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CHAPTER |
INTRODUCTION

1. SCOPE
Throughout this work a simplified gradient modetiwone length parameter, which is the simplest
case of Mindlin’'s Form Il strain gradient elastctheory, is employed. This automatically limits
the range of considered materials to initially ieptc. The aim of the present thesis is to verify
experimentally the theoretical findings for a seraé problems associated with this gradient model
and its application to the specific case of senttlbrmaterials such as concrete.

2. MICROSTRUCTURE AND DIPOLAR ELASTICITY

All materials have a microstructure which is visikinder specific magnification. The influence of
microstructure on the macrostructural responsgpisally neglected under the assumption that the
material is homogenous. Isotropic homogeneous mieare defined by two material constants,
the Young’s modulus and Poisson’s ratio and thesistants are determined experimentally from
uniaxial tests. However, in many cases when clakslasticity predictions are applied to structural
problems, a stiffer response than the one prediayeciassical elasticity depending on the member
size, is measured. A possible physically justigabkplanation for the source of this size effect is
the existence of a microstructure which has nonkssounted in the analysis. Gradient theories
attempt to account for the presence of a microgtracby assuming that there is an additional
material constant with dimensions of length.

The simplest definition of a composite materialthat of inclusions embedded inside a
matrix material. Knowledge of the properties of thiferent phases and of the inclusion volume
fraction is the minimum input information requirdd model the composite microstructure.
Therefore the first issue to be addresses is h@amgds in the microstructure of a composite affect
the internal length assumed by gradient theoribss iB explored in Chapter Il. It is apparent from
these theoretical results that the internal lemgthest viewed as a measure of the heterogeneity of
the composite and that heterogeneity can not bplgidefined by the size of inclusions. It is the
inclusions size and elastic mismatch combined dieétrmine the magnitude of heterogeneity of a
composite.

Concrete is a multi-scale material. At the microenedcale (18 m) cement grains are

distinguished and in its hardened state cementutaland silicate hydrates as well as pores are
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formed. At the meso-scale (30n), sand and aggregate particles can be distingdiand concrete
can be viewed as a composite consisting of a mataterial and inclusions. The laboratory scale
(10'° m) is the beginning of the macro-scale concerrsitngctural use of concrete. At the meso-
scale, concrete is a 3-phase material consistirtbeohardened cement paste (hcp), the aggregates
and the interfacial transition zone (ITZ) betwelea hcp and the aggregates. The thickness of ITZ is
typically 5Qum but despite its small dimensions, it greatly @femicro-stress concentration
because it is the weakest link of the bond betwkematrix material and the aggregates. However,
the particle structure is the most important atrtfeso-scale. At the macro-scale of any structural
member, at which material constants are assumexder to model its structural response, the
material is by definition assumed to be a continu@radient theories do not depart from this
assumption, since stresses and strains continle tepecified at every material point. Gradient
theories are continuum theories which introducedudtional constant associated with presence of
heterogeneity in what otherwise is assumed to henaogeneous material. The fact that the matrix
material and the inclusions have different properis the source of heterogeneity. On that réspec
concrete can be viewed as a model material in aodstudy size effect in elasticity.

Concrete’s heterogeneity is three dimensional amdtains various size aggregates of
irregular shapes in different volume fractions. Ekgnits composite nature deviates significantly
from the idealized case of either circular or sp@rnclusions. However, two aspects of its mix
proportions are of particular interest. One isreximum aggregate size and the other the strength
of the matrix material which can be increased bguoing the water-to-cement ratio. In the
experimental program undertaken, the concrete misedsl had the same maximum aggregate and
approximately the same volume fraction of aggregdet the relative stiffness of matrix and
inclusions varied. As a result, in some mixes crpobpagated bypassing the aggregates and in
others aggregate fracture occurred along the grattk Cement mortar was also employed mainly

for comparison purposes since this material cavidsged as completely homogeneous.
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Cementitious composites:

(a) Concrete (heterogeneous) with
max. aggregate sizeng=32 mm.

(b) Cement mortar (homogeneous
with max. aggregate size.g=1 mm

Microstructure details:

(c) Concrete: presence of ITZ at the
interface of hydrated cement paste
and aggregate

(d) Cement mortar: composite
nature becomes visible at higher
magnification

(d)

The internal length is a function of the microstuwme but the microstructure’s influence is
manifested if triggered by the applied stress. Téidue to the fact that the internal length, g, is
introduced in association with the gradient ofgtrain:

ge=e-0°V’
Therefore, in the absence of gradient as for examplthe case of uniaxial stresses, even a
heterogeneous material is predicted to behave lasr@geneous one. This allows extracting the
two classical material constants from a uniaxiat &nd use flexure tests, where the gradient is
significant, to quantify the internal length.

In order to estimate the internal length from élex experiments, the associated structural
problem must be solved using gradient elasticitysTs done in Chapter Ