a result, in some mixes crack propagated bypassing the aggregates and in 

others aggregate fracture occurred along the crack path. Cement mortar was also employed mainly 

for comparison purposes since this material can be viewed as completely homogeneous.  
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(a)                                                    (b) 

 
 

     
         (c)                                                   (d) 

 

The internal length is a function of the microstructure but the microstructure’s influence is 

manifested if triggered by the applied stress. This is due to the fact that the internal length, g, is 

introduced in association with the gradient of the strain: 

εεε 22g ∇−=  

Therefore, in the absence of gradient as for example in the case of uniaxial stresses, even a 

heterogeneous material is predicted to behave as a homogeneous one. This allows extracting the 

two classical material constants from a uniaxial test and use flexure tests, where the gradient is 

significant, to quantify the internal length. 

 In order to estimate the internal length from flexure experiments, the associated structural 

problem must be solved using gradient elasticity. This is done in Chapter III. Naturally, any solution 

to a boundary value problem relies on the correct choice of boundary conditions. Gradient theories 

are essentially higher-order theories in the sense that they extend the continuity assumed to the 

second spatial derivative of the strain. This extension of continuity introduced through the 

constitutive equation results in additional boundary conditions whose physical interpretation is less 

straightforward. However, there is way to bypass the ambiguity of the non-local boundary 

10 mm 10 mm 
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conditions since in all cases for a zero value of the internal length the classical result should be 

recovered. This must be true for all the classical kinematic variables and not just the deflections 

since a certain set of non-local boundary conditions can yield the correct asymptotic behavior for 

deflections but not for the slope or curvature. A unique set of boundary conditions exist which has 

the correct asymptotic behavior for all classical kinematic variables. 

The above discussion is the basis for the study of size effects in elasticity for the concrete 

mixes considered, which is described in Chapter VI. 

 
3. MICROCRACKING AND DAMAGE 

Material’s response can be described as the initial one where once the excitation is removed the 

deformation disappears (elasticity) and another one where upon removal of the cause, the material 

does not return to its original state (inelasticity). Semi-brittle materials exhibit microcracking once 

their elastic limit is exceeded. A macrocrack is formed after microcracking has been localized but 

microcracking will continue to occur while the macrocrack propagates.  Microcracking and 

macrocracks should not be confused. Microcracking is characterized by randomness which by 

definition is not the case for a macrocrack. Microcracking is the source of softening whereas a 

macrocrack represents points with zero-transfer capability. Essentially, a macrocrack refers to 

complete damage at a material point whereas microcracking refers to softening experienced at this 

point. During softening, stresses and strains continue to be specified at each material point and this 

is done by assuming a stress-strain law for the material. However, damage also implies that the 

initial stiffness is reduced. This is revealed upon unloading once the elastic limit has been exceeded. 

The initial stiffness of an uncracked material is always greater than that of unloading-reloading. 

Therefore, since damage can be viewed as a process which reduces the initial stiffness it is linked 

with elasticity by definition. 

 The tensile strength of concrete is far less than its compressive strength, hence failure 

initiates from tensile stresses when plain concrete is tested under flexure. Of course, it is a known 

fact that failure also occurs under a compressive stress which is in apparent contradiction to the 

second law of thermodynamics that requires that cracks open only under tension. However, this can 

be explained if the composite nature of concrete is considered since even under compressive 

stresses, a composite with inclusions may develop tensile stresses around these inclusions. The 

composite nature of concrete also affects macrocrack propagation. If the inclusions’ response is 

stiffer than that of the matrix material failure will occur there, hence the crack path becomes more 

tortuous. The more brittle the composite, the less tortuous the crack path would be. On the other 
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hand, the term semi-brittle refers to the fact that concrete is not perfectly brittle, that is, it maintains 

its stress bearing capacity to some extend after the peak stress is reached. This softening behavior 

(microcracking) is also affected by the degree of heterogeneity of the material. The so-called 

fracture process zone (FPZ) which refers to the degree of localization of microcracking increases as 

inclusion dimensions increase. If inclusions are negligibly small as for example for cement mortar, 

the size of FPZ should be much smaller than the one measured in concrete. 

 

         
                                 (a)                                                               (b) 

 

The irreversible character of damage implies that the initial heterogeneity of a composite is altered. 

Homogenization procedures have been applied to microcracked continuums and it has been found 

that the stiffness associated with the Cauchy strains (local stiffness) reduces but the stiffness 

associated with the gradient of the strains (non-local stiffness) increases with increasing degree of 

microcracking. In the context of gradient theories, this implies that the initial value of an internal 

length based on the elastic response of the material should increase with increasing damage. A 

thermodynamic proof for this is included in Chapter IV. This also implies that damage 

characterization should be local, that is a local parameter should be used to determine the level of 

damage. The alternative choice of using a non-local parameter such as the total strain or the total 

stress within the context of gradient theories has been shown to lead to incorrect damage 

characterization.  

The experimental program undertaken in this work also aims to address the issue of how the 

internal length increases with damage or in other words which is the particular form of the 

relationship between damage and the internal length. An exponential evolution law is proposed of 

the form:  

Microcracking :  
 

Crack patterns from 
fluorescent epoxy 

impregnation tests on cube 
specimens under uniaxial 

compression. Cut shown is: 
 

(a) parallel and 
 (b) perpendicular to the 

direction of loading. 
 

(Photography RA Vonk. Reprinted from 
the book ‘’Fracture Processes of 
Concrete’’) 
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nD
0egg =  

where =0g  initial value of the internal length (elasticity), =D  damage parameter ( 1≤D≤0 ) and 

=n positive constant. 

The choice for this particular expression for the evolution law of the gradient internal length 

is rooted in the correlation between damage and deflection. The inclusion of an internal length in 

the formulation affects the predicted deflection at a given load level. The relation of damage and 

deflection increase resembles that of an exponential law whereas the relation between damage and 

load decrease is approximately linear. Furthermore, since the initial value of the internal length is 

determined from the elastic response of the material, there is only one parameter to be calibrated 

based on the experimental results in the inelastic region. This evolution law is applied in order to 

study size effects in the inelastic range of the concrete mixes considered in Chapter VII. It is shown 

that with increasing brittleness of the composite, n increases. Note that the opposite is true for the 

initial value of the internal length, since as the material becomes more homogeneous the size effect 

in elasticity would be negligibly small. Correlation between the brittleness of the concrete mixes 

and evolution law parameter n is also discussed in Chapter VII.  

 

4. EXPERIMENTAL PROGRAM 

All experiments were carried out in the Laboratory of “Reinforced Concrete Technology and 

Structures” of the Civil Engineering Department at the University of Thessaly. However, not all 

experiments are reported in the present thesis. Experimental results on un-notched fiber-reinforced 

concrete and notched medium-strength concrete beam specimens are not within the scope of this 

work.  

 Experimental results on un-notched low-, normal- and medium-strength plain concrete and 

cement mortar beam specimens are presented. Three types of tests were carried out for each mix: 

uniaxial compression on cylinder and cube specimens, splitting on cylinder specimens and 4-point 

bending on un-notched plain concrete beam specimens of 3 different sizes with complete geometric 

similarity. The classical material properties of Young’s modulus and Poisson’s ratio were measured 

in both the uniaxial and split cylinder tests based on strain gage (SG) measurements. Typically, 

concrete is assumed to be initially isotropic and this hypothesis was verified by comparing the 

Young’s modulus estimates based on the uniaxial compression tests with the Young’s modulus 

estimated values in the split cylinder tests. Similar values where obtained for each cementicious mix 

(see Chapter V). 
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 The geometrically similar un-notched beam specimens with sizes of 100x100x300 (width x 

height x span) mm, 150x150x450 mm and 200x200x600 mm were tested under midspan deflection 

control. SG’s were used extensively also in the flexural tests. The aim was to determine the midspan 

curvature and deflection through strain measurements and, independently verify any size effect in 

elasticity. Strain gradient theories are able to predict a size effect in the stiffness because essentially 

they assume that for a given level of stress the corresponding strain is less than that predicted by 

classical elasticity. Based on the measured stiffer response compared to the classical elasticity 

predictions (in terms of both stiffness and curvature), an internal length estimate for each mix was 

determined. It is also shown that the use of SG’s can yield meaningful measurements for the 

inelastic response, as well. SG measurements for the neutral axis location at high damage levels and 

plastic strains measured upon unloading were compared with the proposed model predictions and 

good agreement was found. This discussion is presented in Chapters VI and VII. 

In order to establish the relationship between the internal length predictions based on the 

flexural test results and the microstructural details of the concrete mix, selected beam specimens 

were sawed and their microstructure was mapped. The aim was to estimate the average inclusion 

size of the given concrete mix. Gradient theories attempt to account for the presence of 

microstructure in an average sense since they model the detail of the microstructure through a single 

length scale parameter. The internal length value for each cementitious mix was compared with the 

average inclusion size estimate in Chapter VI. 
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                                             (a) 
 

                 Experimental program: 

               (a) 4-point bending specimen and testing setup 

               (b) specimen casting 

               (c) uniaxial cube compression test 

               (d) uniaxial cylinder compression test 

               (e) split cylinder test 

 

(b) 

   (c) 

    

(d) 

 

(e) 
 

5. NUMERICAL PREDICTIONS  

Experimental results are compared with numerical predictions in Chapter VII. Under 4-point 

bending, the middle part of the beam experiences pure bending and, therefore, an assumed stress-

strain law in tension and compression is sufficient for damage characterization in this region. Since 

the tensile strength of concrete is far less than its compressive strength, the compressive zone of the 
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cross-section under pure bending remains elastic. The stress-strain law chosen, besides the value for 

the Young’s modulus which is measured experimentally, requires an assumed uniaxial tensile 

strength and a positive non-dimensional parameter defining the degree of softening. The flexural 

strength predictions under 4-point bending and the corresponding deflections are influenced by 

these two parameters. The split cylinder tests can provide indicative values of the direct tensile 

strength. Thus, the uniaxial stress-strain law used was calibrated based on the experimental data of 

the 4-point bending tests performed in this study.   
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The constitutive law in the form of the expression ( ) ( )i)/(1/)/(f/ iiiii
βεε+−βεεβ=σ , 

proposed by Popovics (1973) for numerical modeling of the uniaxial stress-strain response in 

tension or compression of cementitious materials, is very versatile since by altering a single 

parameter one can model a response from perfectly brittle to perfectly plastic. In other words, it can 

model cement mortar, concrete and fiber-reinforced concrete, thus, covering the entire range from 

very brittle to very ductile softening materials. In examining inelasticity of cementitious materials 

this allows for a unified treatment of the problem.   

Once a stress-strain law is assigned, through a simple iteration procedure the moment vs. 

curvature prediction for a cross-section can be determined. Applied bending moment is translated 

into applied force through equilibrium and curvature is translated into deflection by using a 

kinematic relation. The kinematic relation can be obtained in closed-form from the solution of the 

boundary value problem in elasticity. The influence of the internal length on the classical 

predictions is then considered by scaling the curvature and by using the kinematic relation furnished 

Low-strength 

Normal-strength 

Medium-strength 

Materials exhibiting softening: 
Assumed stress-strain law in tension 
for the concrete and cement mortar 

mixes (Popovics, 1973): 
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by the gradient solution to the same boundary value problem. The numerical predictions essentially 

rely on the assumed stress-strain law and on the gradient solution of the structural problem of 4-

point bending. The predictions of the local and non-local model are numerical in nature but closed-

form solutions are used and their objectivity is demonstrated in Chapter IV.  

 

6. SIZE EFFECTS 

Size effect in cementitious materials does not manifest itself only in deformation-related issues such 

as stiffness but also in strength-related such as flexural strength. The adopted strain gradient theory 

with a minus sign in the strain gradient cannot predict size effect in strength. Gradient theories with 

a plus sign in the gradient have been shown to predict size effect in strength but there is very little 

physical justification for these models and furthermore when applied to elasticity, they predict the 

opposite of what is observed experimentally in composites with inclusions stiffer than the matrix 

material. The issue of how the present strain gradient model can be improved with the inclusion of 

an additional constitutive parameter in order to be able to predict size effect in the flexural strength 

as well is beyond the scope of this thesis. If the principle of superposition is applicable in this case, 

it can be said that the present findings concerning the internal length, g, should still hold true. The 

problem would then simplify to the experimental calibration of this 4th constitutive parameter. This 

4th constant could be physically associated with microstress concentration due to the composite 

nature of the material since as the scale decreases the redistribution of microstresses in the 

composite becomes more limited.  

 The experimental program undertaken in this work included specimen sizes of a rather 

limited scale range (1:1.5:2) concerning the study of size effects in the flexural strength. 

Nevertheless, the present experimental results on flexural strength are discussed in detail in Chapter 

VIII. Fracture mechanics and statistical size effects are the two main sources of size effect in 

strength which has been shown experimentally to occur. However, their predictions do not offer a 

satisfactory explanation of the observed behavior when the present experimental results are 

reviewed. Size effect in strength is closely related with the fact that a tensile strength is assigned to 

the material. When un-notched specimens are tested failure initiates at a location which is known to 

differ from the bulk material. The so-called wall effect is unavoidable since concrete is cast in 

plywood molds and the material in close proximity to the molds is altered to some effect. This is not 

accounted in the present study since a single stress-strain law is assumed for each mix but its 

presence may explain some of the experimental findings.   
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CHAPTER II 

STRAIN GRADIENT LENGTH VIA HOMOGENIZATION OF 

HETEROGENEOUS ELASTIC MATERIALS 

 

1. INTRODUCTION 

The novelty of gradient elasticity theories is the inclusion of an intrinsic length parameter or internal 

length in the constitutive equations that describe the mechanical behavior of the material. The 

inclusion of this parameter allows these theories to explain the size effect that has been shown 

experimentally to exist in heterogeneous materials. The two simplest and well studied gradient 

elasticity theories are the couple stress elasticity (or Cosserat theory)1,2 and the dipolar elasticity 

theory (or grade-two theory)3,4. The main difference between these two theories is that in the 

assumed strain-energy density function the first associates the internal length with the gradient of the 

rotations, whereas the second with the gradient of the strains. However, in both theories the internal 

length is associated with the microstresses that are developed due to the microstructure of the 

material. In the present work, the simplest possible dipolar model of just one additional length 

parameter is employed. This model based on a one length parameter appears to be adequate for 

predicting size effects in elasticity while it is difficult to verify experimentally models incorporating 

more than one internal length parameters.  

A typical composite material consists of a matrix and inclusions. The macroscopic material 

properties of the composite depend on the individual properties of these two phases. The aim of 

homogenization is to replace the composite material with an equivalent material of uniform 

macroscopic properties. Micro-mechanical models have been developed for both cases of particulate 

and fiber-reinforcement. Among the many homogenization methods that have been proposed are the 

Mori-Tanaka method5, the Self Consistent method6,7, the Generalized Self Consistent method8 and 

the Differential method9,10. All these methods aim at deriving the material properties of elasticity 

which in the case of isotropy are the modulus of elasticity and the Poisson’s ratio. However, when 

gradient theories are considered, an additional material parameter, the internal length, must be added. 

Nevertheless, the same strategy of homogenization can be used to yield an estimate for this new 

parameter.  

In the present work, the elastic energy of the heterogeneous Cauchy-elastic material will be 

compared with that of the homogeneous strain gradient elastic material and the characteristic length 
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will be estimated as function of the inclusion radius, volume fraction and elastic constants. The 

analysis will be limited to the two-dimensional (2D) case of circular inclusions.  

 

2. EFFECTIVE MATERIAL PROPERTIES OF TRANSVERSELY IS OTROPIC 

MATERIALS 

The following relationships for the effective material properties are derived with the Generalized Self 

Consistent method for the specific case of cylindrical inclusions, as predicted in [11]. It is noted that 

subscript m stands for the heterogeneous matrix material and subscript i stands for the inclusion. The 

symbols without subscript are the effective material properties of the homogeneous material. The 

overall elastic behavior is that of a transversely isotropic homogeneous material, requiring five 

material constants with two of them (μ, ν) describing the isotropy of the plane (x2, x3) which is of 

interest in this thesis work.   

The in-plane shear modulus, μ, is given by: 
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where c is the volume fraction of the inclusions and ν denotes the Poisson’s ratio.  

The in-plane bulk modulus K is: 
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the axial modulus E1 (in the x1 direction, normal to the (x2, x3) plane) is: 
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the axial Poisson’s ratio ν1 is: 
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and the in-plane Poisson’s ratio, ν, is given by12: 
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The above solution can be simplified for the two extreme cases of rigid inclusions and porous 

materials. The limiting case of a porous material can be derived directly from the general case 

represented by Eqs. (1) to (8), if we set 0ii =ν=µ .  

For the case of fibers much stiffer than the matrix, only the coefficients of the iµ  terms in A, 

B, C of Eq. (2) need be retained with the other being vanishing small.  Hence, the A, B, C 

coefficients, when inclusions are much stiffer than the matrix, take the form: 
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If ∞→µ i  is assumed, the rest of the solution for the case of rigid inclusions is found and Eqs. (4) to 

(8) are modified, accordingly.  
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These results have been shown to give good estimates not only for the case of dilute 

composition but also for the limiting case of full packing of the inclusion phase ( 1c→ ). In addition 

to the physical consistency of the results, it should be noted that the Generalized Self Consistent 

method is the only complete, exact, closed-form solution for the 2D case of cylindrical inclusions.  

The normalized composite shear modulus ratio,m/µµ , for elastic cylindrical inclusions for 

inclusion to matrix shear modulus ratio values ranging from 1.5 to 15 is shown in Fig. 1. The 

assumed matrix and inclusion Poisson’s ratio for all cases considered are 0.2 and 0.25, respectively.  

The limiting cases of rigid fibers and porous materials are shown in a semi-logarithmic plot in 

Fig. 2 and Fig. 3, respectively. Both results depend (weakly) only on the Poisson’s ratio of the matrix 

and four cases are plotted corresponding to matrix Poisson’s ratios of 0.1, 0.15, 0.2 and 0.25.  A 

comparison between three cases with a matrix Poisson’s ratio of 0.2 is shown in Fig. 4. The shear 

modulus ratio for the elastic inclusion case is 2/ mi =µµ .  The rigid inclusion and the void solution 

are upper and lower bounds for mi /µµ , respectively.  

 

Fig. 1. Effective shear modulus ratios for the case of elastic cylindrical inclusions for inclusion to 
matrix shear modulus ratio values, mi /µµ = 1.5, 2, 2.5, 5, 10, 15 (Poisson’s ratio for matrix, 2.0=mν , 

and for inclusions, 25.0=iν ). 
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Fig. 2. Effective shear modulus ratio for the case of cylindrical inclusions much stiffer than the 
matrix for matrix Poisson’s ratio values, 1.0m =ν , 0.15, 0.2, and 0.25. 
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Fig. 3. Effective shear modulus ratio for the case of a porous material ( 0ff =ν=µ ) for matrix 

Poisson’s ratio values, 1.0=mν , 0.15, 0.2, and 0.25. 
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Fig. 4. Comparison between the cases of a porous and elastic matrix material with rigid or elastic 
inclusions ( 2/ mi =µµ ) for 2.0m =ν .   

 

3. CLASSICAL ELASTICITY SOLUTIONS 

The solution of a circular ring under plain strain conditions subjected to uniform pressure p applied 

at the outer boundary br =  and to uniform pressure q applied at the inner boundary ar =  is13, 14 (see 

Fig. 5): 
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where ru is the radial displacement , rrσ  the radial stress,θθσ the hoop stress, νm  the Poisson’s ratio 

and mµ  the shear modulus of elasticity. Subscripts r and θ denote radial and circumferential 

directions of the ring. 

The elastic energy is: 
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The expressions for the strains can be found directly from those of the stresses assuming 

plane-strain constitutive equations14. The constitutive expressions of the non-zero strains are: 
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Fig. 5. Circular ring subjected to uniform external and internal pressure. 
 

 

Rigid inclusions 

The above general solution of the annulus problem can be modified to yield the solution for the case 

of a rigid inclusion of radiusa . In this case, the displacements at the inner boundary must be zero. By 

using (10) and setting 0)ar(ur == , we obtain a relation between the inner and outer pressures that 

satisfies this condition. The inner pressure q must be: 
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If we substitute this specific value of q back to (10) and (11), we will have the solution for the 

problem of a circular ring with a rigid inclusion. 

The elastic energy Ucl1 would then be: 

)c2c1(c)1(2

)21(ap)c1(
U

mmm

2
mm

22

1cl ν−+ν+µ

ν−ν−−π
=                                                                                     (15) 

where c is the composition value equal to 22 b/ac =  for the 2D case. 

We can rearrange (15) to become: 
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where ℓ is an internal length used to normalize the expression of elastic energy. The inclusion of this 

parameter might appear unnecessary at the moment since it does not affect the solution but its 

usefulness will become apparent in Section II.4 

The first derivative of ru at br = is: 
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Porous material (voids) 

The general solution for the case of pores is directly obtained from the general results of (10) and 

(11), if we set 0q = . The elastic energy is then:  
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and if we normalize the expression of the elastic energy with the internal length ℓ, we obtain: 
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The first derivative of ru at br = is in this case: 
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Elastic inclusions 

The solution for this case can be obtained by superimposing the solution of two sub-problems 

following the well-known Eshelby methodology15. We first remove the inclusion and assume an 

internal pressure q acting at the inner boundary )ar( = . By solving this problem we obtain the 

displacement 1u)ar(u == . We then assume a solid circle with the inclusion properties of radius α 

under normal pressure q. By solving this problem, we obtain the displacement 2u)ar(u == . The two 

sub-problems are shown in Fig. 1.6. The solutions to both of these problems can be obtained from 

the general solution represented by (10) and (11) applying the necessary simplifications for the 

second sub-problem.  
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Fig. 6. Superposition of sub-problems 1 and 2 yields the generic case of an annulus with elastic 
circular inclusions. 
 

The radial displacement 1u  at ar = of the sub-problem 1, is: 
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The radial displacement 2u  at ar = of the sub-problem 2, is: 
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The boundary condition of the generic problem demands 21 uu = . Using (21) and (22), we 

obtain the value of q as a function of the outer pressure p and the material properties of the matrix 

and inclusion. The pressure q must be: 
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If we feed this value of q back to the solution of the two sub-problems, we obtain the solution 

of the annulus with a circular inclusion. The elastic energy of the matrix would then be: 
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and, if we normalize the expression of the elastic energy with the internal length ℓ, we obtain: 
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The elastic energy of the inclusions is: 
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and, if we normalize the expression of the elastic energy with the internal length ℓ, we obtain: 
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Therefore, the total elastic energy of an annulus with an elastic circular inclusion is: 
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and the first derivative of ru at br = is: 
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Note that Eq. (29) gives Eq. (20) in the case of a porous material ( 0i =µ , 0i =ν ) and for rigid 

inclusions ( ∞→µ i ), Eq. (29) becomes Eq. (17). 

 

4. GRADIENT ELASTICITY SOLUTION FOR THE ANNULUS PRO BLEM 

Eshel and Rosenfeld16 were the first to provide the outline of the gradient elasticity solution for the 

annulus problem. The problem was solved analytically by Aravas17 and Gao and Park18 for plain 

strain conditions. The key points of the solution of the annulus problem (see Fig. 5) are presented 

next.  

The material is an in-plane isotropic, compressible, homogeneous, linear elastic material and 

is described by an elastic strain energy density function W which incorporates strain gradient effects: 
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where is ℓ is a material length, ε is the infinitesimal strain tensor and κ the strain gradient 3rd order 

tensor. Note that the deformation in the out-of-plane direction x3 is zero ( 0u3 = ) and also 033 =ε , 

0k33 =κ . 

The Cauchy stress and double stress quantities τ and λ are defined as follows: 
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The following relations also hold true: 
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ijk x∂τ∂=λ l ) and εκ ∇=  ( kijijk x∂ε∂=κ )                                           (32) 

The dynamic boundary conditions required by the principal of virtual work, are the Cauchy 

( rP ) and the double stress tractions (rR ) in the radial direction: 
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where K and I are modified Bessel functions of the 1st and 2nd kind (the subscript indicates the order) 

and c1, c2, c3 and c6 are unknown constants to be determined from the following boundary 

conditions: 

q)a(Pr −= , 0)a(R r =  at ar =  

p)b(Pr −= , 0)b(R r =  at br =                                                                                           (35) 

The radial displacements are: 
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and the rest of the solution is: 
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and 
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where 0
rrτ , 0

θθτ , 0
rrε  and 0

θθε represent the classical linear isotropic elasticity solution , (i.e. 0=l ).  
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and  

A2cc 71 += , B2cc 86 −=                                                                                                 (43) 

The solution of interest corresponds to 0a→ . The constants c2 and c6 must be zero in order 

for the displacements to be finite and zero at 0r = . Therefore, the unknown constants reduce to just 

two, c3 and c7. However, when trying to calculate the values of these two constants from traction 

type boundary conditions, they both vanish and the gradient solution reduces to the classical 

elasticity solution. This is not surprising because in order for the gradient effects to participate in the 

solution, they must be triggered somehow by the boundary conditions. This is in agreement with the 

finding of Bigoni and Drugan19 who considered corresponding results for Cosserat materials. 

In order to overcome this, a kinematic boundary condition is assumed at br = : 

0
rrr

br

r u
r

u
=

∂

∂

=

                                                                                                                       (44) 

This condition implies that the 2D gradient elastic material representing the composite, 

assumes a homogeneous gradient of the radial displacement. Eq. (44) together with the traction type 

condition p)b(Pr −=  will be used. Thus, the gradient material is loaded with tractions and 

displacements gradients that are the same with these of the inhomogeneous classic composite system.                                                                                                                             

The constants now become: 

0Bcc 28 === , pA −=                                                                                                     (45) 

and 
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The elastic energy of the gradient solution Ugr is: 
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The values of κ and λ are obtained after substituting Eqs. (37) to (40) into (32). After 

substituting all the quantities and integrating, the gradient elastic energy becomes: 
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where HG is a generalized hypergeometric function and HGΓ is a regularized confluent 

hypergeometric function20. Both functions are described as: 
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and  )a(/)x;a(F]x,a[HG 10 Γ=Γ ,  

where Γ(α) is the Euler gamma function. 

Alternatively, the gradient elastic energy can be found from the external work. The elastic 

energy is then equal to: 

{ })b('u)b(R)b(u)b(PbU rrrrgr +π=                                                                                    (50) 

where prime denotes derivative with respect to r. 

  Substituting the value of 0rrru  from (29) into (46) and (47), the gradient elasticity solutions can 

be equated with the classic elasticity solutions for the three cases of rigid inclusion, porous material 

and elastic inclusions discussed in Section II.3. This approach is similar to that of Bigoni and 

Drugan19for Cosserat gradient elastic materials.  

Thus, we obtain the constants c3 and c7 for each case separately:  

For the case of rigid inclusions (Fig. 7), the constants become: 
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For the case of porous materials (Fig. 8), the constants become: 
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For the case of elastic inclusions (Fig. 9), the constants become: 
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Note that for all expressions of the constants c3 and c7, the internal length appears only in the 

normalized form l/b . By substituting i_3c  and i_7c  ( 3,2,1i = ) in (49), we obtain three expressions 

for the gradient elastic energy, 1grU , 2grU  and 3grU ,  respectively.  
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(a)                                                (b) 
Fig. 7. Homogenization procedure of a material containing rigid inclusions: (a) Heterogeneous 
Cauchy material; (b) Homogeneous gradient material. 
 

 
                                 (a)                                                                   (b) 
Fig. 8. Homogenization procedure of a porous material: (a) Heterogeneous Cauchy material; (b) 
Homogeneous gradient material. 
 

 
                                  (a)                                                                    (b) 
Fig. 9. Homogenization procedure of a material containing elastic inclusions: (a) Heterogeneous 
Cauchy material; (b) Homogeneous gradient material. 
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5. ESTIMATION OF INTERNAL LENGTH 

The energy for a heterogeneous material shown in Section II.3 and that for a gradient homogeneous 

material shown in Section II.4 were determined based on the same boundary conditions. By equating 

the two energies, we can derive an estimation of the internal length for a gradient material as a 

function of the inclusion radiusa , the composition value ratio c and the elastic material constants of 

the matrix and the inclusion ( mi /µµ , iν , mν ). However, before proceeding, we must face the problem 

of how to settle with the other two material properties of the gradient material which in the general 

case will not be equal to the matrix material properties.  

The problem has three unknowns, namely, the internal length ℓ, the in-plane shear modulus μ 

and Poisson’s ratio ν and there is only one equation to work with, namely: 

grcl UU =                                                                                                                            (57) 

One approach is to limit the solution of diluting the concentration of inclusions and hence assume 

that the material properties of the matrix and composite material remain the same. It is noted that the 

results of Bigoni and Drugan19 were derived using this assumption. However, another engineering 

approach is to extract the two material properties of shear modulus and Poisson’s ratio from a 

classical composite model suitable to the problem under consideration and substitute them to Eq. 

(57). By doing so, there is only one unknown left, the internal length ℓ, which can then be 

determined. This approach is justified by the fact that the gradient material should always reduce to 

the classical material if the gradient effect is neglected, i.e. 0=l . Therefore the effective material 

properties predicted by the classical homogenization schemes hold true for the composite gradient 

material as well. Estimates of the effective material properties of the homogeneous gradient material 

that correspond to our problem are given in Section II.2.  

The expression of grU is highly non-linear and can not be solved explicitly with respect tol . 

It can, however, be solved numerically through an iteration process for different values of all the 

parameters. The solution path is shown schematically in Fig.10. Throughout the calculations, a 5-

digit accuracy was maintained. The numerical integration of the curves presented in Fig. 11-13 

converges as the interpolation order is increased. 
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Fig. 10. Iteration process for estimating the internal length as a function of the composition value, c, 
and the inclusion radius,a .  
 
 
Rigid Inclusions 

Estimation for the internal length for rigid inclusions is derived by equating the two associated 

energies, 1gr1cl UU =  (see Fig.7). The variation of the gradient internal length, ℓ, normalized by the 

radius of the inclusion,a , with a composition value ratio c is shown in Fig. 11 in a semi-logarithmic 

plot for mν  values of 0.1, 0.15, 0.2 and 0.25. The results are also presented in Table 1. It can be seen 

that the internal length increases with increasing value of the matrix’s Poisson’s ratio. 

 

 

Assumption of a heterogeneous material with elastic properties,  
μm, νm, μi ,νi  and composition value c 

Estimation of effective in-plane elastic properties, μ and ν, for each problem 
(Section II.2) 

Estimation of l/b  based on Eq. (57), and 
)/b(c

1
a/

l

l =  
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Table 1. Estimated normalized gradient internal length values for the case of rigid inclusions. 

c 
b/ℓ ℓ/α* 

νm=0,1 νm=0,15 νm=0,2 νm=0,25 νm=0,1 νm=0,15 νm=0,2 νm=0,25 

0.1% 4.6 4.5 4.5 4.7 6.802 7.088 7.058 6.707 

1% 7.2 5.4 4.9 5.0 1.390 1.844 2.028 2.017 

5% 17.1 9.6 7.0 6.1 0.262 0.468 0.640 0.732 

10% 27.8 14.7 10.2 7.8 0.114 0.214 0.309 0.408 

20% 47.9 26.4 16.7 12.0 0.047 0.085 0.134 0.186 

30% 71.7 42.0 26.7 18.6 0.025 0.043 0.068 0.098 

40% 106.2 66.1 43.1 29.6 0.015 0.024 0.037 0.053 

50% 163.0 107.3 72.3 50.0 0.009 0.013 0.020 0.028 

60% 268,2 186.3 130.2 91.7 0.005 0.007 0.010 0.014 

70% 495.5 362.2 263.6 191.0 0.002 0.003 0.005 0.006 

80% 1140.7 875.8 664.8 498.6 0.001 0.001 0.002 0.002 

90% 4583.1 3685.0 2921.5 2277.0 0.000 0.000 0.000 0.000 

* the composition value 22 / bac =  for the 2D case 
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Fig. 11. Variation of the gradient internal length to inclusion radius ratio value, ℓ/α, with respect to 
the composition value c for the case of rigid cylindrical inclusions. 
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Elastic Inclusions 

Estimation for the internal length for the case of elastic inclusions is derived by equating the two 

associated energies, 3gr3cl UU =  (see Fig. 9). The variation of the gradient internal length, ℓ, 

normalized by the radius of the inclusion, α, with respect to the composition value ratio c is shown in 

Fig. 12 in a semi-logarithmic plot for inclusion to matrix shear modulus ratio, mi µµ , values of 2, 

2.5, 5, 10 and 15 ( 2.0m =ν , 25.0i =ν ). For comparison purposes, the rigid case with 2.0=mν  is 

plotted as well. These results are also presented in Table 2. The rigid inclusion case of  ∞→µµ mi  

gives the upper bound of α/l  and α/l  increases monotonically for 1mi >µµ . The normalized 

internal length, α/l , is a decreasing function of the composition value c, with 0/ →αl  as 1c→ . It 

is noted that in all cases, when 0c→  then ∞→α/l  with dc
1

0
α∫
l

 finite. Note also that when 

mi µµ =1 and mi νν =1, no physically meaningful prediction was found as expected, because this 

case is essentially the case of a homogeneous material. The same was found to be true when the 

inclusion is less stiff than the matrix.  

 
Table 2. Variation of the normalized gradient internal length value for the case of elastic inclusions. 

c 
b/ℓ (* ) ℓ/α (** ) 

μi/μm=2 μi/μm=2.5 μi/μm=5 μi/μm=10 μi/μm=15 μi/μm=2 μi/μm=2.5 μi/μm=5 μi/μm=10 μi/μm=15 

0.1% 52.5 44.1 16.6 9.4 7.5 0.602 0.717 1.909 3.350 4.193 

1% 55.5 36.8 16.4 9.8 8.0 0.180 0.272 0.611 1.018 1.252 

5% 54.6 38.5 18.6 12.0 10.2 0.082 0.116 0.240 0.372 0.440 

10% 57.3 41.7 21.8 15.0 13.1 0.055 0.076 0.145 0.210 0.241 

20% 64.3 49.4 29.4 22.4 20.3 0.035 0.045 0.076 0.100 0.110 

30% 72.5 58.9 39.6 32.5 30.5 0.025 0.031 0.046 0.056 0.060 

40% 82.5 70.7 54.0 47.9 46.1 0.019 0.022 0.029 0.033 0.034 

50% 93.9 85.4 74.9 72.4 72.0 0.015 0.017 0.019 0.020 0.020 

60% 106.7 103.5 106.0 113.6 117.7 0.012 0.012 0.012 0.011 0.011 

70% 121.2 125.4 153.1 187.4 205.7 0.010 0.010 0.008 0.006 0.006 

80% 136.4 152.1 227.2 332.6 398.5 0.008 0.007 0.005 0.003 0.003 

90% 164.5 185.9 - 674.2 938.2 0.006 0.006 - 0.002 0.001 
(* )  Poisson’s ratio for  matrix and inclusions is 0.2 and 0.25, respectively. 
(** ) composition value 22 b/ac =  for the 2D case 
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Fig. 12. Variation of the normalized gradient internal length to inclusion radius ratio with respect to 

the composition value, c, for the case of elastic cylindrical inclusions ( 2.0m =ν , 25.0=iν ). 

 

Porous material 

Estimation for the internal length for the case of voids present in a material is derived by equating the 

two associated energies, 2gr2cl UU = (see Fig.8). The estimate of the normalized internal length, b/ℓ, 

for the case of porous materials is either in the order of 10-8 or negative. This is not acceptable since 

it lacks physical justification. In other words, it is not possible to predict an internal length for the 

case of porous materials or generally when the inclusions are less stiff than the matrix. When 

inclusions are less stiff than the matrix, the micro-structural load path changes and strain gradient 

theories may be no longer applicable. This is in agreement with Bigoni and Drugan19 who proved 

that predicting the Cosserat microstructural length when particles are stiffer than the matrix is not 

feasible. It could be argued that the present results are complementary to those of Bigoni and 

Drugan19 who were interested in gradients of rotations and not of strains as in the present work. 

 

Micromechanical explanation of the results  

The internal length predictions in this work showed that as the composition value is increased, the 

internal length estimate decreases. The internal length is associated with the microstresses that 

develop due to the microstructure of the composite. However, when composition value increases the 

distance between particles, decreases. Instead of having an inclusion embedded in a continuum, the 
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problem resembles that of a particle with a thin layer around it. It has been shown21 that when this 

occurs, the strain gradients reduce drastically. 

The estimates shown above were based on an axisymmetric type of loading. In order to verify 

that these predictions hold true for other loading cases, a different loading system that removes this 

symmetry is considered next. This loading case corresponds to a remote uniaxial tension and the 

details of the solutions are presented in Section II.6. The limiting case of rigid inclusions was 

considered only and it was found that the material length predictions obtained for both loading cases 

are identical. 

 

6. REMOTE UNIAXIAL TENSION 

The problem of a circular inclusion of radius,a , in an infinite isotropic plate under remote uniform 

uniaxial tension, P, is considered, as shown in Fig. 13. Outside the inclusion, the gradient solution for 

the radial and angular displacements, respectively, are21: 

P

r

θ 1

2 P

2a

 

Fig. 13. Inclusion of radius, a, in an infinite plate subjected to uniform uniaxial tension, P. 
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where 6...1A  are unknown coefficients and ),r(u0
r θ  and ),r(u0 θθ are the classical expressions of radial 

and angular displacements. 

The classical expressions of the displacements outside the inclusion for the case of rigid 

inclusions are21: 
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It is demanded that the gradient displacements are equal to the classical predictions for everyθ at 

ar = and br =  ( ab > ): 

θ∀θ=θ

θ∀θ=θ

θθ   

  

),a(u),a(u

),a(u),a(u
0

0
rr                                                                                                           (62) 

Eqs. (62) describe a system of 6 equations that can be solved for the six unknowns 6...1A . The 

coefficients should be:  

0AAA 652 ===                                                                                                                   (63)     

Therefore, the gradient solution reduces to the classical solution but this does not mean that 

the gradient effect disappears as in the case of axisymmetric loading. In essence, the same kinematic 

admissible field for either a gradient homogeneous material or classical heterogeneous material is 

applied. Obviously, this kinematic field is the same only for ar ≥ , but for the case of dilute 

composites ( ba<< ) the total elastic energy calculated for arb ≥≥  is approximately the same with 

the total elastic energy calculated for 0rb ≥≥ .  

The expression for the total classical elastic energy is: 
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and that for the total gradient elastic energy is: 
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It is reminded that for the case of cylindrical coordinates the following relations hold true: 
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Under the assumption of dilute composition, equality of the two energies can be demanded 

since both systems have the same kinematic field. The other two material properties, i.e. in-plane 

shear modulus and Poisson’s ratio for the gradient material, are extracted from Christensen’s 

predictions (see Section II.2).  In Fig. 14, the prediction for rigid inclusions is plotted assuming that 

the matrix Poisson’s ratio is 2.0=ν . The solid line corresponds to loading case 1 (see Fig. 7) and the 

diamond symbols correspond to loading case 2 (Fig. 13). The predictions for loading case 2 were 

derived under the assumption of dilute concentration of inclusions and hence only the predictions for 

%5c<  are plotted. As it can be seen, the agreement for the two estimates is very good for values of 

c  up to 1% while the deviation between the two predictions increases for higher values. 
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Fig. 14. Variation of the normalized gradient internal length to inclusion radius ratio, ℓ/α, vs. the 
composition value c for the case of rigid cylindrical inclusions and two loading cases ( 2.0m =ν ).  
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7. APPLICATION TO FIBER-REINFORCED CONCRETE 

In order to obtain an estimate of the internal length for fiber-reinforced concrete (FRC), one can use 

either the assumption of elastic or that of rigid inclusions. In this study, a typical FRC mix22 with 

hooked-end steel fibers and the following properties, GPa40=mE , 2.0m =ν , GPa210=iE , 

3.0i =ν  and %8.0c = used for retrofitting RC structures is considered. The steel fibers have a 

circular cross-section with a 5-mm diameter and the fibers to cement matrix shear modulus ratio 

is 85.4/ mi =µµ . The density for the cement matrix and the “fiber” inclusions is 

3m/kg2350=mρ and 3m/kg7850=iρ , respectively. 

The normalized internal length, ℓ/a, and internal length, ℓ, estimate according to the proposed 

model for the assumption of elastic and rigid “fiber” inclusions is 50.1=(6.0=a/ ll mm) and 

75.5=(3.2=a/ ll mm), respectively. It is noted that this specific FRC mix was designed to be 

used as a 3- to 5-cm thick jacket to existing RC columns.  

The Ben-Amoz model23 for predicting the internal length parameter is based on a dynamic 

analysis of the micro- and macro-structure. It is noted that, in the absence of the dynamic conditions 

imposed, the validity of this model becomes questionable. Nevertheless, the Ben-Amoz model is the 

only model in the literature that can predict the strain gradient internal length parameter and for this 

reason it is interesting to compare its predictions with the proposed model predictions. The key 

points of Ben-Amoz model are described next. 

A normalized scale parameter, L/d, which can be seen as a measure of the strength of 

heterogeneity, is introduced as follows:  

[ ] 2/1
RR )2(/)2(d/L µ+λρµ+λρ= υυ                                                                                  (66) 

where b2d = for the 2D case and subscripts υ and R denote the Voigt and Reuss averaging 

quantities, respectively, which are defined as follows: 
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                                                                                                        (67) 

where c is the volume fraction of the inclusions and subscripts m and i denote the matrix and “fiber” 

inclusion material, respectively. It is noted that this scale parameter is derived by assuming that the 

strain energy and kinetic energy are of the same order of magnitude but this assumption is not always 

true..                                                                                                                
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The internal length parameters of Mindlin’s work for the long wave-length approximation, 1l  

and 2l (pp. 69 in [4]) are then associated with the scale parameter L by the following equations for 

the shear and dilatation modes: 
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where 2
i

4
i c)b/a(I == for the 2D case. 

Applying the simplifications of the simplified strain gradient theory used throughout this 

thesis, that is 0aaa 531 ===
)))

, 2
2 )2/(a l

)
λ= and 2

4a l
)

µ= (see [4], pp. 73), the Mindlin’s internal 

length parameters become lll == 21 . Hence, the Ben-Amoz model gives two different estimates 

for the internal length parameter, which for small values of the composition value c  are 

approximately the same. The Ben-Amoz predictions, for the specific FRC mix considered here, are: 

mm2.28=and28.11=a/ ll , for the shear mode,  

and      mm05.28=and22.11=a/ ll ,  for the dilatation mode   

The predicted internal length estimates for the same FRC material of the present (about 6 

mm) and the Ben-Amoz model (about 28 mm) are significantly different. A definite answer as to 

which model is more appropriate would require the estimation of an internal length for an FRC mix 

independently based on flexure tests.  

 

8. CONCLUSIONS 

A homogenization of a plane-strain heterogeneous Cauchy-elastic material was performed and the 

internal length parameter assumed in the strain gradient theory was estimated for the case of elastic 

inclusions stiffer than the matrix in the case of fiber-reinforced composites. The internal length was 

found to be 0.5 to 7 times the inclusion radius for very small values of %1.0c ≅ depending on the 

inclusion to matrix shear modulus ratio. The internal length estimate decreases rather rapidly as the 

composition value c is increased and is approximately zero for %70c > . No prediction was possible 

for inclusions less stiff than the matrix and for the extreme case of porous materials. 
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CHAPTER III 

STRUCTURAL ANALYSIS USING A DIPOLAR ELASTIC TIMOSHE NKO 

BEAM - APPLICATION TO MICROCANTILEVERS 

 

1. INTRODUCTION  

A term so-called “size effect’’ is usually used to describe the effect of the microstructure on the 

mechanical behavior of a member which for different sizes deviates from that expected based on 

similitude laws. When the dimensions of the microstructure (grain size, inclusion size, lattice 

distance etc.) becomes comparable with the dimensions of the member itself, the assumption of a 

homogeneous medium of classical elasticity and its implication concerning the very definition of 

stress and strain no longer suffice. In other words, as structures are scaled down their behavior 

becomes increasingly dominated by the inhomogeneous nature of the material itself. The need to 

model such behavior without modeling the full detail of the microstructure has led to the 

development of enriched continuum models. This is done in an average sense by introducing length 

scale parameters in the constitutive equations that account for the effect that the microstructure has 

on the deformation process.  By doing so, these theories have the advantage over classical elasticity 

of explaining why scaled down structures are stiffer and stronger. However, in their original 

form1,2,3,4 these theories become unpractical since it is impossible to quantify all these new length 

scale parameters with the available experimental data, i.e. static or dynamic flexural tests. 

Nevertheless, by simplifying these theories and keeping just one length scale parameter (for static 

cases), calibration becomes rather straight forward and at the same time the key novelty of such 

theories which is the prediction of size effect is preserved. For this reason, in this work, a simplified 

(dipolar) isotropic strain gradient theory is used with just one material length scale parameter, g, in 

addition to the two classical elasticity parameters, that is the elastic modulus, E, and the Poisson’s 

ratio, ν.  

Quite small structural elements that are used in the design of micro-electromechanical 

systems (MEMS) are often in the form of beams (e.g. sensors and actuators) and their design requires 

them to deform within their elastic domain5. Although the stiffness of such micro-devices is essential 

information for their design, in many cases their stiffness is determined experimentally and is found 

to be higher than that predicted by classical elasticity. Salvetat et al.6 performed flexural experiments 

on single-wall carbon nanotube beams with both ends fixed arranged in a close-packed lattice with 

dimensions of 1.4 nm and used rope diameters from 3 to 20 nm in flexural tests. They found that as 
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the diameter decreased the nanotubes exhibited a much stiffer response.  The same behavior was 

observed in carbon nanotubes by Poncharal et al.7. Ding et al.8 tested polysilicon microcantilevers 

with grain size in the order of 0.2 μm, thickness of 2.4 μm and variable aspect ratios and although the 

authors attributed the stiffness differences in the beams to measurement errors, a closer look at their 

results suggests the existence of a size effect. Lam et al.9 performed bending tests on epoxy 

polymeric microcantilevers with thickness values varying from 20 to 115 μm and showed that as the 

thickness decreased the stiffness increased beyond the predictions of classical elasticity. Although no 

information about the microstructure of the PP microcantilevers is included in this work, high 

crosslink-density regions with a diameter of 6 to 104 nm have been observed in cross-linked resins 

forming on that scale a heterogeneous rather than a homogeneous material10,11. McFarland and 

Colton12 tested polypropylene (PP) microcantilevers which have a nonhomogeneous microstructure 

due to their semi-crystalline nature and found that the microcantilevers with a thickness of 15 and 29 

μm exhibited a much stiffer response which cannot be explained by any of the possible error sources 

associated with the experiments. It is noted that the nonhomogeneous nature of PP is due to the 

formation of spherical particles called spherulites during its manufacturing process. The authors did 

not provide any information about the size of the spherulites in their material but typically their size 

can be up to 10 μm when the specimen is manufactured via injection molding13. Hong et al.14 tested 

copper (Cu) microcantilevers with a thickness of 10.5 and 2.8 μm under flexure and reported a stiffer 

response for the thinner films. Grain size of copper films manufactured by electroplating and 

annealed in vacuum can be up to15 1 μm. Yang et al.16 tested native and cross-linked type I collagen 

fibrils with diameters ranging from 187 to 424 nm and found that the stiffness increased as the 

diameter of the fibrils decreased. Note that collagen fibrils are assembled of parallel collagen 

molecules arranged with a longitudinal stagger and also contain mineral particles (typically flat and 

elongated) with the elongated dimension reaching values up to17 100 nm. It is also worth mentioning 

the work of Namazu et al.18 and Liu et al.19 who carried out flexure experiments on single-crystal 

silicon beams which have a continuous crystal lattice (no grain boundaries) and hence can be seen as 

completely homogeneous and found absence of size effect in stiffness as the specimens ranged from 

a nano- to a mm scale. Size effect in strength, however, was significant. This review of the available 

experimental evidence is not meant to be exhaustive but only indicative of the phenomenon which 

the current work attempts to explain, which is that size effect in the elastic deformation range of 

beams is to be expected when the scale of the structure becomes comparable with the scale of the 

microstructure.  
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The need to quantify the departure from the classical elasticity predictions and offer the 

designer of MEMS a theoretical tool in the form of closed-form solutions for predicting size effect is 

one of the motivations in this work. Of interest is the solution of a Timoshenko beam20 loaded 

statically. Papargyri-Beskou et al.21 have used the same simplified strain gradient theory using 

surface energy22 to solve the bending and buckling of the Bernoulli-Euler beam. Their model has 

been investigated further by Giannakopoulos and Stamoulis23 for the case of a cantilever beam under 

flexure and a cracked bar under tension. Nevertheless, the Bernoulli-Euler beam is only applicable to 

slender beams where shear forces have a negligible influence on the deformations of the beam.  

In the present work using the Timoshenko beam kinematics it is examined how the gradient 

solution is affected when the shear forces are included in the analysis. It is noted here that the same 

strain gradient elasticity theory has been used by Wang et al.24 and Lazopoulos and Lazopoulos25 for 

the case of Timoshenko beam kinematics. Both these works employ Fourier series to solve the 

boundary value problem, whereas in the present work closed-form solutions are provided. 

Furthermore, none of these works address the issue of indeterminate members and how they should 

be treated and only refer to the isostatic case of a simply-supported beam. As it would become 

apparent, by solving the problem in a closed-form, a methodology for treating more complex 

structural problems (hyperstatic beams, frames etc.) emerges. However, it is beyond the scope of this 

work to explore all beam configurations and only the example of a doubly-clamped beam is 

considered in detail. More differences exist if the solution in the present model is compared to that of 

Wang et al.24 and Lazopoulos and Lazopoulos25 and those are discussed in detail in Section III.4. 

Finally, other non-local theories for the case of Timoshenko beam kinematics have also been 

considered by Lam et al.9, Reddy26, Ma et al.27, Asghari et al.28, Ramezani et al.29. These works 

employ different gradient elasticity theories than the presented one and are briefly discussed in 

Section III.4. Models that are based on integral (strong) non-local theories will not be examined in 

this work.  

Concerning the structure of the present chapter, Section III.2 includes the governing 

equations and boundary conditions for the Timoshenko beam, while in Section III.3 the proposed 

model is applied to the specific problem of a cantilever beam with a point load at its free end and the 

details of the solution are investigated. An indeterminate beam is also investigated, i.e. a beam 

clamped at both ends, loaded by a point load at midspan. In Section III.4, the present approach is 

compared with the various Timoshenko beam theories in the literature. Finally, in Section III.5, 
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available experimental data on microcantilevers in the literature are used to compare the predictions 

of the length parameter for the strain gradient elasticity with those for the micropolar elasticity.  

 

2. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS 

We consider a straight prismatic beam subjected to a static lateral load )x(q distributed along the 

longitudinal axis x of the beam, as shown in Fig. 1(a). The loading plane coincides with the xz plane 

and the cross-section of the beam is parallel to the yz plane and symmetric with respect to the xz 

plane. The displacement field following the Timoshenko beam kinematics can be described by the 

following relations: 

)x(w=zu

0=yu

)x(ψz=xu

                                                                                                                          (1) 

where )x(ψ  is the rotation angle of the cross-section with respect to the z-direction and )x(w is the z 

component of the displacements along the axis x. Note that the Timoshenko kinematics allow the 

boundary conditions to be only defined on the beam’s cross-section at the two ends keeping the 1D 

character of the solution. It is beyond the scope of this work to solve analytically the true 3D 

problem. The important question is whether such approach is justified and this question is addressed 

by comparing the predictions of the present model with the 2D finite element results, which suffice 

for the case of beams (see Fig. 8).  

Using the geometric relations (Eqs. (1)), the non-zero axial and shear strains are equal to: 
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                                                                                        (2) 

The material is a homogeneous, linear elastic material and thus the non-zero Cauchy stresses 

are equal to: 

xxxx Eε=σ                                                                                                                            (3a) 

 xzxz kGγ=σ                                                                                                                         (3b) 

where k  is a correction30 factor which depends on the shape of the beam’s cross-section,  ν is the 

Poisson’s ratio introduced to account for the  non-uniformity of the shear strain over the beam’s 

cross-section, E is the Young’s modulus of elasticity and G the shear modulus which for an isotropic 

material is )1(2/EG ν+= . Note that Eq. (3a) is based on the assumption that the Poisson’s ratio ν is 
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zero. Equation (3a) can be modified to account for the effect of isotropic Poisson’s ratio, as in Ma et 

al.27, if E
)21)(1(

1
E*

ν−ν+
ν−

=  is used instead of E. The simplified form of Eq. (3a) will be kept but 

throughout the manuscript the numerical results are derived using *E .  

 

x y

zz

ux

uz

q

C.G.

Fully Clamped end 
       

Partially Clamped end  

                                            (a)                                                                              (b) 

Fig. 1. (a) Beam configuration and coordinate system (C.G. = center of gravity), (b) Clamped-end 
configurations. 

 

The employed strain gradient theory is a simplification of Mindlin’s1 form II gradient theory, 

using just one material length scale parameter. In this case, the non-zero total axial and shear stresses 

can be expressed with respect to the Cauchy stresses, as: 

xz
22

xz

xx
22

xx

)g1(

)g1(

σ∇−=σ

σ∇−=σ
                                                                                                               (4) 

where g is the strain gradient material length, the over-bar quantities are the Cauchy stresses (see 

Eqs. (3)) and 22222 z/x/ ∂∂+∂∂=∇  is the Laplace operator. 

The total internal elastic strain energy for the beam is: 

grcltot UUU +=                                                                                                                       (5) 

where clU is the internal elastic strain energy of a classical beam given by: 
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and grU is the internal elastic strain energy of a purely gradient beam given by: 
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The variation of the total elastic strain energy for a beam of length L is:  
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whereδ indicates variation, ∫∫= dydzzI 2  is the moment of inertia about the z-axis and ∫∫= dydzA  

is the cross-sectional area. Eq. (8) is obtained from Eq. (5), using Eqs. (6) and (7) by expressing all 

quantities in terms of the independent kinematic variables w , ψ , w′  and ψ′  and applying 

integration by parts. Note that classical analysis uses only w  and ψ  as independent kinematic 

variables.  

The variation of the work Wδ done by the distributed forces, )x(q , the classical and non-

classical boundary shear forces Q  and Y, respectively, and the classical and non-classical bending 

moments M  and m, respectively, is: 
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0 mwYMwQwdxqW ψ′δ+′δ+δψ+δ+δ=δ ∫                                                       (9) 

while the principle of minimum potential energy states that, 

( ) 0WU tot =−δ                                                                                                                    (10) 

It is recalled that in classical elasticity, the bending moment M  and shear forces Q  are equal 
to: 
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Substituting Eqs (8) and (9) into Eq. (10) and using Eqs. (11), the following governing 

equations (see Eqs. 12) and boundary conditions (see Eqs. 13) are derived for the gradient 

Timoshenko beam: 
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Note that all the above relations reduce to the classical Timoshenko beam expressions in the 

absence of gradient, i.e. 0g = . Also note that the coefficient I/A  in Eqs. (12a) and (13c) stems 

directly from the cross-term )z/)(z/( xxxx

_

∂ε∂∂σ∂ in the expression of the strain gradient elastic 

energy (Eq. (7)).  Considering only the leading gradient shear term, i.e. )x/)(x/( xzxz

_

∂ε∂∂σ∂ , will 

not capture this additional scaling effect for shear. Therefore, for a complete gradient Timoshenko 

beam solution both terms must be considered.   

The boundary conditions (Eqs. (13)) are mutually exclusive. This means that one can 

prescribe the following:  

either        wor Q)2dx

2d2g-1(=Q                                                                         (14a) 
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w′ or 
dx

Qd2g=Y                                                                                           (14b)           

ψ or 
dx

Qd2g+M2g
I

A
+M2dx

2d2g1=M                                                    (14c) 

ψ′or  
dx

Md2g=m                                                                                        (14d) 

The end conditions and continuity requirements that stem from the boundary conditions (Eqs. 

14a-d) for a gradient Timoshenko beam are summarized in Table 1. This table is of utmost 

importance for solving beam systems with various end conditions and connectivity, both statically 

determinate and indeterminate. The issue of the appropriateness of the non-classical boundary 

conditions recommended in Table 1 is discussed in Section III.3 where the finite element solution of 

a cantilever beam is considered (see comments made regarding Fig. 8).  The physical implication for 

0=ψ′  is that a fully-clamped condition is accounted for, i.e. preventing deformation in all directions 

at the clamped end. This brings into consideration the actual implementation of “clamping’’. For 

example, it is true that 0≠ψ′  for a partially clamped end support, as shown in Fig. 1(b). 

 
Table 1. Beam boundary conditions and continuity requirements for the gradient Timoshenko beam. 

End 
Condition 

            Boundary Conditions               Continuity Requirements 

Classical Non-Classical 
End Hinge 0=w , 0=M  0=Y , 0=m  - 

Clamped End 0=w , 0=ψ  0' =w , 0=′ψ  - 

Free End 0=Q , 0=M  0=Y , 0=m  - 

Internal Hinge 0=M  0=m  −+ = ww , −+ ′=′ ww , −+ ′′=′′ ww , −+ =ψψ  

Internal Roller 0=w  - 
−+ =ψψ , −+ ′=′ ψψ , −+ ′′=′′ ψψ , −+ ′=′ ww , 

−+ ′′=′′ ww , −+ ′′′=′′′ ww  
Note: In the case of concentrated moments or forces, the BC’s should be modified accordingly. This also applies to 
the case of intermediate supports such as springs. 
 

To illustrate the details of the general solution, Eqs. (11) are substituted back into Eqs. (12) to 

obtain the two differential equations for the )x(w and )x(ψ functions describing the solution. The 

differential equations are: 
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In order to solve the 4th-order differential equations, it is convenient to set: 

ψ+=Ω
dx

dw
)x(                                                                                                                     (16) 

So, Eqs. (15) become:       
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wherel is a length, which can be seen as the shear gradient internal length equal to: 

2g)I/A(1

1
g

+
=l                                                                                                               (18) 

Note that when 0=g , then 0=l  and 1g/ =l . Also, if 1g)I/A( 2 << , then g=l  and 1g/ =l . 

Therefore, for all cases it is true that 1g/0 ≤< l .  

For a constantq , Eq. (17b) has a general solution of the form: 
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Substituting Eq. (19) into Eq. (17a), the general solution is obtained for ψ :  
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Also, substituting Eq. (20) back to Eq. (16), the general solution is obtained for w : 
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Equations (20) and (21) contain a total of 8 constants, ic  and id  ( 4...1i = ). These constants can be 

obtained from the 4 boundary conditions, which allow for 8 independent boundary conditions (Eqs. 

14a to 14d). 

It is interesting to examine the physical implication of the shear gradient length,l , since is a 

function of the cross-sectional shape and the internal length,g . The shear gradient length, for a 

rectangular and a circular cross-section, respectively, is: 
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where D is the diameter of the circular cross-section and h is the height of the rectangular cross-

section. 

The normalized internal length parameter,g/l , is plotted vs. the ratio h/g  and D/g  for the 

case of rectangular and circular cross-section, respectively, in Fig. 2. It is observed that the shape of 

cross-section has a minor effect on the normalized internal length. 

Also, the ratio rectcirc / ll  (circular vs. rectangular cross-section) is plotted vs. the ratio D/h in 

Fig. 3 for different values of the internal length, g . As noted above, as g becomes very small, the 

ratio rectcirc / ll  approaches asymptotically the value of one. Therefore, as g becomes very small the 

influence of the shear gradient length is not greatly affected by the shape of the cross-section. 

Furthermore, there is an interception point of the curves for different g/h values at D86.0h = , the 

same for all values ofg , for which it is true that rectcirc ll = . It is noted that when rectcirc ll >  the 

circular cross-section is stiffer than the rectangular one and vice versa. 
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Fig. 2. Influence of h/g or D/g , on the ratio g/l  for the case of rectangular and circular cross-
section, respectively. 
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Fig. 3. Internal length ratio of circular vs. rectangular cross-section, rectcirc / ll  , vs. h/D and the 

gradient length,g . 

 

3. EXAMPLES 

Determinate beam: cantilever with a point load at the free-end 

We consider a cantilever beam of length L, loaded by a point load at its free-end, as shown in Fig. 4. 

The beam has a rectangular cross-section with a width, b, and height, h, and )66/()55(k +ν+ν= 30. 

 

 

Fig.  4. Clamped beam of length L, loaded by a point load, P, at its free-end. 

 

The classical boundary conditions are: 

0)0(w = , 0)0( =ψ , P)L(Q = , 0)L(M =                                                                          (23) 

The non-classical boundary conditions are assumed to be: 

0
dx

dw

0x

=
=

, 0
dx

d

0x

=
ψ

=

, 0)L(m = , 0)L(Y =                                                                    (24) 
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The first two non-classical conditions imply that the beam achieves maximum flexural and shear 

stiffness without enforcing m  and Y  at the fixed-end. The last two conditions imply that there are 

no double bending moments and double shear forces at the free-end. The above conditions define a 

set of 8 linear algebraic equations that can be solved for the 8 unknown coefficients of Eqs. (20) and 

(21). The coefficients for the case of fixed-end beam loaded by a point load at its free-end are:  
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The deflection at the free end of the gradient Timoshenko beam is: 
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where b
grw is the flexural part and s

grw the shear part of the deflection. 

Note that Eq. (26) predicts the classical Timoshenko beam elasticity solution (including the influence 

of shear) in the limit that 0g→  ( 1g/ →l ): 
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where b
clw is the flexural part and s

clw the shear part of the deflection. Note that as ∞→G , then 

b
clcl ww =  and b

grgr ww = , which is similar to the Bernoulli-Euler solution. 

The deflection at the free end of the beam predicted by the gradient Bernoulli-Euler solution 

(see Eq. (9) in Giannakopoulos and Stamoulis23) is: 
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The normalized flexural deflection, b
cl

b
gr w/w , is plotted in Fig. 5 against the normalized parameter, 

L/g , for both the Timoshenko and Bernoulli-Euler gradient solutions assuming that l=g . This is 

true when 3.0h/g <<  (see Eq. 18). The two solutions then become identical and yield the same 

prediction for the beam deflections. Therefore, the Timoshenko solution reduces to the Bernoulli-

Euler solution when: (a) ∞→G  and (b) the scaling influence on g  through the length l is 

neglected.  

The normalized deflection, clgr w/w , is plotted in Fig. 6 against the normalized parameter 

h/g , assuming 3h/L =  and 0=ν . As h/g  increases, i.e. as the dimensions of the cross-section of 

geometrically similar beams become smaller, the beam becomes stiffer. Unlike the gradient 

Bernoulli-Euler solution, which can account only for the influence of L/g on the deflections, the 

gradient Timoshenko solution is able to capture the additional stiffening effect of the ratio h/g . On 

the contrary, the Bernoulli-Euler prediction remains the same for the same span but different cross-

section. Also, the normalized shear deflection, s
cl

s
gr w/w , is plotted in Fig. 7 against the normalized 

parameter L/g for 3h/L =  and 0=ν . The shear stiffness increases as L/g  increases, but the 

increase in the shear stiffness is less significant than that observed in the flexural part of the 

deflections.  

In order to compare the present model against the results from a 2D finite element model by 

Giannakopoulos et al.32,  a complete expression for the deflections of the gradient Timoshenko beam 

is used the finite element results were derived assuming 26.0=ν  and are shown in Fig. 8 (triangle 

symbols). The present model (gradient Timoshenko beam) matches overall the finite elements results 

much better than the gradient Bernoulli-Euler solution, as expected.  The finite element results 

support the present choice of boundary conditions, since considering alternative non-classical 

boundary conditions resulted in a considerable deviation from the finite element results. For quite 

short beams, the error is of the order of about 40% and comparable to that for the Bernoulli-Euler 

beam. The error is rooted in the Timoshenko kinematics (see Eq. (1)) which neglect the prismatic 

surface boundary layers. Taking a Poisson’s ratio value of 0=ν  brings the FEM results for a very 

short beam closer to the Timoshenko approximation.  
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Fig.  5. Influence of L/g on the normalized bending deflection, b
cl

b
gr w/w , at the free-end of a 

cantilever beam for the gradient Timoshenko and Bernoulli-Euler prediction ( l=g , 0=ν ). 
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Fig. 6. Influence of h/g on the normalized deflection, clgr w/w , at the free- end of a cantilever beam 

with 3h/L = , 0=ν  for the gradient Timoshenko prediction. 
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Fig. 7. Influence of L/g on the normalized shear deflection, s
cl

s
gr w/w , at the free-end of a cantilever 

beam with 3h/L = , 0=ν for the gradient Timoshenko predictions. 
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Fig. 8. Comparison of the finite element analysis results (plane-strain, 0uy = ) for the 2D gradient 

model by Giannakopoulos et al.31 with the gradient Timoshenko ( 2h/L = , 26.0=ν ) and gradient 
Bernoulli-Euler beam predictions. 
 

 

Next, the variation of the axial and shear strains along the length of the beam is considered. 

The axial strain at the extreme fiber of the cross-section, xxε , is: 
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where 0ε  is the maximum strain as predicted by classical Bernoulli-Euler beam analysis and is equal 

to: 

  
20 Ebh

PL
=ε                                                                                                                            (30) 

The shear strain xzγ  is: 
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where 0γ  is the shear strain as predicted by classical Timoshenko beam analysis and equal to: 

  
kAG

P
0 =γ                                                                                                                            (32) 

The normalized axial strain, 0xx / εε , is plotted vs. the non-dimensional distance L/x  in Fig. 9 

for the gradient Timoshenko beam for different values of the normalized parameterL/g  and 

3h/L = , 0=ν  (the diamond symbols correspond to the classical Bernoulli-Euler beam predictions). 

The solution for small values of L/g  approaches asymptotically the classical Bernoulli-Euler 

prediction ( 0xx ε→ε ). As Lg /  increases the departure from the classical solution becomes more 

significant ( 0xx →ε ). As observed in the gradient Bernoulli-Euler solution, the maximum strain 

does not occur at the fixed end of the beam (see Fig. 3 in Giannakopoulos and Stamoulis23). 

However, unlike the gradient Bernoulli-Euler solution, the gradient Timoshenko beam has 

approximately zero axial strain at the free end, even for large values of L/g . The fact that the 

maximum strain does not occur at the clamped end of the beam is due to the imposed boundary 

conditions, 0
0x
=ψ′

=
. Actual measurements of strains on the microcantilever’s clamped end, to the 

best of our knowledge, do not exist in the literature. Such measurements are hard to obtain due to the 

scale of the problem. A definite answer on whether a boundary layer exists is an issue still to be 

explored. However, it is interesting to note that recent fatigue tests on microcantilevers with 

dimensions comparable to the dimensions of the microstructure have shown that the fracture location 

does not occur at the fixed end32,33,34 of the cantilever. On the other hand, a fatigue test on 
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microcantilevers with a fully homogeneous microstructure results in a failure at the fixed end of the 

beam19,36. 

 The normalized shear strain, 0xz / γγ , is plotted against the non-dimensional distance L/x  in 

Fig. 10 for the gradient Timoshenko cantilever beam for different values of the normalized 

parameter L/g (diamond symbols correspond to the classical Timoshenko beam predictions). The 

solution for large L/g values approaches asymptotically the classical Timoshenko beam predictions 

( 0xz γ→γ ). This is the opposite to what was observed for the normalized axial strains. For very 

small L/g values shear can be neglected ( 0xz →γ ), but, as it was pointed out above, it does not 

mean that the gradient Bernoulli-Euler solution is recovered. Furthermore, as g/L increases, shear 

becomes important, which is true when the slenderness is decreased or when the microstructural 

average scale is of the same order of magnitude as the dimensions of the beam.  
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Fig.  9. Influence of the normalized parameter,Lg / , on the normalized axial strain, 0xx / εε  , along 

the length of a cantilever beam with 0=ν  and 3h/L = . 
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Fig. 10. Influence of the normalized parameter,Lg / , on the normalized shear strain, 0/γγ xz  , along 
the length of a cantilever beam with  0=ν  and  3h/L = . 
 

Indeterminate beam: beam with both ends fixed  

Little attention has been given to the solution of statically indeterminate structural problems within 

the framework of gradient elasticity. In order to demonstrate how the gradient Timoshenko beam 

solution can be applied to such problems, a beam of span L and both ends fixed loaded by a point 

load P at midspan is considered, as shown in Fig. 11. It is noted that this beam configuration can be 

found in nanoscale elements (see Salvetat et al.6; Ni and Li36).  

 

 

Fig.  11. Beam of span L with both ends clamped loaded by a point load P at midspan. 

 

Making use of the symmetry of the problem, only half of the beam is modeled. The boundary 

conditions at the fixed end at the left support are: 

0)0(w = , 0)0( =ψ , 0
dx

dw

0x

=
=

, 0
dx

d

0x

=
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=

                                                                     (33) 
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The 4 additional conditions in order to define the solution at midspan are: 
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The conditions at midspan imply that the beam is in essence fixed but allowed to deflect 

vertically. The coefficients for this case are: 
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The plots and details of the solution will not be repeated here as in Section III.1 since all comments 

and remarks hold true regardless of the loading and support conditions. The prediction for the 

maximum deflection at midspan will be simply presented as: 
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In the limit, 0g→ , the classical Timoshenko beam solution is recovered: 
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EI192

PL
)0g,Lx(ww

3

cl +====                                                                              (37) 

If, it is also true that ∞→G , the classical Bernoulli-Euler solution, )EI192/(PL3 is obtained. 

 

4. NON-LOCAL TIMOSHENKO BEAM MODELS 

It is interesting to compare our solution with other gradient Timoshenko beam solutions available in 

the bibliography. Non-local Timoshenko beam models have been proposed by Lam et al.9, Ma et 

al.27, Wang et al.24, Asghari et al.28 and Lazopoulos and Lazopoulos25. An epoxy beam with material 

properties, GPa44.1E  = , 38.0=ν and m6.17g µ=   is considered as an example. The beam’s length, 

width and height are h10L = , h2b = and g2h = , respectively. The applied load is Νµ=  50P . Note 

that most of the above authors have considered a similar case of a simply supported beam loaded by 

a point load at midspan. The maximum deflection of the cantilever beam is equal to the maximum 

deflection of a simply supported beam if we set the applied load and span of the simply supported 
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beam to be double of those for the cantilever beam (i.e. for the simply supported beam Νµ=  100P  

and h20L = ).  It is noted that only Lam et al.9, Asghari et al.28 and the present work have solved the 

problem in closed-form. The other works use Fourier series to describe the solution to the problem. 

The normalized maximum deflection predictions for each model are listed in Table 2.  

All models assume the same Timoshenko kinematic assumptions and all can capture the size 

effect in stiffness. As it can be seen in Table 2, dipolar elasticity models give stiffer response than 

both the micropolar and couple stress models, as they should. Furthermore, micropolar elasticity 

models give stiffer response than the couple stress models, as expected.  

Two other Timoshenko beam models have been reported by Lazopoulos and Lazopoulos25 

and Wang et al.24 using the same dipolar strain gradient theory. In particular, Wang et al.24 used three 

material lengths ( 210 ,, lll ) that are taken equal in their numerical examples. Lazopoulos and 

Lazopoulos25 have correctly used the principle of minimum potential energy and have come up with 

4 boundary conditions (BC), as in the present work. However, instead of enforcing 0mM ==  at the 

hinge supports, they used 0=ψ′=ψ  (see the recommendations of Table 1 and Eqs. (25) in 

Lazopoulos and Lazopoulos25).  

Although the variational principle allows their choice of these BC’s, a hinge support implies 

absence of bending moment and, in the case of a gradient beam, absence of double bending moment 

as well, something which is not satisfied by choosing 0=ψ′=ψ .  In the case of Wang et al.24, in 

their minimization principle, the term associated with w′δ , was attributed to the work done by the 

bending moment M and not by the double shear forces Y, as has been also done in this work. 

Actually, they do not prescribe at all the double shear force quantity in the expression of the external 

work done and, by doing so, the term δψ  in the strain energy has no equivalent in the expression of 

the external work (see Eqs. (27) and (30) in Wang et al.24). It is believed that since the inclusion of 

axial stress gradient results in double bending moment, the inclusion of shear gradients should results 

in double shear forces. Furthermore, double shear forces should be treated as a separate quantity to 

the classical bending moment, although their dimensions are the same. For this reason, although their 

formulation requires four (4) BC’s, one of them, i.e. the BC steaming from δψ  is suppressed (see 

Eqs. (35) in Wang et al.24). Regarding their choice of BC’s, they assumed the same BC’s with the 

couple stress model of Ma et al.24, but this is possible for the particular choice of the Fourier series 

expansion for w  and ψ  that was assumed in their work. 
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Next, the three works (present, Lam et al.9 and Asghari et al.28) that solve the problem in 

closed-form are considered and their predictions in the case of a less slender beam are compared. The 

same example as before is considered but for a length of h5L = . The grcl w/w  ratio for the three 

models becomes 4.42, 2.19 and 12.35, respectively. Assuming a slenderness value equal to one-half 

of the original value didn’t affect the Lam et al.9 predictions since this model accounts only for the 

influence of the h/g  ratio. If h/g  is kept the same, any changes in the slenderness of the beam will 

not affect the Lam’s prediction. Both, the present and the Asghari et al.28 models predict higher 

flexural stiffness values than the classical model. However, the Asghari et al.28 model predicts 

surprisingly high increases in the stiffness values, since it predicts that the stiffness for g/L=0.1 is 

eight times that for g/L=0.05.  

The aforementioned comparisons assumed the same value for the internal length. Clearly, all 

theories can be forced to give the same stiffness, if the material length is taken appropriately. How 

appropriate each theory is depends on the material system. Consistency for a theory requires testing 

independent beam configurations for the same material. To the best of our knowledge such tests do 

not exist.  

 
Table 2. Maximum prediction values for different non-local Timoshenko beam models for the case 
of an epoxy beam (internal length is assumed the same in all cases). 
 
Non-local Timoshenko models 

grcl /ww  

Dipolar elasticity 
Proposed  model 4.12 
Lazopoulos and Lazopoulos25  3.85 
Wang et al.24 3.00 
Micropolar elasticity 
Lam et al.9  2.19 
Couple stress elasticity  
Ma et al.27  1.58 
Asghari et al.28  1.59 

 

5. EXPERIMENTAL EVIDENCE ON MICROCANTILEVERS 

In this Section, experimental results on microcantilevers available in the bibliography are used in 

order to explain the size effect observed. Furthermore, the predictions of the present model for the 

microstructural length are compared with the predictions of micropolar elasticity in order to illustrate 

another import issue concerning the validity of non-local models. 

Micropolar elasticity9 predicts that the stiffness of a cantilever beam, grdw/dP=K , is: 
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where clK  is the classical prediction and hb
)

 is a length parameter equal to: 
22

h )4.156.10(b λν−=
)

                                                                                                         (39) 

whereλ  is the micropolar elasticity length, if all the material length scale parameters are assumed to 

be the same.  

McFarland and Colton12 tested polypropylene (PP, Basel/Montell ProFax 6323) 

microcantilever beams manufactured by injection molding with two different mold geometries and 

compared the measured stiffness of the beams. The geometry of the microcantilevers and the 

experimental to classical model stiffness ratio values, clexp K/K , are summarized in Table 3. The last 

two columns of Table 3, list the internal length estimate according to the gradient Timoshenko beam 

solution and micropolar elasticity, respectively.  
 

Table 3. Geometry and results for polypropylene microcantilever tests by McFarland and Colton12. 
E 

(GPa) 
ν  

L 
(μm) 

b 
(μm) 

h 
(μm) 

clK/expK

 

g (a) 
(μm) 

λ (b) 
(μm) 

3.3 
0.3 

836 125 29.37 5.075 16.87 24.24 
3.1 398 123 15.85 4.347 8.23 11.86 

(a) strain gradient Timoshenko solution 
(b) micropolar elasticity solution 

 
Lam et al.9 tested epoxy polymeric (Bisphenol-A epichlorohydrin resin with 20phr 

diethylenetriamine hardener) casted microcantilevers of the same slenderness ratio and four different 

thicknesses. The geometry of the microcantilevers and their stiffness ratios, clexp K/K , are 

summarized in Table 4 (Fig. 12 in Lam et al.9). The last two columns of Table 4 include the gradient 

Timoshenko beam and micropolar elasticity internal length estimates. The proposed model predicts 

an internal length value of 6.73 ±15%mµ while the micropolar elasticity a value of 10.61 ±17% mµ . 
 

Table 4. Geometry and results for the epoxy polymeric microcantilevers tested by Lam et al.9 

 
 

    

E 
(GPa) 

ν  
h 

(μm) 
Slenderness 

L/h clK/expK  g (a) 
(μm) 

λ (b) 
(μm) 

1.5 0.3 

20 

10 

2.357 6.41 9.53 
38 1.321 5.72 8.80 
75 1.143 7.27 11.60 
115 1.071 7.51 12.53 

(a) strain gradient Timoshenko solution 
(b) micropolar elasticity solution  
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Ding et al.8 tested LPCVD polysilicon microcantilevers with constant thickness and varying 

the h/L  ratio. Based on these flexure tests they derived an estimate for the modulus of elasticity, E, 

using classical elasticity. However, in a separate paper38, the same authors tested the same material in 

tension and found a different value for the modulus of elasticity. The modulus of elasticity estimate 

derived by the tension experiments was used in this work to interpret the flexure experiments and it 

was found that the beams exhibit a stiffer response than that predicted by classical elasticity. The 

geometry of the microcantilevers and their relative stiffness ( clexp K/K ) are summarized in Table 5. 

The last two columns of Table 5, list the estimates of the internal length obtained from the gradient 

Timoshenko beam solution and micropolar elasticity, respectively. Our model predicts a value for the 

internal length of 0.29 ±13%mµ while micropolar elasticity predicts a value of 0.42 ±14% mµ . 
 
Table 5. Geometry and results for the LPCVD polysilicon microcantilevers tested by Ding et al.8 

 
 
 
 
 
 
 
 
 
 

 

Hong et al.14 tested Cu microcantilevers keeping the same width and varying the h/L  ratio. 

They also used the flexure experiments to derive an estimate for the modulus of elasticity, E, using 

classical elasticity. Hunag and Spaepen38 conducted uniaxial tensile experiments on thin Cu films 

and reported a Young’s modulus value. The value based on the uniaxial tests was used in this work 

and the experimental stiffness reported with the one predicted by classical elasticity were compared. 

The geometry and the relative stiffness, clexp K/K , of the microcantilevers are summarized in Table 6. 

The last two columns of Table 6, list the estimates of the internal length obtained from the gradient 

Timoshenko beam solution and micropolar elasticity.  

 

 

 

 

 

E (c) 

(GPa) 
ν  

L 
(μm) 

b 
(μm) 

h 
(μm) 

clK/expK  g (a) 
(μm) 

λ (b) 
(μm) 

164 0.23 

16 50 

2.4 

1.215 0.278 0.425 
34 40 1.209 0.295 0.413 
31 40 1.154 0.248 0.354 
18 10 1.276 0.324 0.475 

(a) strain gradient Timoshenko solution 
(b) micropolar elasticity solution 
(c) derived from tension experiments (see Ding et al.37) 
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Table 6. Geometry and results for the copper (Cu) microcantilevers tested by Hong et al.14 

 
 
 
 
 

 

 

 

Obviously, all non-local theories can predict a microstructural length and the magnitude of 

this length will vary depending on the theory used. Nevertheless, consistency of a theory requires this 

prediction to be the same for different geometries but for the same material. Both non-local theories 

predict an average value with approximately the same error. Furthermore, both theories are able to 

explain the size effect measured in the experiments, and quantify the departure form the classical 

elasticity predictions. The main difference is in the magnitude of the internal length predicted by the 

two theories. The micropolar length is approximately 50% greater than the dipolar length ( g5.1≈λ ).  

As mentioned in the introduction (Section III.1), the microstructural length parameter is 

associated with the microstructure of the material in an average sense. In other words, the exact 

physical correlation between the internal length and the dominant feature of a material’s 

microstructure is a topic still wide open. The simplest correlation would be for the internal length to 

be equal to the size of the dominant feature of the microstructure. From the experimental results 

presented in this Section, only Ding et al.8 provide information about the microstructure of the 

material used in the experiments under flexure (grain size of polysilicon in the order of 0.2 μm). The 

present model predicts an internal length value of 0.29 ±13% mµ , whereas micropolar elasticity 

predicts a value of 0.42 ±14%mµ . It seems that the proposed model successfully predicts the size 

effect dependence on the microstructure’s scale in this particular case. Concerning the other three 

experimental works, information concerning the microstructure is not provided by the authors. The 

predictions of both theories fall within the typical range of values for the microstructure scale for 

these materials. In the absence of the explicit information for the material used in the experiments, no 

conclusion can be made on which theory is more accurate.  

The correlation between the dominant feature of the microstructure and the internal length 

may be more complex. For example, size effect has been also observed on ZnO nanobelts with the 

structures being stiffer as the diameter of the cross-section decreased from 40 nm to 10 nm36. 

Although the ZnO nanobelts are single crystalline (quartzite-structured) and can be seen as 

E (c) 

(GPa) 
ν  

L 
(μm) 

b 
(μm) 

h 
(μm) clK/expK  g (a) 

(μm) 
λ (b) 

(μm) 

102 0.31 
129 50 10.5 1.021 0.361 0.630 
104 50 2.8 1.177 0.351 0.497 

(a) strain gradient Timoshenko solution 
(b) micropolar elasticity solution  
(c) derived from tension experiments (see Huang and Spaepen38) 
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homogeneous materials, their source of size effect is somehow geometric. Essentially, as the scale 

decreases, the surface-to-volume ratio increases considerably and this results in more atoms being at 

the surface than in the bulk. When deformation occurs, the surface reconstruction affects the 

mechanical properties of the nanowire. This was sufficiently explained by molecular dynamics40 

simulations, but can be equivalently explained in the context of gradient elasticity, if an internal 

length is assumed. Obviously this line of thinking is rather speculative at this point, but as structures 

are pushed to the limit, surface effects could provide explanation on why materials that are 

homogeneous in the atomic level will exhibit size effects. 

Finally, the difference between the predicted internal length values leads to another important 

observation regarding the limitation of both theories. Although the formulae allow for any value of 

the internal length, it is tacitly presupposed that the microstructural length is of the same order or less 

than the dimensions of the cross-section, otherwise the assumption of a continuum is compromised. 

In other words, the prediction must satisfy that h/g or h/λ  is less than or equal to 1. Son et al.41 

performed cantilever flexure tests on thin films of aluminum and gold with grain size to thickness 

ratios close to 1 and in some cases greater than 1. In this extreme limit, it is questionable whether 

isotropic gradient theories are still applicable. Micropolar elasticity reaches this threshold for smaller 

stiffness rations than the present strain gradient Timoshenko model. 

 

6. CONCLUSIONS  

The governing equations and boundary conditions for the proposed model were derived for a strain 

gradient Timoshenko beam using a simplified (dipolar) strain gradient theory assuming only one 

additional material length. The problem was solved in closed-form and a methodology was described 

for solving more complex beam problems, i.e. indeterminate beam configurations. This model 

reduces to the gradient Bernoulli-Euler solution and to the classical Timoshenko solution, when the 

necessary simplifications and limits are considered and also is in good agreement with the 2D finite 

element model. Furthermore, the proposed model was used to interconnect the size effect observed in 

experiments of microcantilevers, obtaining good results regarding the material length. Finally, the 

proposed model was compared with the micropolar elasticity model and it was found that both can 

capture the size effect in a consistent manner, while the proposed model predicts approximately 50% 

smaller values for the internal length than that predicted by micropolar elasticity.  
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CHAPTER IV 

A GRADIENT ELASTO-DAMAGE MODEL FOR SEMI-BRITTLE 

MATERIALS WITH EVOLVING INTERNAL LENGTH – 

 BEAMS UNDER 4-POINT BENDING 

 

1. INTRODUCTION  

The aim of this work is to present a new approach which is based on a strain gradient damage 

constitutive law for modeling semi-brittle materials and composites. There are two reasons that 

justify such an effort. Materials which exhibit strain softening are size sensitive1 and their inelastic 

response manifesting itself through microcracking should be described using a non-local model2. In 

other words, a length parameter is necessary not only for modeling any size effect present but also 

for ensuring that damage is not localized. A strain gradient theory can include such a length 

parameter and can address these issues in a physically consistent manner. Gradient theories can also 

address the issue of size effect in elasticity. 

Elasticity and inelasticity for the case of softening materials are coupled by the very nature 

of the problem since damage is defined as a loss of the initial (elastic) stiffness due to material 

degradation. In this work, a weak type non-local formulation based on strain gradient elasticity is 

used and damage is seen as a process affecting the gradient internal length.  

The first issue addressed is whether the gradient internal length should evolve with damage. 

A constant internal length is assumed by a number of existing non-local damage theories3-15 but 

there is strong evidence that this length is not constant. Geers et al.16 considered a finite element 

formulation of a gradient damage model and concluded that an evolving internal length with an 

upper bound limit is necessary in order to predict a damage zone of a finite width. Pijaudier-Cabot 

et al.17 used acoustic emission experimental results and micromechanical arguments to justify that 

the internal length increases with damage starting from an initial value. Aggelis and Shiotani18,19 

considering Rayleigh wave propagation in cementitious materials with thin inclusions simulating 

prescribed levels of damage, found increasingly stronger dispersion of the Rayleigh waves with 

increasing damage. This, in the context of a gradient elastic damage model, can be explained by 

assuming an internal length increasing with damage20. Li21 and Li et al.22 arrived at the same 

conclusion by using a homogenization procedure in order to derive a strain gradient constitutive law 

for the case of linear-elastic materials with microcracks. In the present work, a thermodynamic 

formulation is employed to confirm this. However, it has been shown that, based on 
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thermodynamics23 and experimental evidence on aluminum and nickel micro-breams24, this length 

should decrease with accumulated plastic strain. This is due to the inherent differences in the 

physics of gradient plasticity and damage theory (see Fig. 1).  

          

ε ε

τ

τ

τel

pl

pl el

ε ε

τ

εpl εd εel

τ

τpl

τ

  

                      (a) Plasticity                         (b) Damage 

Fig.1. Stress-strain diagram illustrating a loading-unloading cycle: (a) plasticity and (b) damage 

(“el”, “pl” and “d” denote elastic, plastic and damage, respectively).  

 

2. THERMODYNAMIC FORMULATION  

A thermodynamic formulation of a classical damage model based on the Helmholtz free energy was 

proposed by Mazars and Pijaudier-Cabot25, Murakami and Kamiya26, Wu et al.27 and many others. 

However, in the present work, the approach of Ortiz28 based on Gibbs energy is followed (implying 

isothermal conditions). Ortiz’s model for concrete was extended to include strain gradient effects by 

employing a simplified model with only one length parameter, g, which is the simplest case of 

Mindlin’s29 Form II strain gradient elasticity theory.  

Gibb’s energy density for isothermal process within the framework of strain gradient 

elasticity in a Cartesian frame (kx ) is: 

cA
2

1

2

1
G −∴+= λ:Bλτ:C:τ                                                                                            (1) 

where,τ ( ijτ ) is the Cauchy stress, C ( ijklC ) the 4th-order elasticity tensor, λ ( ijkλ ) the double-stress 

taken as τλ ∇= 2g  ( kij
2

kij x/τgλ ∂∂= ), B the 4th-order tensor taken as CB )g/1( 2=  and cA the free 
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energy density for microcrack formation. The symbols (:) and (∴ ) denote the two- and three-index 

product, respectively, i.e. kmnijmnijk λB)(B:λ = , kmnijmnijk λBλ=∴ λ:Bλ , klijklij τC)(C:τ = ,  

klijklij τCτ=τ:C:τ ,  and repeated indices imply summation from 1 to 3.  

The stress-strain relations corresponding to Gibb’s energy density (Eq. (1)) are given by 

ie εετ:Cτε +==∂∂= /G and )(:/G ie εεετCλκ +∇=∇=∇=∂∂= , where ε ( ijε ) is the 

infinitesimal strain tensor and εκ ∇= ( kijkij x/εκ ∂∂= ) the strain gradient 3rd-order tensor. Also, the 

total stress is τg-τλ-τσ 22∇=∇= . The equilibrium equations and the kinematic boundary 

conditions originating from the total stress expression can be found in Georgiadis and Grentzelou30. 

The stress-strain time rate relations are given by ie εετ:Cτ:Cε &&&&& +=+=  and 

ieie κκεεκ &&&&& +=∇+∇= , where t/)( ∂∂= &  and the superscript “e” and “i” denotes the elastic and 

inelastic rate of deformation due to degradation of the elastic material properties, respectively. 

Microcracking can be physically viewed as added flexibility to the initial flexibility of an 

uncracked material. Following Ortiz28, the elastic compliance tensor is taken as a characterization of 

the state of material damage. Therefore, the elastic compliance can be described by an additive 

formulation: 

c0 CCC +=                                                                                                                          (2) 

where 0C  is the elasticity tensor of the uncracked material initially assumed as isotropic and cC  is 

the added flexibility due to microcrack opening under the current applied stress field. 

In essence, the inelastic flexibility is the sum of the initial plus the additional flexibility due 

to the presence of distributed microcracking in the material which is justifiable in terms of the 

softening and is in line with self-consistent calculations of the overall elastic compliance of elastic 

media with distributed cracking29-31. Hence, the total strain and strain gradient due to cracking can 

be written as: 

c0c0

c0c0 :(

κκεεκ

εετ)CCε

+=∇+∇=

+=+=
                                                                                                     (3) 

 

Opening and closing of microcracks 

Cracks in concrete, as well as in other quasi-brittle materials, can develop even under compressive 

stress conditions. Also, opened cracks can close and not propagate further. The closing of cracks 
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and the resulting stiffening of the material explains the characteristic S-shaped hysteretic loops that 

for example are observed experimentally in flexural members subjected to cyclic loading. 

In order to mathematically model opening or closed microcracks, the positive and negative 

orthogonal projections +P and −P of the strain space onto the positive and negative cones +C and 

−C are introduced. This operator assigns to every state of strain ε  its point εP+ and εP−  on 

+C and −C , respectively. If (a)ε and (a)d ( 3,2,1a = ) denote the eigenvalues and eigenvectors of the 

total strain ε , respectively, so that: ∑
=
ε=

3

1a

)a(
j

)a(
i

)a(
ij ddε , then, the positive projection of ε  is given by: 

∑
=

++ ε=ε=ε
3

1a

)a(
j

)a(
i

)a(
ijij dd)P( , where ( ) 2/xx +=x  is the Macauley bracket, and the negative 

projection is +− −= PIP ( I =identity tensor). 

For a given state of stressτ  consistent with the closing mode of microcracks, the following 

minimization problem must be satisfied: 

minimize: ( ) ετ-εCCε :::
2

1 1c0
−

+  subject to: 0εc (a) ≥                                                   (4) 

where 
c

C  is the added flexibility due to opening of all microcracks and c (a)ε  are the eigenvalues of 

the inelastic strain, τC-εε :0c = . For a given state of stress gradient τ∇ , the minimization problem 

is: 

 minimize: ( ) ετ-εCCε ∇∴∇∇+∴∇
−

:
2

1 1c0  subject to:  0εc (a) ≥∇                                (5) 

The solution to problems (4) and (5) can be approximated respectively as: 

):(:
c0 +++≈ τCPτCε   and )(:(:

c0 ++ ∇+∇≈∇ τ)CPτCε                                                  (6) 

where )a(
j

)a(
i

3

1a

)a(
ijij qq)(P ∑

=

++ τ=τ=τ , )a(τ and )a(q  the eigenvalues and eigenvectors of τ  and 

( ) )a(
k

)a(
j

3

1a
i

(a)
ijk qqx/ττ)( ∑

=

++ ∂∂≈∇  (for Eq. (6a) see Ortiz28). In order the stress-strain relations are 

consistent with Eqs. (6), then ):(:
ccc ++== τCPτCε  and )(:(:

ccc ++ ∇=∇=∇ τ)CPτCε  should 

hold true.  

Finally, the added flexibility tensor due to the opening of microcracks can be approximated 

as: 

++= PCPC ::
cc   ( pqklmnpq

c
ijmnijkl

c PCPC ++= )                                                                      (7) 
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Recalling also that τCε :cc = , the positive and negative strain projections based on the positive and 

negative stress projections can be approximated as ( ) ( )+++++ == τCPτPCPεP :)(:)(
ccc  

and ( )−−− = τCPεP :)(
cc , respectively.  

To further illustrate the necessity of the above mathematical manipulations, a microcrack 

normal to a unit vector n  is considered. Any stress acting upon a planar microcrack can be analyzed 

in any of the four possible loading configurations depicted in Fig.2. Cases (b) and (d) refer to 

nonzero positive projections ( += ττ ) while cases (a) and (c) to nonzero negative projections 

( −= ττ ). The orientation of the stress in cases (b) and (c) is normal to the crack plane, that is 

0=⋅⋅ + nτn  and 0=⋅⋅ − nτn , respectively, preventing crack propagation. Therefore, microcrack 

opening occurs due to a tensile stress in case (d) and a compressive stress in case (a).  These two 

cases correspond to a tensile and a compressive opening mode IT and IC, respectively. Thus, the 

added flexibility tensor due to microcrack opening can be decomposed as
c

CI
c

TI
c

CCC += , and the 

inelastic deformation due to microcracking can be expressed as c
CI

c
TI

c εεε += .  Microcrack opening 

under mode IT and IC implies that: 0c
TI
≥ε  and 0c

CI
≤ε , respectively.  

Summarizing, the Gibbs energy becomes: 










−∇∴∇+∇∴∇

+++
=

++

−−++

cc

TI
202

c

CI
c

TI
0

A(:(g
2

1
:g

2

1

::
2

1
::

2

1
::

2

1

G

τ)Cτ)τCτ

τCττCττCτ

                                                       (8) 

It is true that the stress gradient in Eq. (8) induces only mode IT crack opening since there are no 

terms of the type -τ)(∇ . This is further clarified in Section IV.3. 
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n

(a) (b)

(c) (d)  

Fig. 2. State of microcracks: (a) and (d) opening mode; (b) and (c) closing mode (Ortiz, 1985). 

 

Damage rules 

The evolution of the tensorial damage parameter cC (Eq. (2)) can be described based on the 

evolution of cC  according to a damage rule of the general form c
I

c
I

c

CT
CCC &&& +=  (Ortiz28) with: 

)(
TT I

c
I τRC µ= &

&  and )(
CC I

c
I τRC µ= &

&                                                                                         (9) 

where )(
TI
τR , )(

CI
τR are material response functions (4th-order dimensionless tensors) which 

determine the direction in which damage should occur and µ  is an internal scalar parameter 

(dimensions “area/force”), which may be regarded as a measure of the cumulative damage resulting 

in a decrease of the unloading elastic modulus. In plasticity theory, the parameter μ resembles the 

accumulated equivalent plastic strain. A localization analysis for the case of uniaxial tension is 

included in Section IV.5, where it is shown that the proposed non-local model leads to objective and 

mesh-independent results if used in a FEM analysis.  

Initially, the material is assumed to be uncracked ( 0=µ ) and initial conditions reign. The 

proposed damage rules presented include only the Cauchy (local) part of the total stress. The 

proposed model will be calibrated through experimental strain data and hence the damage rules will 

be associated with the energetically conjugate quantity of strain, that is the Cauchy part of the total 

stress. It should be emphasized that this assumption has a physical justification since the damage 

surface of a quasi-brittle material is established through experimental results of uniaxial tests and in 
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the case of uniform loading there in no gradient effect. The choice of local stress in Eq. (9) can be 

further justified from the work of Simone et al.34 who showed that the use of a non-local 

dissipation-driving state variable (i.e. the total stress or total strain of the gradient formulation) leads 

to an incorrect failure characterisation in terms of damage initiation and propagation ahead of a 

macro-crack. In the proposed approach, the inelastic strains are used for the tensorial 

characterization of damage. A similar approach was used by Bui35, introducing a mixed (local and 

non-local) formulation for damage characterization. 

The irreversible character of damage necessitates that, 0≥µ& . The condition 0>µ&  refers to 

active damage mechanisms, while 0=µ& refers to elastic behavior. Therefore, )(
TI
τR and )(

CI
τR  

must be positive definite. Furthermore, the internal length of the material, g, is assumed to be a 

function of the damage level, that is )(gg µ= , and the rate of change of the internal length is, 

( )µµ= d/dgg && . 

It should be emphasized that the present work is based on gradient elasticity, while 

inelasticity (damage) is treated as a process affecting the parameters of gradient elasticity, the 

internal length and the classical elastic properties36. In this thermodynamic formulation there are 

two internal variables, the damage parameter,µ , and the internal length, g , with a constraint 

demand for the internal length to be a function of the damage parameter. Based on these 

assumptions, the energy density dissipation inequality (see Eq. (1)) can be expressed as: 

( ) 0A)(:)(g
2

1
:g

2

1
::

2

1
d cc2c2c ≥−∇∴∇+∇∴∇+= ++

⋅
&&&

τCττCττCτ                               (10) 

where d signifies the rate of energy dissipation density.  

Substituting Eqs.(9) in Eq. (10), the rate of energy dissipation becomes: 

0A
)(:)(

d

dg
g

)(:)(g
2

1
::

2

1
::

2

1

d c

c

I
2

II TCT

≥−µ



















∇∴∇
µ

+

∇∴∇++
=

++

++−−++

&&

τCτ

τRττRττRτ

                          (11) 

The rate of energy dissipation should be positive according to the 2nd law of thermodynamics. 

Since,
TI

R , 
CI

R , c
IT

C  and c
IC

C  are positive definite and 0≥µ& , it follows that 

0d/dg ≥µ                                                                                                                            (12) 

is true. This shows that if the internal length is allowed to evolve with damage, then it must increase 

or remain constant with increasing damage.  
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The inelastic free energy density,cA , associated with microcrack formation is a function of 

µ . The rate of the free energy coincides with the energy release rate per unit microcrack length. 

Using a micromechanical model of fracture, as a justification (see Section IV.3 for diluted 

microcracking), the rate of the inelastic free energy is defined as: 

( ) µ
















 µξ
ω∂
µ∂

+µ
π

=
µ

µ= &&&

2
2

c
c )(t

3

1
)(t

2d

dA
A                                                                         (13) 

where )(t µ is a critical stress for damage extension and ω  is the direction  normal to the critical 

stress (along the microcrack). Note that ( )µξ  is half the microcrack length and Eq. (13) requires two 

tests: a uniaxial test ( 0/)(t =ω∂µ∂ ) to establish )(t µ  and a pure bending test to establish ω∂µ∂ /)(t . 

Substituting Eq. (13) into Eq. (12), it yields:  

( )
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)(t
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1
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)(t
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
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 µξ
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µ

+

∇∴∇+µ
π
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=
++
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&

-τCτ

τRτ)τRττRτ

                   (14) 

Since 0≥µ& , Eq. (15) necessitates: 

0)(t
2

::
2

1
::

2

1 2
II CT

≥µ
π

−+ −−++ τRττRτ , and                                                               (15a) 

( ) 0
)(t

3

1
)(:)(

d

dg
g)(:(g

2

1
2

c

I
2

T
≥







 µξ
ω∂
µ∂

∇∴∇
µ

+∇∴∇ ++++ -τCττRτ)                           (15b) 

The effects of stress gradient and damage which influence the inelastic response can be treated 

separately in Eqs. (15a) and (15b). Eq. (15a) corresponds to the case of 0g =  and Eq. (15b) 

addresses the influence of the internal length, g, and consequently of the stress gradient. In the 

absence of the stress gradient effect in Gibb’s energy, Ortiz’s model28 is recovered using Eq. (15a). 

Next, a stress function F is defined, in the form: 

CITICITI
FF::

2

1
::

2

1
)(F +=+= −−++ τRττRττ                                                                 (16) 

Substituting Eq. (16) into Eq. (15a), a damage function Φ is obtained as: 

0)(t
2

)(F),(Φ 2 ≥µ
π

−=µ ττ ,                                                                                                (17) 

and if inequality in Eq. (17) is not satisfied the material behaves elastically. Also, for further 

damage to occur, the equality must be satisfied in expression (17) (see Fig. 3). Therefore, 
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2)(t)2/()(F µπ=τ  defines the elasto-damage boundary in the local stress space. Thus, the onset of 

damage is characterized by the criteria: 

0)(t
2

)(F),(Φ 2 =µ
π

−=µ ττ  and 0:)/F(:)/Φ( >∂∂=∂∂ ττττ &&                                           (18) 

These relations imply that for further damage the stress point must lie on the current damage surface 

and the stress increment must point outwards of the elastic domain. A stress point inside the current 

damage surface will imply gradient elasticity. 

 

 

Fig. 3. Damage surface and damage criterion in the local principal stress space.  

 

Associated damage rule 

The damage rule is associated, if the following relations hold true for the damage direction tensors: 

++∂∂

∂
=

ττ
R TI

TI

F
 and −−∂∂

∂
=

ττ
R CI

CI

F
                                                                                        (19) 

This assumption reduces the calibration to the determination of the scalar functions F rather than the 

tensorial quantities 
TI

R and
CI

R . Furthermore, the inelastic strain rate tensor due to damage is:  

 ( ) ( )−+++ +µ==== τRτRτPCPτCτCε i :::::::
CT II

cc
&

&&&&    ,                                              (20) 

which, using Eqs. (19), can be written as:  

ττ
τ

F

τ

F
ε i ∂Φ∂µ=∂∂µ=









∂

∂
+

∂

∂
µ= −+ //FCT II

&&&&                                                                            (21) 

Eq. (21) implies that the inelastic part of the strain rate tensor points outwards and in a normal 

direction to the damage surface (see Fig. 3). In the context of a rate independent damage 

formulation, as suggested by Ortiz (1983), it is true that 

1τ

)(t µ

)(t µ

)(tc µ×

)(tc µ×

0),( <µτΦ

0),( =µτΦ

Damage 
surface 

τ∂
Φ∂

µ=ε ii
&&

Elastic region 
(No damage) 
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):(TI ++

++ ⊗
=

ττ

ττ
R  and 

):(
c

CI −−

−− ⊗
=

ττ

ττ
R                                                                                   (22) 

where ce is the “cross-effect” coefficient governing the level of damage under compression  

( 0ce =  for no cross-effect), klijijkl τττ)(τ =⊗  the dyadic product tensor and ijij ττ):( =ττ  the trace of 

the )( ττ⊗  tensor. The value of the critical stress )(t µ and the “cross-effect” coefficient, ce, can be 

determined from uniaxial test results. Then, the damage surface simplifies to:  

)(t
2

c
2

1

2

1 2
e µ

π
−+=Φ −−++ τ:ττ:τ                                                                                     (23) 

  It is worth noting that according to the present approach since the effect of microcracking is 

directly linked with the elasticity tensor, an initially isotropic material would become anisotropic 

with damage. In the case of non-associative damage evolution and/or initially anisotropic elastic 

behavior, as observed in rocks, microcracking may not occur along the principal stress trajectories 

but localizes along specific weak surfaces in the material37. Any existing directionality of 

microcrack opening, can be included in the response functions 
TI

R and 
CI

R .  

 

3. ENERGY DISSIPATION DURING MICROCRACK EXTENSION 

Two 2D isotropic cases are considered, as shown in Fig. 4.  Case (a) depicts a microcrack subjected 

to a uniform tensile stress and case (b) a microcrack under a stress gradient. The model predictions 

in this study do not assume interaction between the microcracks and elastic anisotropy. 

 

φ

x

y

2a

φ

x

y

2a

          
(a)                                                           (b) 

  Fig. 4. A crack with a length of 2a under: (a) uniaxial tension and (b) pure bending. 
 

For a crack of length 2a, loaded by a uniform tensile stress,τ , as shown in Fig. 4(a), neglecting 

mode III the stress intensity factors for modes I and II are38: ϕπτ= 2
I sinaK  and 

τ
y∂
τ∂
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ϕϕπτ= cossinaK II , and the energy release rate is: ( ) *E/2
IIK+2

IK=G , where EE =∗ for plane 

stress and  )1/(EE 2ν−=∗  for plane strain, E is the elastic modulus and ν the Poisson’s ratio. 

The crack can occur at an arbitrary angle value ϕ assuming the same probability of 

occurrence at all possible angle values. Therefore, the 2D average energy release rate per unit 

microcrack length extension, is 

∗

π

π−
∗

πτ
=ϕϕ

π
πτ

= ∫ E2
d)(sin

1

Eda

d 22/

2/

2
2

G
                                                                                      (24) 

where  denotes the average of the quantity enclosed in the brackets. 

For a crack of length 2a, under pure bending, as shown in Fig. 4(b), the stress intensity 

factors for mode I and II is39 ( )( ) )(sin3/a2dy/dK 32/3
I ϕτ=  and )cos()(sin)3/a2)(dy/d(K 22/3

II ϕϕτ= ,  

respectively. The average 2D energy release rate per unit microcrack length, a, for all possible 

angles, is: 

22/

2/

4
22

a
dy

d
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1
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1

3
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d
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2

da

d
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


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
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
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π

π−
∗ ∫

G
                                                     (25) 

Crack propagation under a non-uniform stress field has been considered by Stallybrass40 and used 

by Huang and Detournay41 to improve the accuracy of crack propagation predictions in quasi-brittle 

materials subjected to an indentation. 

Damage can be introduced in different ways depending on the damage parameter definition. 

The damage parameter,µ , is associated to the damage parameter D through Eq. (31) and 

differentiating both parts yields: 

2
*

)D1(

dD
)E(d

−
=µ                                                                                                                (26) 

Accounting for the effect of damage on the Young’s modulus, the free energy density 

required to form microcracks should be: 

 
da

d

D1

1
A c

G

−
=                                                                                                                 (27) 

Thus, the energy dissipated during microcrack propagation is: 

da

d

)D1(

1

dD

dA
2

c G

−
=                                                                                                           (28) 

Making use of Eq. (26), the energy dissipated during crack propagation can be expressed with 

respect to µas: 
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π
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                                                        (29) 

Obviously, the crack length, a, and the internal length, g, are a function of the damage 

parameter. Therefore, )a()(gg ψ=µ= and )()g(a 1 µξ=ψ= − . It should be noted that a stress 

gradient cannot induce crack opening under a compressive mode (see Fig. 4). The stress gradient is 

essentially a bending moment and thus, one-half of the crack length will be under a compressive 

stress and the other half under a tensile stress. The latter corresponds to a tensile opening mode IT, 

whereas the former to case (c) of Fig. 2, which does not induce crack extension. 

 

4. APPLICATION TO PLAIN CONCRETE 

The proposed model is applied to plain concrete beams subjected to 4-point bending, with damage 

occurring in the middle part of the beam subjected to pure bending, where since axial normal 

stresses are principal and a uniaxial law for the concrete is assumed to be sufficient for damage 

characterization.  

 

Uniaxial Response 

The uniaxial response of plain concrete under tension or compression is assumed to be of the form: 

i0iii0i for    ,E ε≤εε=τ , and, i0i
ii0

ii0
ii0ii for  ,

E1

E
E)D1( ε>ε

µ+
ε

=ε−=τ                                 (30) 

where i0E  is the Young’s modulus of elasticity of the uncracked material, i0ε  the strain value 

depicting the end of a perfectly elastic response and initiation of damage and iD  (dimensionless), 

iµ  (stress-1) are two equivalent damage parameters. The index t,ci =  is a subscript denoting 

compression or tension, respectively.  

In a thermodynamic formulation, µ  is used to avoid imposing the additional 

constraint 1D ≤ . However, both damage parameters can be used, since: 

µ+
−=

0E1

1
1D                                                                                                                      (31) 

It is obvious from Eq. (31) that if 0=µ , then 0D =  and if ∞→µ , then 1D → . In other words, 

both μ and D describe the initiation and the evolution of damage in the same way but the limit for 

complete damage is bounded in the case of D , but this is not true forµ . There is a one-to-one 

correspondence between D and μ and 00
Ed/dD =µ

=µ
.  
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If a relationship of the form: 

i)/(1

)/(
f

ii

ii
ii βεε+−β

εεβ
=τ                                                                                                          (32) 

is assumed for the stress-strain response of plain concrete42, where if  is the maximum stress, iε the 

strain at maximum stress and iβ  a material parameter defining the steepness of the softening 

branch, a damage law for compression (ci = ) and tension ( ti = ) can be derived based on Eqs. (30) 

and (32): 

i0i for    0D ε<ε= , and  i0
ii

ii0i
i for      

)/(1

)/(1
1D

i

i

ε≥ε
εε+−β
εε+−β

−= β

β

                                         (33) 

where the Young’s modulus, i0E , is equal to: 

 ( ) iii0i

ii
i0 i)/(1

f
E

εεε+−β
β

= β                                                                                                   (34) 

The threshold strain values,t0ε and c0ε , for uniaxial tension and compression, respectively,  

are assumed to occur at a stress43 tt f8.0=τ  and cc f4.0=τ , respectively. Therefore, the critical 

strain, i0ε , signifying the onset of damage can be determined using Eq. (32). Furthermore, assuming 

that the Young’s modulus is the same in uniaxial tension and compression, an estimate for the 

tensile to compressive strain ratio at the peak stress (Eq. (35)) is obtained as follows: 

 
( )
( )t

c

)/(1f

)/(1f

tt0tcc

cc0ctt

c

t
β

β

εε+−ββ
εε+−ββ

=
ε
ε

                                                                                               (35) 

 

Flexural response 

The local normal longitudinal strains in the part of the concrete beam specimens under pure bending 

are assumed to be linearly distributed along the depth of the beam’s cross-section (z-

axis), kzmxx +ε=ε , where mε is the strain at 0z =  and k is the curvature. In the elastic region of 

the beam 0m =ε  and beyond the elastic limit the neutral axis shifts upwards ( 0m ≠ε ). 

For a given value of k, and using the assumed law for uniaxial tension and compression, the 

value of mε  which satisfies equilibrium is determined through an iteration procedure. This implies a 

1D discretization of the cross-section to strips of depth dz in order to evaluate numerically the 

integral, 0dzbN
2/h

2/h
xx =∫σ=

−

. Essentially, in the proposed model, the input parameter is the curvature 
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at midspan and the output is the bending moment capacity, dzzbM
2/h

2/h
xx∫ σ=

−

, corresponding to the 

assumed linear axial strain distribution along the height of the cross-section. The number of strips 

used to discretize the cross-sectional area is chosen based on a convergence requirement of a mesh 

refinement so that when the number of strips is doubled there is a change of less than 10-5 kNm in 

the predicted value of M. It is noted that the output of this procedure is a local M vs. k prediction 

curve which is size independent, since it is only a function of the assumed uniaxial stress-strain 

response. A 2D mesh refinement study is also included in Section IV.5. The non-local M vs. k 

prediction curve is obtained by scaling the local curvature estimate using Eq. (44) for 4-point 

bending (see Section IV.6). This implies that predicting size effect for ultimate strength is not 

feasible for the proposed non-local model.  

The local M vs. k response prediction can be transformed to a force vs. midspan deflection 

curve by solving the boundary value problem for a simply supported Timoshenko beam under 4-

poind bending (see Section IV.6). Using Eqs. (44) and (46), a local kinematic expression for the 

midspan deflection mδ  is obtained in terms of the curvature mk , m
2

m kL13611.0=δ , where mδ  

is the midspan deflection corresponding to the curvature mk . The non-local force vs. midspan 

deflection curve is determined by imposing a similar kinematic relation between curvature and 

deflection, based on the gradient solution of the boundary problem (Eqs. 41 and 45). Unlike, the 

local (classical) predictions, the non-local kinematic relation is affected by the internal length, g, 

which evolves with damage. Therefore, this kinematic relation is computed for the current value of 

g, which evolves with damage.  

Regarding the evolution law for the gradient length, an exponential expression is assumed of 

the form: 

nD
0egg = , for 0nD>                                                                                                          (36) 

where 0g is the initial internal length, D the damage parameter and n a positive constant which 

defines the ratio of the gradient value 1g  (at D=1) to the initial gradient internal length g0 (at D=0). 

Since the initial value of the gradient internal length is based on elasticity, there is only a single 

unknown parameter, n, to be determined based on experimental data in the inelastic region. It is 

worth noting that, according to Le Bellego et al.44, attempting to calibrate a gradient damage model 

assuming a constant internal length (independent of the damage level) resulted in a lack of 

objectivity when experimental data from geometrical similar notched beam specimens were 
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considered. This could be partially remedied if an increasing value for the internal length is 

assumed with damage.   

 

5. OBJECTIVITY OF THE PROPOSED MODEL PREDICTIONS 

The total strain,ε , is related to the total displacement, u  ( 2/)x/ux/u( ijjiij ∂∂+∂∂=ε ), where ijε  is 

the gradient enriched strain. The damage rules of Eq. (9) provide the stiffness evolution as functions 

of the Cauchy stress τ , which in turn relates to the total strain as: εCτ :1-= . For a 1D case, the 

equilibrium equation ( 0x/ =∂σ∂ ) within the framework of the proposed gradient model becomes: 
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                                                                     (38) 

The constitutive law assumed in this work can be expressed as:  

( ) )g(E)(D1),( xx,
2

xx, ε−εε−=εεσ                                                                                         (39) 

where [ ] [ ])(/)()(D iuiu ε−εεε−εε=ε  is the damage loading function for uniaxial tension ( iε the 

strain signifying end of elastic behavior, uε the strain signifying complete damage and ε  the 

applied uniform axial tensile strain equal to0tε .  

Assuming a harmonic perturbation for the displacement, )xcos(Au φ= , where φ= wave 

number and A = amplitude, Eq. (38) becomes:  
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                                                                                              (40) 

It can be seen that Eq. (40) yields a real wave number with a critical value of 

0tu

0t
crit g

1

ε−ε
ε

=φ , which is identical to that in Rodriguez-Ferran et al.36. Such a result renders a 

non-local model suitable for regularization if employed in a FEM analysis.  

A 2D mesh refinement study of the presented model for the beam specimen with dimensions 

200x200x600 mm at a load level of 0.84Ppeak in the post-peak softening branch is shown in Fig. 10. 

The numerical results are derived assuming that fc=38 MPa, 89.3c =β , 09.3f t =  MPa, 5.6t =β  

( 313.12ce = ), E= 34 GPa, 2.0=ν  and εc=0.0015. Based on the 1D-discretized midspan cross-

section (strips of depth dz), this load level of 0.84Ppeak corresponds to the first detection of a 

damage value of D=0.95. Three sizes for an “xyz” grid with a width of b=200 mm are used: (a) 20 x 

200 x 20 mm, (b) 10 x 200 x 10 mm and (c) 5 x 200 x 5 mm. It can be seen that mesh-independent 
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damage predictions are obtained along the beam’s length. The calculated damage levels are the 

same for both local and non-local Pvs.δ  predictions (see Fig. 8c). A damage value of D≥0.95, 

corresponding practically to zero stress transfer capability, may signify major crack development. 

The present model’s prediction that a major crack forms at a load level of about 0.84Ppeak in the 

post-peak softening branch is in agreement with acoustic emission findings for concrete beams 

under flexure46 and uniaxial tension47. Also, it is noted that a non-zero midspan damage value D  is 

computed at 0.74Ppeak in the ascending branch of response. A damage value of D>0, signifying 

softening under uniaxial tension, can be associated with microcracking activity. Acoustic emission 

measurements on notched and un-notched concrete beam specimens tested under flexure have 

shown that microcracking activity becomes detectable before the peak applied load is reached and 

at load level of 70% to 80% of the peak load46,48. 

 

 
Fig. 10. Numerical damage level predictions of a 2D mesh refinement study of the proposed model 
for specimen size S3 (200x200x600 mm) at 0.84Ppeak in the post-peak softening branch: (a) grid of 
20x20 mm, (b) grid of 10x10 mm and (c) grid of 5x5 mm.  
 

 



SIZE EFFECT IN SEMI-BRITTLE MATERIALS AND GRADIENT THEORIES WITH APPLICATION TO CONCRETE 

 
A gradient elasto-damage model for quasi-brittle materials with an evolving internal length                       78 
 – Beams under 4-point bending          

6. MIDSPAN DEFLECTION FOR 4-POINT BENDING BASED ON GRADIENT 

ELASTICITY 

The boundary value problem for a dipolar elastic Timoshenko simply supported beam has been 

solved in closed-form by Triantafyllou and Giannakopoulos49 and only the relevant work is 

included here.  

The expression for the midspan deflection of a simply supported beam with an orthogonal 

cross-section subjected to two equal concentrated loads, P/2, at a distance L/3 from the supports is: 
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where P  is the applied load by the actuator, [ ] 0E)21)(1/()1(E ν−ν+ν−= , E0 = Young’s modulus 

of elasticity, )g)I/A(1/(1g 2+=l  is a “shear” gradient internal length, and bf , shf  are non-

dimensional functions of the internal length g, see Eqs. (42) and (43),   
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Note that in Eq. (41), the effect of the Poisson’s ratio on the Young’s modulus is taken into account. 

In the absence of gradient, i.e. 0g =  ( 1g/ =l ), Eq. (41) reduces to the classical elasticity solution: 
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The expression for the normal axial strain of the beam at midspan at a distance z from the n.a. is 

given by: 
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where k = beam’s curvature and 2/hz2/h ≤≤− . Of course, in the absence of gradient, i.e. 0g = , 

Eq. (45) reduces to the classical expression for the axial strains:  

z
IE6

PL
zk clcl_xx ==ε                                                                                                              (46) 

 

7. CONCLUSIONS 

In the present study, a strain gradient damage theory is proposed based on the influence of the stress 

gradient on Gibb’s energy. It was shown that, if a microstructural internal length is related to the 

level of damage, then this length should be either increasing with damage or remaining constant. 

Furthermore, a simple continuous damage model was proposed for the case of 4-point bending.  
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CHAPTER V 

EXPERIMENTAL PROGRAM 

 

1. MATERIALS 

Five (5) cementitious mixes were used for the beam specimens tested: low-strength concrete (LC), 

normal-strength concrete (NC), medium-strength concrete (MC1, MC2) and cement mortar (CM).  

The mix proportions are shown in Table 1 and the sieve analysis for the aggregates used is 

described in Table 2.  

 

Table 1. Concrete and cement mortar mix proportioning. 

Mix 
Quantities (Kg/m3) Dry 

density 
(kg/m3) 

Slump  
(cm) 

Air-
content (d) 

(%) Cement (a) Aggregates (b) 
w/c  

ratio 
Additives (c) 

CM 450 1350 293 (0.65) 3.6 2100 - (e) 2.5 
LC 208 1980 162 (0.78) 1.6 2335 25 3.0 
NC 276 2080 176 (0.64) 1.5 2365 10 2.5 

MC1 448 1720 204 (0.45) 4.0 2410 22.4 2.0 
MC2 447 1640 207 (0.46) 6.0 2440 15.6 2.0 
(a) cement type CEM II/42.5 
(b) crushed limestone  (compressive strength 100 MPa) 
(c)  plasticizer Sika® Viscocrete® for M, MC1, MC2; Sika®Sikament® for NC; Sika®Plastimen® for LC  
(d) air content of fresh mix (Gilson HM-30 pressure meter) 
(e) not measured 
 

 
Table 2. Sieve analysis of the aggregates used in the cementicious mixes. 

Sieve 
opening 
(mm) 

% passing 

LC NC MC1 MC2 CM 

32 100 100 100 100 -(a) 
16 85.8 84.1 80.6 78.7 - 
8 70.7 67.8 60.0 57.7 - 
4 62.7 59.7 49.6 49.1 - 
2  45.4 43.3 35.7 35.5 - 
1 29.6 28.2 23.3 23.2 100 

0.5 - - - - 30 
0.25 12.9 12.3 10.2 10.1 - 
0.075 8.0 7.6 6.3 6.3 - 

(a) not measured 
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2. CLASSICAL MECHANICAL PROPERTIES 

The classical mechanical properties of the five (5) cementicious mixes were determined based on 

uniaxial compression and split cylinder tension tests. The cylinder (150x300 mm) and cube 

(150x150x150 mm) specimens were tested under uniaxial compression using a DMG 3000kN 

testing machine. The tests were performed following the ASTM recommendations1,2 and the 

determination of the Young’s modulus and Poisson’s ratio from the compression test was obtained 

using four strain gages (SG) placed at mid-height (two SG’s at 90o on each diametrically opposite 

location). The Young’s modulus (cspE  and t
spE ) and Poisson’s ratio were also estimated from the 

split cylinder tension tests based on SG measurements of two SG’s attached on each of the flat faces 

of the cylinder specimens (see Fig. 1) and using the elasticity solution of a disc subjected to 

diametrically opposite compression3,4. The split cylinder test data except to an estimate for the 

Poisson’s ratio also provide a second independent estimate of the Young’s modulus (tspE ) based on 

the two tensile measured strains, in addition to the estimate based on the compressive strain 

measurements of the uniaxial compression test (c
spE ) (see Section V.4). Loading rates ranging from 

0.7 to 1 MPa/min were used for this test4. The measured mechanical properties are summarized in 

Table 3.  

 

    

Fig. 1 – Split cylinder tension test setup and strain gage instrumentation. 

 

stacked  90o 
 rosette SG’s  

Wooden  
strip 

20-mm long 
uniaxial SG’s 

1st configuration 2nd configuration 
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Table 3 – Measured mechanical properties for the LC, NC, MC1, MC2 and CM mixes. 

Mechanical 
properties LC NC MC1 MC2 CM 

Uniaxial  compression of cubes (150x150x150 mm) 

f28day, MPa  19.96± 0.4 (3) (a) 26.48± 0.8 (3) 45.05± 1.1 (3) 48.48± 0.7 (3) 30.54± 0.1 (3) 

f, MPa (b) 21.63± 0.4 (3) 29.76± 0.5 (3) 52.59± 1.0 (4) 54.69± 0.7 (3) -  (d) 

Uniaxial compression of cylinders (150x300 mm) 

fc , MPa(b) 15.92± 0.4 (5) 20.51± 2.1 (4) 34.67± 2.5(3) 38.01± 3.6 (4) 32.42± 2.4 (4) 

E, GPa (b) 25.40± 2.1 (4) 30.68± 1.5 (3) 33.63± 4.3 (3) 34.53± 0.6 (3) 22.10± 1.1 (3) 

ν  (b) 0.22± 0.01 (4) 0.23± 0.02 (3) 0.21± 0.01 (2) 0.23± 0.04 (2) 0.23± 0.01 (3) 

Split cylinder tension  (150x300 mm cylinders) 

fsp, MPa (b) 2.67± 0.3 (3) 3.06± 0.4 (3) 3.38± 0.1 (4) 3.43± 0.1 (3) 2.87± 0.1 (2) 

t
spE ,GPa(b),(c) 22.17± 1.4 (3) 30.84± 1.1 (3) 31.68± 1.4 (3) 31.82± 1.1 (3) 22.38 (1) 

c
spE ,GPa(b),(c) 26.20± 1.4 (3) 31.92± 3.4 (2) 32.75± 0.8 (3) 35.93± 0.6 (3) 25.41 (1) 

 ν (b) 0.23± 0.04 (3) 0.17(1) 0.21± 0.02 (3) 0.21± 0.06 (2) 0.25 (1) 
(a) number in parenthesis denotes the number of tested specimens considered for the reported average value. 
(b) tests performed after 1 month for LC, NC, MC1, MC2 and after 8.5 months for CM.  
(c) estimated Young’s modulus for 2.0=ν  (see Section V.3). 
(d) not measured 

 

The Young’s modulus and Poisson’s ratio values obtained from the uniaxial compression and split 

cylinder tension tests for all mixes are shown versus the compressive strength in Figs. 2 and 3, 

respectively. The 95% confidence limit for the Young’s modulus of elasticity (in MPa) from 

reported experiments data5 corresponding to a %20±  deviation of the value predicted by the 

empirical formula of Eq. (3)5, is also shown in Fig. 2,  

3/1
c

23 f107832.1E γ×= −                                                                                                           (3) 

where cf  is the cylinder compressive strength (in MPa), γ is the specific weight (in kg/m3). It is 

noted that Eq. (3) is applicable to concretes with limestone aggregates and normal additives5.  

The majority of the experimental values for the Young’s modulus fall within the expected 

range as represented by the limits of Eq. (3). As expected, the Young’s modulus of the concrete 

mixes considered in this study is higher than that of the cement mortar. It is known that the Young’s 

modulus of limestone varies from 50 to70 GPa6 and hence limestone aggregates should be stiffer 

than the matrix material at least for a normal- and medium-strength concrete resulting in a higher 

Young’s modulus value.  

The experimental values for Poisson’s ratio range from 0.16 to 0.27 and apparently seem to 

be independent of the compressive strength. This is in agreement with the findings of others7-9. 
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Furthermore, similar values for the Poisson’s ratio were obtained for both concrete and cement 

mortar mixes since the range of the Poisson’s ratio value for limestone (0.15 to 0.30)10 is similar to 

that of cement paste. Hence, the limestone aggregates inclusions have a negligible effect on the 

Poisson’s ratio of the composite.  

The compressive strains obtained from the uniaxial compression cylinder test at 40% and 

55% of the peak stress are plotted versus the compressive strength in Fig. 4. It can be seen that as 

the compressive strength of the material increases, the strain values for the same level of stress 

increase as well.  This is a due to the fact that the Young’s modulus increases with increasing 

compressive strength. Also, the difference in strains for the two assumed stress levels remains 

approximately the same with increasing compressive strength. This observed behavior renders11 a 

constitutive law expressed in a normalized form particularly suitable for cementitious materials. 
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Fig. 2. Measured Young’s modulus vs. compressive strength for mixes LC, NC, MC1, MC2 and 
CM (solid symbols are for CM mix). 
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Fig. 3. Measured Poisson’s ratio vs. compressive strength for mixes LC, NC, MC1, MC2 and CM 
(solid symbols are for CM mix). 
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 Fig. 4. Measured compressive strain at 40% and 55% of the peak stress vs. compressive strength 

(solid symbols are for CM mix).  

 

Mechanical properties used in the analysis 

The Poisson’s ratio of concrete ranges typically between 0.14 and 0.2612. In this work, a similar 

value range was observed with the majority of the data being greater or equal to 0.2. This can be 

attributed to the stress limit chosen for deriving these estimates1, i.e. 40% of the peak stress, since 

the Poisson’s ratio of concrete appears to increase with the load level from about 0.15 for a 
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relatively low stress level to about 0.25 at a load level close to 70% of the peak stress13. It is widely 

accepted that a reasonable value for the Poisson ratio of concrete to be used in an analysis is 0.2. 

The measured values for the two classical material properties used in Eqs. (1b) and (2b) for each 

mix in order to compare their experimental flexural response to the classical elasticity predictions 

are presented in Table 4.  

 

Table 4. Measured material parameters used in the analysis. 

Mix LC NC MC1 MC2 CM 
E  

(GPa) 
25.0 30.70 32.7 34.0 22.3 

ν 0.2 
 

 
Based on the predictions of Eq. (1b) and (2b) for a beam specimen with L/h=3, a deviation 

of ± 1 GPa in the Young’s modulus value translates to a ± 5% difference in both the flexural 

stiffness and the curvature predictions, while a deviation of ± 0.01 in the Poisson’s ratio value 

translates to a less than ± 1% and ± 1.5% difference in the flexural stiffness and curvature 

prediction, respectively. Thus, it is reasonable to assume that a deviation of the measured flexural 

stiffness and curvature values from the classical predictions of up to about 10% can be attributed to 

the expected variation of the E and ν values.   

3. SPLIT CYLINDER TESTS 

The stresses for the 2D problem of a disc subjected to diametrically opposite uniformly distributed 

compression (see Fig. 5a) are3: 

( )Φ++++
π
−

=θσ 2121r BBAA
p

),r(                                                                                    (4) 

( )Φ+++−−
π
−

=θσθ 2121 BBAA
p

),r(                                                                                (5) 

( )21r CC
p

),r( −
π

=θτ θ                                                                                                            (6) 
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)(2cosr21r

)(2sinr1
A

24

2

1 θ+α−+

θ+α−
= , 

( )
)(2cosr21r

)(2sinr1
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24

2

2 θ−α−+

θ−α−
= ,  
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where rσ = the normal stress in the r-direction, θσ = the normal stress in the θ-direction, θτ r = the 

shear stress in the r-θ plane, p = the applied uniform pressure, 2α = the angle at the disc’s centre that 

defines the part of the disc’s circumference under compression, R = the radius of the disc and 

R/rr = is the normalized radial coordinate.  

For a loading width of 20 mm and a radius of 75 mm ( o64.7=α ), the maximum stresses at 

the center of the disc ( 0=θ  and 0r = ) are: 

σ==σ=σ 976.0f)0,0( spxr  and σ−=σ=σθ 976.2)0,0( y                                                     (7) 

where LD/P2 π=σ ,  P =total load, L= cylinder’s length and R2D = = disc’s diameter. Note that 

when 0→α , then σ=σ )0,0(x  and σ−=σ 3)0,0(y , which corresponds to the idealized case of a 

disc subjected to a point load.  
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Fig. 5  (a) Disc subjected to diametrically opposite compression (b) Normalized principal stress 
distribution along the y-axis for σσ /y  and σσ /x  . 
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The principal stresses are shown in Fig. 5b and the corresponding strains along the x- and y-

axis assuming plane-stress conditions, are10: 
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where E =Young’s modulus, ν =Poisson’s ratio and d =loading width. 

For the strain measurements on each flat face of the cylinder specimens, the ratio 

yε / xε yields an estimate for the Poisson’s ratio, ν and for an assumed value of ν (ν=0.2 was 

assumed in the present study) the ratios σ / xε and σ / yε  yield two independent estimates for the 

Young’s modulus of elasticity, t
spE  and  c

spE , respectively (see Fig. 6, experimental results using 

the 1st configuration shown in Fig. 1). It is noted that the split cylinder test has also been used by 

others15-17 to determine a value for Young’s modulus and Poisson’s ratio. 
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                            (a)                                                 (b)                                                (c) 
Fig. 6. Split cylinder test tensile strain SG measurements on the flat cylinder faces for the LC mix: 

(a) εy vs. εx, (b) σ vs. εx and (c) σ vs. εy. 

 

A number of studies18-20 have examined the failure mechanism of concrete under the biaxial 

stress state present in a split cylinder test by monitoring the evolution of microcracking. They found 

that cracking starts at approximately 70% of the peak load and that the geometry and that the test 

σmax = 2.49 MPa 
fsp = 2.43 MPa 
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setup may significantly affect this value. In the present study, the Young’s modulus and Poisson’s 

ratio estimates were determined based on the slope of the principal stress-strain curve between a 

stress at a tensile strain of 30 μs and a stress at 50% of the peak stress, since non-linearity was 

apparent around 60% of the peak tensile stress (see Fig. 5b). The tensile and compressive strains 

that correspond to 50% of the peak values are plotted against the splitting tensile strength in Fig. 7. 

It is interesting to notice that the strain values corresponding to the 50% of the peak load are 

approximately the same for both concrete and cement mortar mixes and are not significantly 

affected from the material’s strength.  

The measured splitting to compressive strength ratio together with the results of empirical 

formulae21-23 are plotted versus the compressive strength for each mix in Fig. 8 (fc and fsp values are 

shown in Table 3). Good agreement with the empirical equations is observed for the normal- and 

medium-strength concrete and less so for the low-strength concrete although the deviation is not 

significant. The empirical equations are not applicable to cement mortar which is also included in 

Fig. 8.  

Finally, it is noted that a gradient elasticity solution to any problem reduces to the classical 

solution if the internal length is zero ( 0g = ) or if the stress gradient is zero ( 0x/ kij =∂σ∂ ). In the 

split cylinder test, the stress distribution is approximately uniform near the center of the cylinder 

where the measurements are made (see Fig. 5b) resulting in a negligibly small stress gradient 

( 0r/r ≅∂σ∂ θ ). This implies that the measured Young’s modulus and Poisson’s ratio from the split 

cylinder test can be seen as independent of the gradient internal length of the material as is the case 

for the uniaxial cylinder compression test as well.   
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Fig. 7. Tensile and compressive strains at 50% of the splitting strength vs. splitting strength (solid 
symbols are for CM mix).  
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Fig. 8. Splitting to compressive strength ratio vs. compressive strength. 

4. FOUR-POINT BENDING TESTS 

Setup and specimens 

A total of seventy-one (71) geometrically similar beam specimens with an aspect ratio of L/h=3 (see 

Table 5) were tested under 4-point bending. The three (3) nominal beam sizes considered have 

dimensions of 100x100x300 (width x height x span) mm (S1), 150x150x450 mm (S2) and 

200x200x600 mm (S3). The specimens were tested using an MTS kN250±  hydraulic actuator 

under midspan deflection-control. The midspan deflection was the average of two DC displacement 

transducers (DCDT’s) measurements one on each side of the specimen. Two instrumentation 

configurations were used for estimating the beam curvature: either using two SG’s placed at 

midspan in the axial direction (one at the top and one at the bottom fiber of the cross-section) or 

four SG’s placed at midspan in the axial direction (two on each side of the beam at a distance 2 or 1 

cm from the top and bottom fiber). For a limited number of specimens both arrangements were used 

(see Fig. 11). The experimental setup is shown in Fig. 9 together with a detailed representation of 

the instrumentation.  

The beam specimens of each mix were cured together with the cylinder and cube specimens 

in the same environmental conditions and the date of testing for each mix is included in Table 3. 

The uniaxial compression, split cylinder tension and 4-point bending tests for each mix were 

conducted in parallel and were completed in less than a two weeks period.     

 

 
 

Cement Mortar 
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Table 5.  Experimental program. 
Specimen 

size 
Number of specimens tested 

CM LC NC MC1 MC2 
S1 3 (3) 8 (4) 8 (4) 8 (4) 4 (3) 

S2 2 (0) 7 (3) 7 (2) 8 (2) 4 (3) 

S3 2 (0) 3 (1) 3 (2) 2 (0) 2 (0) 

Note: Number in parenthesis denotes the number of specimens with strain 
gage instrumentation. 
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Fig. 9. Experimental setup for the 4-point bending tests: (a) schematic of the testing setup and (b) 
photo for size S2 beam specimen.  
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Experimental post-peak softening response 

The post-peak flexural response of the concrete beams tested under 4-point bending is captured by 

displacement control. A DCDT located at midspan was used as the controlling displacement sensor 

and all tests were performed at a constant rate of 0.001 mm/sec. However, once softening initiates, 

the experiment becomes unstable since energy is released back from the elastically deformed steel 

reaction frame where the hydraulic load actuator is attached to8. Before the peak load is reached the 

hydraulic jack is moving downwards increasing the applied load but after the peak load is reached, 

through the controller the jack’s cylinder moves upwards resulting in unloading of the beam 

specimen. This is done through a Proportional-Integral-Derivative (PID) closed-loop feedback 

algorithm24 of the Flex-40 MTS controller25. The choice of the proper PID value is essentially done 

through a trial and error procedure since it is specific to the experimental setup used (stiffness of the 

reaction frame) and the stiffness of the specimen. This procedure unavoidably resulted in the loss of 

the post-peak response for some of the specimens. The specimens for which a post-peak softening 

branch was captured successfully for each mix and specimen size considered in this work are listed 

in Table 6. Concerning the CM mix, although various PID values were used, the post-peak response 

was lost for all specimens. It appears that the response of the CM specimens in the post-peak 

softening branch was the most brittle, resulting in an extremely unstable crack growth. Note that for 

the rest of the concrete specimens, even when the post-peak response was not fully recorded, failure 

was not catastrophic since the specimen didn’t collapse although it was almost fully cracked.   

 

Table 6 - Number of beam specimens with recorded post-peak softening branch. 
 

Specimen 
size 

Mix 
CM LC NC MC1 MC2 

S1 0 (3) 7 (8) 0 (8) 6 (8) 5 (5) 

S2 0 (3) 6 (7) 4 (7) 8 (8) 3 (5) 

S3 0 (3) 3 (3) 3 (3) 3 (3) 2 (3) 

Note: number in the parenthesis denotes the total number of tested specimens 
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CHAPTER VI 

SIZE EFFECT OF CEMENTITIOUS MATERIALS IN ELASTICITY  

 

1. INTRODUCTION   

The aim of this work is to demonstrate that size effect in elasticity exists in composite materials 

when the size of the microstructural details is comparable with the macrostructure. On that respect, 

cementitious materials such as concrete are ideal since they can be viewed as composites with 

inclusions (aggregates, fibers etc.) embedded in a matrix material. It is noted that this simplified 

view of the microstructure of concrete is sufficient for the aim and purposes of gradient elasticity 

which attempts to introduce a new constitutive parameter (length) that accounts for the influence 

that the meso-scale microstructure has on the macrostructural response. So far, the attention of 

researchers to gradient elasticity was motivated from flexural tests on micro-beams and this field 

was the first actual implementation of these theories4. In this work, in order to test the hypothesis 

that for a given composite a certain microstructure can result in size effect phenomena in elasticity, 

four (4) concrete mixes of maximum aggregate size dmax=32 mm and cement mortar of dmax=1 mm 

are considered. However, the scale of the microstructure is not the only factor that affects size effect 

phenomena.  The relative stiffness of the two phases in a composite, i.e. matrix and inclusions, is an 

equally significant factor5. To investigate this issue, similar component volume fractions and 

aggregate gradation is used for the four (4) concrete mixes considered, while the water to cement 

(w/c) of the mixes is altered from 0.78 to 0.45 (low to medium strength concrete).    

 

2. ELASTIC STIFFNESS AND CURVATURE  

The measured elastic stiffness and curvature data of the flexural response for each specimen 

reported here correspond to the slope between a load level of 10% and that of 50% of the peak 

applied load. The experimental to classical elastic flexural stiffness ratio is plotted vs. the nominal 

beam size in Figs. 1(a) to 1(e). The curvature estimates correspond to the stiffness ratio with the 

internal length estimate derived from Eq. (45) in Section IV.6 and substituted back to Eq. (41) in 

Section IV.6. Also, the theoretical predictions of the dipolar elasticity model for different beam 

sizes and for different values of the gradient internal length are shown in Fig. 1. The experimental 

results are also presented in Tables 1 to 5. 

The experimental applied total load vs. midspan curvature results for a representative MC1-

S1 specimen are shown in Fig. 2. A total of six SG’s are attached to that specimen. It is noted that 



SIZE EFFECT IN SEMI-BRITTLE MATERIALS AND GRADIENT THEORIES WITH APPLICATION TO CONCRETE 

 
Size effect of cementitious materials in elasticity                                                                                           94 
 

two types of axial SG’s were used: 20-mm long (SG2, SG3, SG4, SG5) and 10-mm long SG’s 

(SG0, SG1). 

 For this particular setup, the following observations were made: 

 i) the SG’s in tension (SG0 and SG2) at the two opposite vertical beam faces record practically 

the same strain indicating that the concrete strain measurements appear not to be affected by the SG 

lengths used, while the SG at the extreme bottom tensile fiber (SG4) records higher strains than 

SG0 and SG2 for the same load level, as it should (see Fig. 2b),  

ii) the SG at the top extreme fiber of  the compression zone (SG5) records lower values than it 

should,  practically the same as those of SG1 and SG3 on the side faces (see Fig. 2c),  

iii) midspan curvature estimates derived from the SG measurements on the vertical beam faces 

predict a n.a. location that deviates less than 5% from the centroid of the cross-section, while if the 

top/bottom extreme fiber SG measurements are used the deviation is more than 15% because of the 

unreasonably high measured strains at the bottom extreme fiber (SG4),  

iv) the measured elastic force to curvature ratio value of S=7.64 Nm for this specimen (see Fig. 

2d) is based on the average of the consistent in terms of the n.a. prediction curvature measurements 

(SG0, SG1, SG2 and SG3).  

Based on the midspan deflection and curvature measurements, the gradient internal length 

estimate for specimen MC1-S1 was 6.10gK =  mm and 6.11gS =  mm, respectively, while the 

overall average gradient internal length of the mix MC1 was found to be 3.23.12g 1MC ±=  mm (see 

Fig. 5). 
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Fig. 1 – Experimental to classical elastic flexural stiffness ratio: (a) mix CM, (b) mix LC, (c) mix 
NC, (d) mix MC1 and (e) mix MC2.  

(a) (b) 

(d) (c) 

(e) 
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Table 1 - Experimental results in the elastic response range of CM mix. 

Specimen 
Code 

Average 
Dimensions  

Stiffness, K = P/δ 
(N/m) 

Curvature Coefficient, S = P/k 
(Nm) 

b h K cl Kexp Kexp/K cl gK (a) Scl Sexp Sexp/ Scl gS (b) 

(mm) (mm)    (mm)    (mm) 

CM-S1-01 100.7 100.3 341.67 357.75 1.047 2.6 4.190 4.251 1.014 3.4 

CM-S1-02 100.5 100.2 340.14 349.63 1.028 1.6 4.170 4.541 1.089 8.5 

CM-S1-03 99.9 100.2 338.20 371.06 1.097 4.7 4.146 4.400 1.061 7.1 

CM-S2-02 150.0 149.9 505.29 535.23 1.059 4.7 -  - (**)   - - 

CM-S2-03 150.6 150.7 514.27 487.43 0.948 0.0 - - (**) - - 

CM-S3-01 197.6 198.6 654.23 675.28 1.032 3.7 - - (**) - - 

CM-S3-02 198.6 198.6 657.54 705.00 1.072 7.3 -  - (*)  - - 
(a) internal length estimate based on the stiffness ratio (see Eq. 41 in section IV.6) 
(b) internal length estimate based on the curvature coefficient ratio (see Eq. 45 in section IV.6). 
(**)   data not used,  (*) not measured 

 
 
Table 2 - Experimental results in the elastic response range of LC mix. 

Specimen 
Code 

Average 
Dimensions 

Stiffness, K = P/δ 
(N/m) 

Curvature Coefficient, S = P/k  
(Nm) 

b h K cl Kexp Kexp/K cl g K (a) Scl Sexp Sexp/ Scl g S (b) 

(mm) (mm)    (mm)    (mm) 

LC-S1-01 99.4 100.9 384.89 517.50 1.345 11.9 - - (*) - - 

LC-S1-02 100.1 101.5 393.22 567.75 1.444 14.1 -    - (*) - - 

LC-S1-03 99.8 101.2 388.44 485.22 1.249 9.5 - - (*) - - 

LC-S1-04 99.5 101.5 390.98 484.60 1.239 9.2 - - (*) - - 

LC-S1-05 99.7 102.0 396.21 497.74 1.256 9.7 4.896 6.881 1.405 17.2 

LC-S1-06 100.2 101.4 392.58 515.56 1.313 11.1 4.839 6.277 1.297 14.8 

LC-S1-07 99.6 102.1 -  - (**)  - - 4.904 6.117 1.247 13.7 

LC-S1-08 100.2 101.6 - - (**) - - 4.869 5.553 1.141 10.6 

LC-S2-01 149.3 152.3 593.59 704.94 1.188 11.7 - N.M. - - 

LC-S2-02 149.9 150.7 578.74 830.69 1.435 20.8 - N.M. - - 

LC-S2-03 150.4 152.7 592.82 788.51 1.330 17.2 - N.M. - - 

LC-S2-04 151.0 150.2 602.63 811.53 1.347 17.8 16.77 21.039 1.255 20.7 

LC-S2-05 150.6 150.6 586.17 790.66 1.349 17.9  - (**)   

LC-S2-06 150.4 151.2 596.09 761.89 1.278 15.3 16.56 18.841 1.138 15.6 

LC-S2-07 150.2 152.7 607.65 755.84 1.244 13.9 16.94 19.618 1.158 16.6 

LC-S3-01 197.9 198.8 753.42 981.53 1.303 21.5 - - (**) - - 

LC-S3-02 199.0 200.0 738.73 989.80 1.340 23.3 36.12 41.336 1.144 21.1 

LC-S3-03 199.5 199.5 749.14 992.35 1.325 22.5 -  - (**) - - 
(a)Internal length estimate based on the stiffness ratio (see Eq. 41 in section IV.6) 
(b)Internal length estimate based on the curvature coefficient ratio (see Eq. 45 in section IV.6). 
(**) data  not used, (*) not measured. 
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Table 3 - Experimental results in the elastic response range of NC mix 

Specimen 
Code 

Average 
Dimensions 

Stiffness, K = P/δ 
 (N/m) 

Curvature Coefficient, S = P/k  
(Nm) 

b h K cl Kexp Kexp/K cl gK (a) Scl Sexp Sexp/ Scl gS (b) 

(mm) (mm)    (mm)    (mm) 

NC-S1-01 101.0 102.0 493.22 671.06 1.361 12.3 - - (*) -  

NC-S1-03 99.4 100.7 469.32 605.95 1.291 10.5 - - (*) -  

NC-S1-04 101.2 102.0 494.76 658.40 1.331 11.6 - - (*) -  

NC-S1-05 99.5 101.8 483.15 673.49 1.394 13.1 - - (*) -  

NC-S1-06 100.9 101.7 - - (**)  - - 6.036 7.394 1.225 13.1 

NC-S1-07 99.4 102.7 - - (**)  - - 6.125 8.190 1.337 15.9 

NC-S1-08 100.6 101.8 488.03 617.24 1.265 10.0 - - (*) - - 

NC-S2-01 149.3 152.3 719.76 848.85 1.179 11.3 - - (*) - - 

NC-S2-02 149.9 150.7 703.61 902.75 1.283 15.5 - - (*) - - 

NC-S2-03 150.4 152.7 730.57 940.20 1.287 15.8 - - (*) - - 

NC-S2-04 151.0 150.2 703.21 892.15 1.269 14.9 - - (*) - - 

NC-S2-05 150.6 150.6 706.43 897.31 1.270 15.0 - - (**) . - - 

NC-S2-06 150.4 151.2 712.13 892.86 1.254 14.4 19.69 22.735 1.154 16.5 

NC-S2-07 150.2 152.7 728.84 872.15 1.197 12.1 20.24 22.968 1.135 15.6 

NC-S3-01 197.9 198.8 903.88 1163.3 1.287 20.6 - - (**)  - - 

NC-S3-02 199.0 200.0 923.55 1128.8 1.222 17.3 - - (**)  - - 

NC-S3-03 199.5 199.5 919.95 1215.6 1.321 22.4 45.03 51.529 1.144 21.1 
(a)Internal length estimate based on the stiffness ratio (see Eq. 41 in section IV.6) 
(b)Internal length estimate based on the curvature coefficient ratio (see Eq. 45 in section IV.6). 
(**) data  not used, (*) not measured  
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Table 4 - Experimental results in the elastic response range of MC1 mix. 

Specimen 
Code 

Average 
Dimensions  

Stiffness, K = P/δ 
(N/m) 

Curvature Coefficient, S = P/k 
(Nm) 

b h K cl Kexp Kexp/K cl gK (a) Scl Sexp Sexp/ Scl gS (b) 

(mm) (mm)    (mm)    (mm) 

MC1-S1-02 100.9 103.4 543.68 647.00 1.190 7.9 - - (*) - - 

MC1-S1-03 100.4 102.6 529.96 708.99 1.338 11.9 - - (*) - - 

MC1-S1-05 99.7 102.7 526.97 678.86 1.288 10.6 6.531 7.636 1.169 11.6 

MC1-S1-06 100.0 103.3 537.70 660.51 1.228 9.0 6.684 7.646 1.144 10.9 

MC1-S1-07 99.6 102.3 - - (**)  - - 6.448 8.004 1.241 13.6 

MC1-S1-08 99.7 102.4 523.11 662.54 1.267 10.0 6.475 8.378 1.294 14.9 

MC1-S2-01 150.6 151.4 762.85 967.82 1.269 15.0 - - (*) - - 

MC1-S2-02 149.6 154.3 795.08 981.83 1.235 13.8 - - (*) - - 

MC1-S2-03 149.8 153.4 783.51 979.52 1.250 14.4 - - (*) - - 

MC1-S2-04 150.5 153.1 783.30 876.87 1.119 8.3 21.783 24.02 1.103 13.8 

MC1-S2-05 150.1 151.1 756.27 950.48 1.257 14.5 20.914 23.10 1.105 13.8 

MC1-S2-06 150.8 153.9 795.86 998.12 1.254 14.6 - - (**)  - - 

MC1-S2-07 150.0 153.3 783.51 970.20 1.238 13.9 - - (*) - - 

MC1-S2-08 150.0 153.0 779.79 1009.6 1.295 16.1 - - (*) - - 

MC1-S3-01 200.9 200.8 1003.7 1128.3 1.124 11.3 - - (**)  - - 

MC1-S3-03 200.0 200.4 994.0 1081.6 1.088 8.6 - - (**)  - - 
(a)Internal length estimate based on the stiffness ratio (see Eq. 41 in section IV.6) 
(b)Internal length estimate based on the curvature coefficient ratio (see Eq. 45 in section IV.6). 
(**) data  not used, (*) not measured 

 
 
 
Table 5 - Experimental results in the elastic response range of MC2 mix. 

Specimen 
Code  

Average 
Dimensions 

Stiffness, K = P/δ 
 (N/m) 

Curvature Coefficient, S = P/k  
(Nm) 

b h K cl Kexp Kexp/K cl gK (a) Scl Sexp Sexp/ Scl gS (b) 

(mm) (mm)    (mm)    (mm) 

MC2-S1-01 100.7 103.4 563.42 625.00 1.109 5.2 - - (*) - - 

MC2-S1-02 99.5 102.8 - - (**)  - - 6.799 8.570 1.260 14.1 

MC2-S1-04 99.9 102.7 548.99 579.25 1.055 3.0 6.804 8.130 1.195 12.4 

MC2-S1-05 100.2 103.3 559.97 647.10 1.156 6.9 6.961 7.343 1.055 8.9 

MC2-S2-01 150.1 152.9 810.11 879.65 1.086 6.4 22.518 22.659 1.006 3.4 

MC2-S2-02 150.8 152.7 811.15 935.35 1.153 10.0 - - (*) - - 

MC2-S2-03 150.0 153.0 810.92 878.38 1.083 6.3 22.548 23.055 1.023 6.7 

MC2-S2-05 150.8 150.9 787.57 905.95 1.150 9.8 21.766 24.304 1.117 14.5 

MC2-S3-01 200.3 200.8 1040.1 1217.6 1.171 14.4 - - (**)  - - 

MC2-S3-03 199.5 200.8 1035.3 1068.5 1.032 3.7 - - (*) - - 
(a)Internal length estimate based on the stiffness ratio (see Eq. 41 in section IV.6) 
(b)Internal length estimate based on the curvature coefficient ratio (see Eq. 45 in section IV.6). 
(**) data  not used, (*) not measured 
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Fig. 2. Experimental data for beam size S1 of MC1 mix: (a) schematic and photo of the 
experimental setup, (b) normalized applied load vs. tensile axial strain, (c) normalized applied load 
vs. compressive axial strain and (d) applied load vs. calculated midspan curvature based on the 
strain measurements. 
 

 

n.a. deviation:  

SG4, SG5 > 15% 
SG2, SG3 < 5% 
SG0, SG1 < 5% 
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3. DISCUSSION OF RESULTS 

In this section, the magnitude and the observed scatter of the gradient internal length estimate is 

discussed with reference to the details of the material’s microstructure. It is noted that for a gradient 

elasticity theory:   

(i) the predicted internal length based on curvature and deflection experimental data should be 

the same for all sizes and  

(ii)  for a given material, a consistent model should be able to predict adequately its flexural 

response with an estimated internal length value independent of the specimen size.  

 

Influence of the microstructure on the gradient internal length 

The gradient internal length is an additional constitutive parameter which is introduced for 

modeling the details of the material’s microstructure. It has the dimension of length because it is 

introduced in association with the strain gradient6. Thus, it is reasonable to assume that its 

magnitude is related to the dominant feature of the microstructure. However, this correlation is done 

in an average sense, since the microstructure incorporates many scales and this is especially true for 

concrete which contains inclusions of various sizes (aggregate gradation) and of different volume 

fractions (see Fig. 3a). Furthermore, in the case of concrete one can only control the quantities of 

the different constituents, but after mixing and casting the actual locations of the aggregate particles 

is completely random, and it is possible for a given mix to have different microstructural details in 

specimens of the same size. This is especially true for the beam specimen size S1 with cross-

sectional dimensions only about 3 times the maximum aggregate size of dmax=32 mm. Thus, it is 

reasonable to expect a significantly higher scatter and difference between the internal length 

estimates based on curvature measurements and those based on deflection data for specimen size S1 

than for larger sizes S2 and S3. This can be attributed to the lack of the necessary material volume 

for the average prevalent microstructural details of the mix to be represented at any cross-section. It 

is true that gradient theories are continuum theories, in which although what constitutes a 

representative volume element (RVE) for the material is not directly addressed, it is always 

presupposed in the analysis. However, in terms of consistency of the theory the influence of the 

RVE on the gradient internal length is ‘’naturally’’ accounted for by the present model, since for 

decreasing the size the scatter in the predicted stiffness ratios is predicted to increase as well (see 

theoretical curves of Fig. 1). 
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The results for the CM (cement mortar) mix, which can be perceived as almost 

homogeneous mix relative to the other concrete mixes (see Fig. 3b), show that even the gradient 

model predictions for g = 1 mm does not deviate much from the classical elasticity predictions (see 

Fig. 1a). Furthermore, experimental elastic stiffness ratio values higher and lower than 1 with a 

scatter less than 10% were obtained for the majority of the cases. The CM mix was also the most 

brittle of all the mixes resulting in relatively smoother crack surfaces. For the concrete mixes, on the 

other hand, significantly rougher crack surfaces were obtained due to the presence of larger size 

aggregates. In addition, as the strength of the material increases the less torturous the crack surface 

is expected and more aggregates will fracture along the crack path (see Fig. 4). This is due to the 

fact that the matrix and inclusion heterogeneity is reduced and hence a crack will not be forced to 

change direction. Thus, the gradient internal length value should decrease with increasing 

compressive strength (or Young’s modulus of elasticity) and should decrease with decreasing 

average inclusion size5,7.  

 

              

              

                   (a)                                                     (b) 

Fig. 3 – Microstructure at different scales: (a) concrete, (b) cement mortar. 
 
 
 

10 mm 
10 mm 

2 mm 2 mm 
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                 (a)                                      (b)                                    (c)                                   (d)                   

Fig. 4 – Cross-sectional fracture surfaces 150x150 mm for specimen size S2 (a) mix LC, (b) mix 
NC, (c) mix MC1 and (d) mix MC2 (marked areas denote fractured aggregates).  
  

The average gradient internal length estimate considering all tested specimens for each mix 

is plotted versus the Young’s modulus of elasticity in Fig. 5. It is noted that estimates of the 

gradient internal length of up to 4.8 mm for size S1, 7.2 mm for size S2 and 9.6 mm for size S3 

correspond to a stiffness ratio of Kexp/Kcl=1.1. Therefore, also shown with dashed line in Fig. 5, is 

the average gradient internal length limit value of 7.2 mm which can be seen as a lower limit for the 

experimental findings for size effect in elasticity. Internal length estimates lower than this value can 

be interpreted as proof of insignificant size effect in elasticity and vice versa. A size effect in 

elasticity is found only for the concrete mixes and not for the cement mortar and similar internal 

length values were determined for all mixes independently of the use of either the midspan 

deflection or the axial strain (curvature) measurements. Concerning the magnitude of the internal 

length of the concrete mixes, it is found to decrease with increase of the Young’s modulus and is 

similar for mixes LC and NC. The first can be attributed to the decrease of the elastic mismatch of 

the mixes and the latter possibly indicates that above a specific inclusion to matrix stiffness ratio 

value, the internal length is less sensitive to further increasing this ratio (non-linear correlation 

between g and E for mixes with the same dmax).  
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Fig. 5 – Gradient internal length estimate, g, for each mix vs. the Young’s modulus of elasticity, E, 
based on the 4-point bending test results of geometrically similar beam specimens. 
 

Gradient internal length and average inclusion size 

The average size of the inclusions (avd ) for a concrete mix is difficult to define, because aggregates 

have irregular shapes and their average size can be easily up to 1.5 to 2 times the sieve opening used 

for gradation. In order to establish the average size of the material’s microstructure, selected 

specimens of all sizes for each mix were sawed perpendicular to the beam axis at random locations. 

The average inclusion size was estimated using two methods. The first was to average their 

maximum size identified in a cross-sectional cut. The second method accounted for the irregular 

shape of the aggregates and the estimation of the average inclusion size was based on an average 

aggregate area. The shortcoming of the latter is that a nominal shape for the aggregates must be 

assumed in order to transform an average equivalent aggregate area on the plane of the saw-cut to 

an average length. Truly, heterogeneity is three-dimensional8, while the above averaging methods 

are either 1D or 2D. The mapping of the microstructure for the MC1 mix for specimen size S1 

using both methods is shown in Fig. 6. For this particular specimen, the first method yielded a value 

of 9.12dav ≅ mm, whereas based on the second method the estimate depends on the assumed shape 

of the “equivalent” aggregate, i.e. for square-shaped aggregate, 1.8dav ≅ mm, for circular-shaped, 

2.9dav ≅  and for equilateral triangular-shaped 4.12dav ≅ mm. Given the angular shape of the 

aggregates used, the triangular shape seems more representative  

The results on aggregate measurements from a total of twelve (12) cross-sectional cuts of 

the tested beam specimens are shown in Table 6. It is noted that aggregates with a maximum 

LC NC 
MC1 

MC2 

CM Size effect limit, g = 7.2 mm 
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dimension of less than 5 mm were assumed to be part of the matrix material. It is obviously rather 

difficult to determine the average inclusion size for heterogeneous materials such as concrete. The 

measurements included in Table 6 suggest an “average” inclusion size ranging from 10 to 20 mm 

for all mixes, thus verifying that all concrete mixes have approximately the same microstructure 

(see also Tables V.1 and V.2). This “average” inclusion size range corresponds to a gradient 

internal length value of about 15 mm with a ± 30% scatter. The standard deviation for the internal 

length estimate based on the 4-point bending test results is 27.4%, 22.8%, 19.5% and 52.6% for 

mixes LC, NC, MC1 and MC2, respectively (see Fig. 14).  This can explain most of the scatter 

observed without considering the experimental errors and uncertainties accompanying the 

measurements. On the other hand, the apparent association of the measured average aggregate size 

with the gradient internal length estimates for the low- and normal-strength concrete mixes is far 

too good to be coincidental since the internal length value was found to be 3.47.15g ±=  and 

4.39.14 ±  mm for the LC and NC mixes, respectively. It is concluded that the gradient internal 

length is about equal to the average inclusion size of a composite material provided that the 

heterogeneity is high (high of matrix and inclusions mismatch) as in the low-strength concrete. For 

lower values of the elastic mismatch as in the case of the higher-strength concrete mixes (MC1 and 

MC2), the internal length estimate based on the experimental results for MC1 and MC2 is 

4.23.12g ±=  and 1.48.7 ±  mm, respectively.  

 

  
 
Fig. 6 – Mapping of the microstructure for estimating the “average” inclusion size in a 100 x100 
mm cross-sectional cut of size S1 specimen for mix MC1.  
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Table 6. Average inclusion size of the microstructure for particles larger than 5 mm. 

Mix 
avd (mm) (a)  avd (mm)  (b) 

S1 S2 S3  S1 S2 S3 

LC 15.3 17.3 18.6  13.8 16.6 16.8 
NC 11.8 14.7 16.8  11.5 13.7 15.4 

MC1 12.9 13.2 16.4  12.4 12.7 15.8 
MC2 13.5 14.7 16.0  12.5 14.2 15.0 

(a) 1D averaging 
(b) 2D averaging assuming equilateral triangle shape for aggregates 

 

4. CONCLUSIONS 

The size effect in elasticity was investigated using a Timoshenko dipolar elastic beam model6 and 

the experimental results of un-notched geometrically similar beams of five (5) cementitious mixes 

(four concrete mixes with dmax=32 mm and one cement mortar mix with dmax=1 mm) tested under 4-

point bending. The size effect was verified independently from both the experimental load versus 

midspan deflection and load versus midspan curvature data. The key findings of the present work 

can be summarized as follows:  

1. A stiffer response than that predicted by classical elasticity theory is measured for cementitious 

composites with fc up to 40 MPa in the flexural elastic response range of geometrically similar 

un-notched concrete beam specimens for specimen height to maximum aggregate size ratio 

values up to about 6.5. 

2. The internal length introduced by the gradient theory and described in this work is estimated to 

be about equal to the average inclusion size of the material’s microstructure for the lower-

strength mixes considered in this study, while it is equal to about one-half of the average 

inclusion size for the medium-strength mixes. It appears that the internal length parameter value 

for a truly high-strength concrete mix with a compressive strength of above 45 MPa will be 

even lower. 

3. The size effect in elasticity is affected by both the inclusion size and the elastic mismatch of the 

different phases of the composite, and it increases with increasing inclusion size and decreases 

with less elastic mismatch.  

 



SIZE EFFECT IN SEMI-BRITTLE MATERIALS AND GRADIENT THEORIES WITH APPLICATION TO CONCRETE 

 
Size effect of cementitious materials in inelasticity                                                                                      106 
 

CHAPTER VII 

SIZE EFFECT OF CEMENTITIOUS MATERIALS IN INELASTICI TY 

 

1. INTRODUCTION 

Size effect in elasticity was investigated and an estimate for the internal length (g=g0) for the mixes 

considered was obtained based on a proposed gradient elasticity model. The microstructure of 

cementitious materials undergoes significant changes due to microcracking in the inelastic range of 

response. This in the context of a continuum damage formulation is defined as a degradation of the 

elastic material properties (softening). Therefore, the initial value of the internal length (g0), should 

also be affected by this evolution of damage. Microcracking can be seen as a source of 

heterogeneity which augments any initial heterogeneity of the composite due to the presence of 

stiffer inclusions inside a matrix material (see chapter V). This implies that with increasing the 

accumulated microcracking activity (increasing accumulate damage), the initial value of the internal 

length g0 should increase. A thermodynamic formulation of the problem1 has shown this to be true.  

The present experimental results are compared against the predictions of a gradient elasto-

damage model1 for the case of beams under flexure. Damage characterization is based on an 

assumed uniaxial stress-strain law for each mix and  is defined in a classical manner through the use 

of a damage parameter D ( 1D0 ≤≤ ), with D=0 signifying elastic behavior and D=1 zero stress 

transfer capability (complete failure). The aim of this work is to examine whether sufficient 

experimental evidence can be found in support of the hypothesis that the internal length should 

increase with damage and furthermore to investigate its evolution law based on the experimental 

evidence.  

 

2. COMPARISON WITH THE PRESENT EXPERIMENTAL RESULTS  

 
Peak applied load 

The uniaxial stress-strain law parameters (see Section IV.4) in tension and compression used in the 

analysis for each mix are summarized in Table 1. The value of axial strain,cε , corresponding to the 

uniaxial compressive strength, was determined from the SG measurements in the uniaxial 

compression cylinder test. A strain value of about 0.0015 for the concrete and 0.0018 for the CM 

specimens was measured in the present tests. Although, SG measurements are probably highly 

unreliable during inelastic deformations, the consistency of the measurements appears convincing 
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for considering these values in the analysis.  Furthermore, based on the present uniaxial formulation 

(see Section IV.4), the predicted strain values for, ε0t and ε0c (threshold strain value that signifies the 

end of a perfectly elastic response), are also included in Table 1. It can be seen in Figs. V.4 and V.7, 

that similar strain values were measured by SG’s in the uniaxial cylinder compression and the split 

cylinder tests, respectively. 

 

Table 1 - Input material parameters for each cementicious mix. 

Mix 

 

Uniaxial stress-strain law parameters 

 

Young’s  
modulus Compression  Tension 

fc (a) εc ε0c (b) bc (b) f t (c)/ fsp 
(a) bt (c) ε0t (d)

  εt (d) E (a) 
(MPa) (x10-6) (x10-6)  - - - (x10-6) (x10-6) (GPa) 

LC 15.9 1500 250 1.643 0.80 4.5 70 110 25.0 
NC 20.5 1500 270 1.707 0.85 5.0 65 100 30.7 

MC1 34.7 1500 430 3.360 0.88 6.0 80 120 32.7 
MC2 38.0 1500 450 3.890 0.90 6.5 80 110 34.0 
CM (e) 32.4 1800 600 5.183 0.95 10 130 130 22.4 
(a) measured (see Table V.3).   
(b) Eq. (4) and assumed elastic limit at 0.4fc. 
(c) based on the 4-point bending peak load and corresponding midspan deflection.  
(d) Eq. (5) and assumed elastic limit at 0.8ft. 
(e) assumed elastic behavior up to peak stress ft ( tt0 ε=ε ). 

 

The measured peak applied load and midspan deflection for all sizes of each mix where used 

in this work in order to judge which values for the uniaxial tensile stress-strain law parameters bt 

and ft were more appropriate for each mix since direct uniaxial tensile tests were not performed. 

Concerning the details of the present model, the effect of bt and ft on the predicted peak load and 

midspan deflection can be decomposed as follows: lowering the value ft and keeping the same bt 

results in a decrease of the predicted δpeak and Ppeak, while increasing bt and keeping the same ft 

results in a decrease of the predicted δpeak and Ppeak.  

The measured peak load value for each beam size and mix is included together with the 

model predictions in Figs. 1(a) to 1(e). The scatter of the predicted peak load values corresponds to 

a %5±  deviation of the assumed tensile strength values. This deviation is not significant given the 

number of uncertainties of the assumption that the tensile strength is a material property2. It can be 

seen that with the exception of size S1 specimens of the NC and CM mixes, no size effect in the 

flexural strength is apparent since the predicted peak load values shown in Fig. 1, if computed as 

bh/P3N =σ , yield a size-independent flexural strength. Also, note that for all mixes specimens 

considered it is true that tspN ff >>σ , as expected3.  
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The measured peak load midspan deflections for all tested specimens are listed in Table 2. It 

can be seen that for mixes MC1 and MC2, an increase of the peak load with size is accompanied by 

an increase in the corresponding midspan deflection. This is not observed in mixes LC and NC, 

where the peak load of beam sizes S2 and S3 occurs at the same midspan deflection. A similar 

inconsistency is observed in the CM mix for beam sizes S1 and S2.  

 

Table 2 - Measured midspan deflection at peak load (values in mm). 

Mix size S1 size S2 size S3 

LC 0.035± 0.004 0.049± 0.010 0.049± 0.009 
NC 0.036± 0.003 0.042± 0.004 0.045± 0.008 

MC1 0.029± 0.005 0.046± 0.004 0.058± 0.004 
MC2 0.034± 0.005 0.048± 0.007 0.068± 0.002 

CM 0.053± 0.001 0.052± 0.003 0.072± 0.007 
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                                 (e)  
Fig. 1 – Peak load vs. size (experimental results and numerical predictions): (a) LC mix, (b) NC 
mix, (c) MC1 mix (d) MC2 mix and (e) CM mix. 
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Initial softening and large deflections 

The model predictions are compared with the experimental results in Figs. 2 to 5. The classical 

(local) and gradient (non-local) predictions are also shown. The non-local predictions were derived 

using the internal length parameters shown in Table 3. It can be seen that the non-local predictions 

are in better agreement with the experimental results than the local predictions, especially for large 

deflections. Furthermore, a significant scatter in the softening response is observed for the size S1 

specimens for all mixes. Regarding the CM mix, this is discussed in Section VII.4. 

 

Table 3 - Gradient internal length evolution law parameters. 

Non-local 
parameters 

Mix 

LC NC MC1 MC2 

Average 0g  
(mm) 

17 15 12.5 8.0  

n 0.90 1.30 1.65 2.00 
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Fig. 2 – Comparison of the experimental results with numerical predictions for the LC mix: (a) size 
S1, (b) size S2, (c) size S3 and (d) all sizes. 
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Fig. 3 – Comparison of the experimental results with numerical predictions for the NC mix: (a) size 
S1, (b) size S2, (c) size S3 and (d) all sizes. 
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Fig. 4 – Comparison of the experimental results with numerical predictions for the MC1 mix: (a) 
size S1, (b) size S2, (c) size S3 and (d) all sizes. 
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Fig. 5 – Comparison of the experimental results with numerical predictions for the MC2 mix: (a) 
size S1, (b) size S2, (c) size S3 and (d) all sizes.   
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Unloading path predictions  

Unloading/reloading and monotonic (no unloading) tests were performed with the majority of beam 

specimens being unloaded/reloaded at least three times at different load levels in the post-peak  

softening branch of response. The unloading path (P, δ) is depicted by an expression of the 

form, )(K)D1(PP 0 δ−δ−−= , where Pand δ  are the values on the load vs. midspan deflection 

softening branch where unloading starts, D  is the average cross-section damage parameter at point 

( P,δ ) and 0K  the initial flexural  stiffness for the uncracked concrete. Thus, the inelastic (plastic) 

midspan deflection upon complete unloading is: 

         0pl K)D1/(P −−δ=δ                                                                                                                (7) 

Three representative experimental P vs. δ curves including the unloading/reloading cycles 

for the MC2 mix, one for each beam size, are compared with the non-local predictions in Fig. 6. 

The analytical normalized applied load at unloading with respect to the peak load, peakP/P , vs. the 

normalized inelastic midspan deflection, δδ /pl , and midspan plastic strain, εε /pl , curves (see 

Section VII.5) are plotted in Figs. 7(a) to 7(d) together with the experimental results for all 

specimen sizes. Both local and non-local predictions are shown in Fig. 7. The unloading estimates 

depend on the initial flexural stiffness of the material, 0K , and the Pvs.δ  model predictions. These 

predictions are closer to the experimental findings when the influence of the gradient internal length 

is considered and this is reflected in the unloading values shown in Fig. 7.  
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                                                                     (c)  
Fig. 6 – Experimental unloading/reloading curves and non-local numerical predictions for the MC2 
mix: (a) beam size S1, (b) beam size S2, and (c) beam size S3.  
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                                 (c)                                                               (d)  
Fig. 7– Inelastic deformation after unloading (experimental results and numerical predictions): (a) 
LC mix, (b) NC mix, (c) MC1 mix and (d) MC2 mix.  

 

3. DISCUSSION OF RESULTS 

The assumption of an increasing internal length 

A measure of the difference between the local and non-local predictions is the ratio of predicted 

midspan deflection, δlocal/δnon-local, at a given load level in the post-peak softening branch of the 

flexural response. It can be seen in Figs. 2 to 5 that this ratio increases with increasing damage level 

or increasing midspan deflection. For example, for the beam specimen NC-S3 (see Fig. 3c), at load 

LC NC 

MC1 MC2 
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levels of 0.75Ppeak, 0.5Ppeak and 0.25Ppeak in the softening branch the predicted deflection ratio δlocal/ 

δnon-local is 1.47, 1.74 and 2.26, respectively. This is due to assuming an increasing internal length. 

On the other hand, the experimental results (see Figs. 2 to 5) clearly show that the accuracy of the 

local predictions deteriorates with increasing damage level and within the context of gradient theory 

this is naturally modeled by assuming progressively higher values for the stiffness associated with 

the strain gradient, that is dg/dD>0.  For the stiffness associated with the Cauchy strain it is true 

that4 0KdD/dK 0 <−=  (see also Fig. 6) with the difference between the local and non-local 

predictions being that cl,0K>grad,0K , if 0g  is not negligibly small, that is the rate of decrease of 

the elastic stiffness of the uncracked material is reduced. This “stiffening effect” is revealed upon 

unloading and it shows that the assumption of an exponential evolution law for the internal length is 

appropriate yielding predictions for all mixes closer to the present experimental results (see Fig. 7).    

 

Evolution of gradient internal length with damage 

The post-peak response in the 4-point bending tests for imposing midspan deflection at a constant 

rate, right after the peak applied load shows a rather sharp loss of load resistance with a subsequent 

continuously decreasing rate of loss of resistance. This behavior shows that the relation between 

damage and midspan deflection is non-linear. In the present strain gradient model, the relation 

between damage and predicted resisted load is not affected by the value of g since damage 

characterization is based on the Cauchy stresses and strains1 through Eq. (39) of Section IV.5. 

For 0g > , however, the predicted strains and hence the curvature and deflection values for the same 

load level are lower than the predictions of the local model. In addition, consistency of the theory 

requires the internal length evolution law to be a material property.  The cases of a constant internal 

length ( 0gg = ) and a linear evolution law ( )D1(gg 0 γ+= ) were examined but in both cases 

calibration of the associated parameters was not objective.  This lack of objectivity was remedied by 

assuming a nonlinear relation for the evolution law. 

Microcracking, which is the source of damage in cementitious materials, is influenced by 

the composite nature of the materials. Stress redistribution due to microcracking becomes more 

limited with decreasing brittleness because it is forced to occur in the matrix material. Naturally, 

localization of microcracking leads to major-crack development and, in that respect, brittleness is 

related also to the number and size of fractured aggregates along the fracture surface5-7 (see also Fig. 

VI.4). Furthermore, it has been shown that microcracking activity becomes more localized for 

increasing brittleness8 and this abrupt degradation of the material due to high localization of damage 
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naturally results to a decrease of its deformation capacity. Therefore, increasing brittleness should 

affect the rate of increase of the internal length with damage. The present findings support this 

hypothesis since the non-local parameter, n, for concretes with the same dmax was found to increases 

from 0.9 to 2 for concrete mixes with increasing brittleness (see Fig. 8).  

The evolution law assumed in this work, nD
0egg = , implies that if 0g0 = , then 0)D(g = . 

However, a different evolution law which allows for 0g =  at 0D =  might be applicable to high-

strength concrete and CM mix or concrete mixes with0g0 ≈ . In principle, absence of size effect in 

elasticity does not necessarily mean no size effect in inelasticity, since microcracking although 

influenced by the microstructure occurs even in nearly homogeneous quassi-brittle materials like 

CM. The present experimental results for CM are discussed and compared to the experimental 

findings of Gettu et al.9 for high-strength concrete in Section VII.4. Thus, for materials exhibiting 

practically no size effect in elasticity ( 0g0 = ), an evolution law of the form, n
1Dgg = , should result 

in  reasonable predictions.  
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Fig. 8 – (a) Normalized stress-strain law in tension, ( ) ( )t)/(1/)/(f/ ttttt

βεε+−βεεβ=σ and (b) 

Normalized internal length evolution vs. damage D for all mixes based on nD
0eg)D(g = for the 

local and non-local numerical predictions. 
 

4. HIGHLY BRITTLE MATERIALS 

It was not possible to capture the post-peak softening branch for any of the cement mortar beam 

specimens due to the extremely unstable crack growth typical of very brittle material. Furthermore, 

the experimental load vs. midspan deflection, shown in Fig. 9 with the model predictions, showed 

no sign of non-linearity up to the peak load for all beam sizes. Note that the local and non-local 
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predictions coincide up to the peak load since elastic behavior is assumed up to the peak tensile 

strength (see Table 1) and 0g is negligibly small for this mix.  
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Fig. 9 – Experimental load vs. midspan deflection curves for CM mix up to peak applied load with 
the numerical predictions. 
 

Gettu et al.9 investigated size effect in high strength concrete ( 85f c = MPa, 5.9dmax = mm) 

in notched beam specimens subjected to 3-point bending. They reported the midspan deflection 

recorded at the peak applied load (Ppeak) and at 0.1Ppeak in the softening branch of the response. The 

ratio of these two deflections can be seen as a measure of brittleness. The value of this ratio was 

found to be 63.012.2 ±  based on the test results of seven (7) specimens of various sizes. For 

comparison, the same ratio for the MC2 mix ( 38f c =  MPa, 32dmax =  mm) was 92.158.7 ± . If an 

evolution law of the form n
1Dgg =  with g1=54.6 mm and n=4 (or g0=1 mm and n=4 using Eq. 7) is 

assumed for the gradient internal length and applied to the cement mortar mix, then the local 

estimate of the deflection ratio is 6.80, whereas the non-local one is 3.09 (δlocal/ δnon-local = 2.2). 

Although the post-peak softening branch of the cement mortar beam specimens was not recorded, it 

is reasonable to assume that the brittleness of this material should be similar to the brittleness of 

high-strength concrete and in that respect the non-local model predictions appear to be more 

realistic.  

5. FLEXURAL STRAIN MEASUREMENTS 

Casting of beam specimens in plywood forms unavoidably creates a boundary layer whose 

properties can differ from the core material10.  However, it is shown that despite the objections11 
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concerning what is actually being measured on the surface of specimens with strain gages (SG’s) 

due to the complex nature of microcracking, some useful information can be extracted from the SG 

measurements.  

The tensile concrete strain measurements at the bottom side of the midspan cross-section for 

two LC-S2 specimens are shown in Fig. 10. It can be seen that the axial normal tensile strain value 

stops increasing before the peak load indicating that certain damage has already occurred before the 

peak load and that within the elastic deformation range every cross-section experiences a level of 

strain proportional to the applied load. However, once cracking occurs, tensile strain measurements 

cannot be fully trusted. 

The location of a major crack for un-notched specimens under 4-point bending cannot be 

predicted neither forced to occur at the midspan cross-section although in some specimens a crack 

developed nearly at the midspan section. When this occurs, the recordings of the SG’s placed on the 

top extreme compressive fiber of the midspan cross-section show interesting measurements and two 

examples are shown in Figs. 11 and 12.  

The strain values measured on the side face of the beam specimen at a distance of 2 cm from 

the top compressive fiber for two LC-S3 specimens are shown in Fig. 11. The following sequence 

of events is observed. Initially compressive strains increase linearly, i.e. the n.a. coincides with the 

centroid of the cross-section. In the post-peak softening branch, as a consequence of the n.a. shifting 

upwards towards the fiber where the SG was attached, the strains start to decrease. As damage 

increases, the measured strain value from compressive turns to tensile indicating that for 

P/Ppeak=0.33 and P/Ppeak=0.28 for LC-S3-01 and LC-S3-02, respectively, the n.a. should be 

located at z=80 mm, where the SG is placed. The stress distribution predicted by the present model 

corresponding to these load levels is shown in Fig. 11c. It can be seen that the location of n.a. is 

predicted very well.  

Representative SG measurements at the extreme top compressive fiber of an MC2-S3 beam 

specimen are shown in Fig. 12. It can be seen that upon complete unloading a permanent strain (εpl) 

is recorded which, however, is not due to inelastic deformations at the top fiber, since that part of 

the cross-section subjected to compressive stresses should remain elastic. Furthermore, as shown in 

Fig. 7, the normalized plastic midpsan deflections and strains after unloading are similar for each 

mix. The strains measurements confirm a “stiffer response” in the inelastic beam’s response range 

and this can be seen as experimental evidence that the adopted constitutive equation1, 

( ) )g(E)(D1),( xx,
2

xx, ε−εε−=εεσ  , is appropriate. 
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Fig. 10 – Measured longitudinal flexural strains at the extreme bottom (tensile) fiber for two size S2 
beams of the LC mix. 

SG “relaxing” 
SG signal lost 

LC-S2-01

SG

SG

LC-S2-02



SIZE EFFECT IN SEMI-BRITTLE MATERIALS AND GRADIENT THEORIES WITH APPLICATION TO CONCRETE 

 
Size effect of cementitious materials in inelasticity                                                                                      123 
 

 
 

 

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4

Midspan deflection (mm)

N
or

m
al

iz
ed

 lo
ad

, P
/P

pe
ak

LC-S3-01

LC-S3-02

   

0

0.2

0.4

0.6

0.8

1

-150-125-100-75-50-25025

Axial strain (x10 -6)
N

or
m

al
iz

ed
 lo

ad
, P

/P
pe

ak

LC-S3-01

LC-S3-02

 
(a) (b) 

           
-100

-80

-60

-40

-20

0

20

40

60

80

100

-5 -4 -3 -2 -1 0 1 2 3

Axial stress (MPa) z 
(m

m
)

LC-S3-01

LC-S3-02

  (c) 
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Fig. 12 (a) Normalized applied load vs. midspan deflection, (b) Normalized applied load vs. 
compressive strain at the extreme top fiber for specimen size S3 of MC2 mix. 

6. CONCLUSIONS 

The size effect in the inelastic flexural deformation range of the concrete beam specimens tested 

under 4-point bending was investigated for five (5) cementitious mixes (four concrete mixes with 

dmax=32 mm and one cement mortar mix with dmax=1 mm) by testing un-notched geometrically 

similar beams under midspan displacement control. The key finding of the present study can be 

summarized as follows: 

1. An increasing gradient internal length with damage yields non-local predictions that are in 

better agreement with the experimental results than the local predictions 

2. A non-linear (exponential) relation between damage and the gradient internal length was found 

to satisfy the objectivity requirement of a size-independent internal length evolution law. 

3. The brittleness level of the response for the cementicious mixes studied is found to affect the 

internal length rate of increase with damage, that is higher rates of increase of the internal length 

are found for higher brittleness levels.  
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CHAPTER VIII 

SIZE EFFECT ON STRENGTH FOR CEMENTITIOUS MATERIALS  

 

1. INTRODUCTION  

Size effect in cementitious materials does not manifest itself only in deformation related parameters 

such as stiffness but also in tensile or compressive strength such as peak load predictions. In 

Chapters VI and VII, a strain gradient formulation of the problem was used in order to account for 

the former, while predicting size effect in strength was not possible. The study on size effect in 

flexural strength is presented in detail in this chapter and the present experimental results are 

discussed. The fracture mechanics prediction of size effect in flexural strength for the case of un-

notched beam specimens and the statistical size effect are investigated and it is shown that they only 

partially explain the experimental results. The composite nature of concrete, the boundary layer 

effects and diffusion phenomena are also discussed and it is argued that the observed behavior can 

be attributed partially to these factors.  

2. SIZE EFFECT ON STRENGTH 

Size effect in flexural strength is not possible in the present formulation of the problem which relies 

on an assumed uniaxial stress-strain law for concrete in tension and compression. However, a size 

effect in flexural strength is apparent based on the experimental results for some cementitious mixes 

(see Fig. 1). These results are discussed and are compared with the predictions based on other 

possible sources of size effect 13,11,12.   

 

Statistical size effect 

The statistical size effect predicts13 that the flexural strength of concrete, σΝ  , is affected by size as 

m/nh- , which is 8/1h-  for  n=3 (3D similitude)3 and Weibull modulus m = 24 according to Bazant 

and Novak14.  

The measured flexural strength for all concrete mixes is plotted against the beam size in a 

logarithmic plot in Fig. 2. If statistical size effect was present, the slope of a linear approximation 

for the σΝ vs. size data plotted in a logarithmic plot should be equal to -3/24= -0.125. If the 

statistical size effect predictions are compared with the present experimental results it is concluded 

that the source of the deviations observed cannot be attributed only to statistical reasons and that the 

main source of the observed behavior is because other sources of size effect are present.  
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Fig. 1. Comparison of measured flexural strength values vs. size with the present model predictions: 
(a) mix LC, (b) mix NC, (c) mix MC1, (d) mix MC2, and (e) mix CM.  
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Fig. 2. Measured flexural strength values vs. beam size.  

Linear approximation results 

LC:   σΝ = -0.445 h 

NC:   σΝ = -0.827 h 

MC1: σΝ = -0.333 h 

MC2: σΝ = -0.347 h 

CM:   σΝ = -0.661 h 
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Specific fracture energy  

The fracture energy of concrete is typically obtained according to the RILEM method1 from a 3-

point bending test of beam specimens with specific dimensions depending on the maximum 

aggregate size, maxd . For a notch depth, a, and beam height, h, a minimum ratio, (h –a)/dmax= 3.125 

is specified. In the present study, for the un-notched concrete beam specimens tested under 4-point 

bending the ratio of h/dmax is equal to 3.125, 4.69, and 6.25 for beam size S1, S2 and S3, 

respectively.  

The fracture energy per unit fracture surface area is defined as A/WG FF = , where A is the 

nominal cross-sectional area of the beam specimen and FW  is the work supplied to statically 

fracture the beam specimen and is equal to2: 

qPu

u

0

qF WWP2d)(PW +=δ+δδ= ∫
δ

                                                                                        (1) 

where P is the applied load, qP  is the equivalent self-weight of the beam and fixtures supported by 

the beam anduδ the ultimate midspan deflection. The equivalent concentrated self-weight at each of 

the two load points, qL734.0Pq ≅  (q= uniformly distributed self-weight), is estimated by equating 

the midspan deflection for linear elastic behavior in the case of a simply supported beam subjected 

to a uniformly distributed load, q, to the midspan deflection under 4-point bending and of the same 

span. Note that, if the equivalent self-weight is determined based on equating the maximum bending 

moment at midspan an equivalent load, qL75.0Pq = , is found. It is noted that qP  for the un-notched 

beam specimens tested for this study, was less than 1% of the total peak applied load. For all beam 

specimens tested, the 4-point bending test was terminated in the softening branch region of response 

after at least 90% of the maximum load resistance was lost.  

The fracture energy per unit fracture surface area results for each concrete mix are plotted 

against the specimen size in Figs. 3(a) to 3(d). A significant but similar scatter is observed for all 

beam sizes and no trend of the reduced scatter is apparent with increasing size.  
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Fig. 3. Fracture energy GF for all beam sizes: (a) mix LC, (b) mix NC, (c) mix MC1 and (d) mix 
MC2.  

 
The average value of the specific fracture energy for each size is shown in Table 1. The 

average value of all tested specimens for each mix is assumed to be the fracture energy of the 

material and is used in the analysis. This average value for each mix, is similar to values reported by 

others4,5,8,9 for concrete mixes with mm20dmax  > .   

 

Table 1. Measured specific fracture energy values for all concrete mixes and beam sizes. 

Mix 

Fracture Energy, FG (J/m2) 

S1 S2 S3 
Average

FG  

LC 232± 65 276± 37 257± 53 255± 56 

NC -  (* ) 220± 35 186± 13 205± 32 

MC1 202± 39 218± 16 193± 31 207± 29 

MC2 212± 52 201± 38 225± 54 211± 47 

 (* ) not measured 
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The specific fracture energy and the characteristic length ( chl ) for each concrete mix are 

plotted against the compressive strength in Figs. 4(a) and 4(b), respectively. The so-called 

“characteristic” length of a cementicious material is defined as: 2
tFch f/EGl =  (E=Young’s 

modulus, tf =tensile strength and FG =fracture energy), which is a measure of the inverse of the 

material’s brittleness. Note that an increase of the compressive strength does not necessarily result 

in an increase of the specific fracture energy. This is due to the fact that the fracture energy can not 

distinguish the different effect on ductility and brittleness resulting from an increase of the 

compressive strength10. However, regarding the brittleness of the concrete mix (see Fig.4), the 

calibration of the softening parameter bt  yielded 4.5, 5, 6, 6.5 and 10 for mixes LC, NC, MC1, MC2 

and CM, respectively. Increasing the softening parameter is equivalent to assigning a steeper 

softening branch to the material’s uniaxial stress-strain law (see Chapter VII).  Furthermore, the 

non-local parameter, n, of the assumed gradient internal length evolution law was found to increase 

with increasing brittleness.  
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Fig. 4. Fracture parameters vs. compressive strength for mixes NC, LC, MC1 and MC2: (a) Specific 
fracture energy, GF (b) Characteristic length, lch.   

 

 
Fracture mechanics size effect on flexural strength 

Expression (2) 15 for the size effect on the modulus of rupture for the case of un-notched concrete 

beams based on a cohesive crack model predicts that: 
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+ϕ−

+ϕ=                                                                                   (2) 

where rf  is the modulus of rupture ( Nrf σ= ), tf  is the uniaxial tensile strength, 1=ϕ  for pure 

bending and 1l is a length parameter. The length parameter,1l , is linked to the characteristic 

length, chl , through the relation, ch01 lcl = , where the factor 0c  ranges from 0.4 to 0.6 and is 

associated with the softening branch of concrete3 . The steeper the initial softening after the peak 

load, the smaller the0c . It is assumed that 6.0c0 = for mixes LC and NC, and 5.0c0 = for mixes 

MC1 and MC2.  

The predictions based on Eq. (2) are plotted  with the present experimental results in Fig. 5. 

It is noted that concerning the tensile strength ft , the values shown in Table VII.1 are used.  
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Fig. 5. Normalized measured flexural strength values with respect to the assumed tensile strength of 
the concrete mixes vs. beam size compared to the cohesive crack model predictions. 
 

Fracture mechanics size effect on splitting strength 

For the case of the split cylinder test configuration used in this study (see Chapter V), the splitting 

to the uniaxial tensile strength ratio can be predicted by the expression (3)18 :  

1t

sp

l/D27.2673.6

1
0233.1

f

f

cyl +−
+=                                                                                    (3) 

Eq. (2) 
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where spf is the splitting strength andcylD is the cylinder diameter. It is noted that Eq. (3) is 

applicable for 10l/D4.0 1cyl ≤≤  and that it was shown18 to be in good agreement with the 

experimental results for cement mortar ( mm 5dmax = ) and granite specimens. 

The measured splitting strength (see Table V.3) to the assumed uniaxial tensile strength (see 

Table VII.1) ratios are shown together with Eq. (3) in Fig.6.  The predictions of Eq. (3) are good for 

the concrete mixes with 1cyl l/D <0.4 and the asymptotic behavior predicted is also realistic. 
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Fig. 5. Comparison of the measured splitting strength, fsp, to the calibrated uniaxial tensile strength, 
ft, ratio with the cohesive crack model predictions.   
 

Empirical prediction of size effect in flexural strength 

The CEB-FB model19code empirical expression (5) can predict the size effect on flexural strength:  

 
7.0

7.0

t

N

h06.01

h06.0

f +
=

σ
                                                                                                                  (5) 

where h is the beam height in mm. 

The predictions of Eq. (5) are plotted with the present experimental results in Fig. 6. It can 

be seen that correlation with the present experimental results is good for beam size S3 for all mixes 

and significant deviations are observed for sizes S1 and S2.    

Eq. (3) 
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Fig. 6. Comparison of the measured flexural strength, σΝ , and calibrated uniaxial tensile strength, 
ft, with the predictions of the CEB-FIB model code empirical Eq. (5).   
 

3. DISCUSSION  

The heterogeneity of a material and the relative strength of the different phases of a composite have 

been shown experimentally to affect the details of macrocrack propagation5-7. However, with regard 

to how microcracking may affect the measured peak load, the issue of propagation of a macrocrack 

offers little insight for an un-notched beam specimen. Impregnation tests have shown that 

microcracking in concrete exhibits some random characteristics that a major crack by definition can 

not include. Any effect microcracking will have on the peak load should be the same for all sizes 

according to the present model predictions, since damage at peak load is size-independent. 

However, lattice model simulations16 have shown that as the scale of concrete specimens is 

decreased, the detail of the microstructure can significantly affect the predicted peak load. This 

implies that as the macroscale of specimens decreases, the measured behavior will be less 

representative of the material. Note that in interpreting uniaxial tension tests for concrete, a ratio of 

h/dmax=3.75 was argued to be too small12.  

Other inherit uncertainties associated with casting and curing of the beam specimens like 

formation of a boundary layer with different properties17 and diffusion phenomena3 due to different 

cooling times of the core and surface material, can be important for the case of un-notched 

specimens and their influence cannot be neglected. For example, the reduced flexural strength of 

size S3 specimen of the MC1 mix could be attributed to induced microcracking due to hydration 

heat phenomena since relatively very small size effect is observed in sizes S1 and S2. Also, the very 

Eq. (5) 
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high flexural strength especially for size S1 for the CM mix (h/dmax=100) which showed no size 

effect for sizes S2 and S3, could be the result of a boundary layer rich in cement concentrated at the 

bottom of the specimen during casting. The same could be argued for the very high peak values 

measured in specimen size S1 of the NC mix.  Also, a size effect on flexural strength was not 

present for mix MC2. This might be seen as proof of the absence of the material’s size effect or as 

proof that the true material’s size effect is shadowed by other factors affecting the results. Finally, 

the size effect on flexural strength measured for the LC mix can be attributed to material’s size 

effect since a regression analysis of Bazant’s two parameter size effect law3 was possible only for 

this mix.  

A review of the present experimental results collectively does not reveal a single source of 

size effect which can be identified as the source of the observed behavior. However, considering the 

relatively small size range of specimens used in this study (1 : 1.5 : 2), other sources3 not associated 

with the material size effect on strength are expected to influence the measured peak load values.  
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MAIN CONCLUSIONS 

 

Given the increasing awareness regarding the usefulness of gradient elasticity theories and 

the significant amount of theoretical work that has been produced in the last decade or so, it is 

rather surprising that the discussion concerning the relationship between the internal length and the 

material’s microstructure is more or less limited usually to the vague statement that the internal 

length parameter of the material is a function of the dominant feature of the material’s 

microstructure. The main aim of this thesis was to investigate the physical correlation of this 

internal length assumed by dipolar elasticity to the material’s microstructure. To the author’s 

knowledge, the estimation of an evolving internal length parameter for cementitious materials based 

on experimental evidence has not been done in the past. For this to be attempted and in order to 

investigate a possible size effect in elasticity from flexure tests of concrete beams, the two classical 

material constants, the Young’s modulus and Poisson’s ratio, should be determined independently.  

A homogenization procedure applied to heterogeneous materials in this study showed that 

the internal length is best described as a measure of the heterogeneity which cannot be defined only 

in terms of the dominant feature of the microstructure (size of inclusions) but also of the 

matrix/inclusions elastic mismatch in the material. This was verified experimentally by testing 

concrete specimens of various mixes with similar microstructural details but with different 

matrix/aggregate elastic mismatch. The internal length estimate determined based on this model 

was found to decrease with decreasing level of elastic mismatch.  

 A gradient enhanced elasto-damage model applicable to the case of concrete beams under 

flexure, which relies heavily on the elasticity solution of the boundary value problem for the case of 

a dipolar elastic Timoshenko beam, is presented in this work. A closed-form solution of this 

problem and a methodology for solving more complex beam problems, such as indeterminate beam 

configurations, is described. This model reduces to the gradient Bernoulli-Euler solution and the 

classical Timoshenko solution if the necessary simplifications and limits are considered. The 

elasticity solution of the boundary value problem was used in conjunction with an assumed stress-

strain law applicable to semi-brittle materials in order to produce numerical predictions for the 

inelastic response of the beams tested. The model proposed is shown to lead to an objective (mesh-

independent) damage characterization.   

In this study, the presence of size effects in elasticity and inelasticity of cementitious 

materials was investigated based on midspan deflection and axial strain measurements of un-
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notched concrete beam specimens tested under true displacement-controlled 4-point bending for 

concrete with a compressive strength of up to 40 MPa. The geometrically similar un-notched beam 

specimens tested had a beam height to maximum aggregate size ratio of up to about 6.5. Since 

concrete possesses rather complex microstructural details due to the presence of different aggregate 

sizes with specific volume fractions (aggregate gradation), the internal length estimate for a given 

mix is compared with its average inclusion size, which describes its inherent heterogeneity. The 

average inclusion size for the concrete mixes considered in this study with a maximum aggregate 

size of 32 mm, obtained by mapping the actual microstructure on cross-sectional cuts of the 

specimens, ranged between 10 and 20 mm. An estimate of the internal length for a given concrete 

mix was obtained based on the applied load vs. midspan deflection and curvature measurements of 

the beam tests. A stiffer response than that predicted by the classical elasticity theory is measured in 

the flexural elastic response range of the beams tested. The proposed model predicted an internal 

length estimate of about 515±  mm in the case of the concrete mixes with a significant elastic 

mismatch for which cracking occurs predominantly in the matrix material (lower-strength concrete). 

It should be noted, that the same internal length estimate was obtained independently of the use of 

either the midspan deflection or the axial strain measurements. These concrete mixes are 

representative of a composite with inclusions much stiffer than the matrix material. It is important 

that the internal length parameter in this case appears to be practically equal to the average inclusion 

size of such a microstructure. On the other hand, lower internal length estimates of about 212±  and 

48± mm (about one-half the average inclusion size), were found for the two concrete mixes with a 

higher compressive strength. The lower internal length estimates for the higher-strength concrete is 

attributed to the lower elastic mismatch in the microstructure of these mixes, due to which a 

significant number of aggregates were fractured along the crack path. As expected, the size effect in 

elasticity is found to be insignificant in the case of the cement mortar mix with a maximum 

aggregate size of 1 mm, which can be viewed as a completely homogeneous material.  

 Furthermore, it is argued that microcracking in semi-brittle materials, which is the source of 

material softening, should also affect the initial internal length parameter value, g0, which is 

associated with the given heterogeneity of the material. If a microstructural internal length is related 

to the level of damage, a thermodynamic formulation of the problem showed that this length should 

be either increasing or remaining constant with damage. An experimental investigation of the 

particular form of the gradient internal length evolution law verified this theoretical finding since it 

was shown that an increasing gradient internal length with damage yields non-local predictions that 
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are in better agreement with the experimental results than the local predictions. Finally, a non-linear 

(exponential) relationship between damage and the gradient internal length was found to satisfy the 

objectivity requirement of a size-independent internal length evolution law for the cementicious 

mixes considered in this study. Also, it was found that the rate of increase in the internal length 

value with damage is increasing with increasing brittleness level of response.  
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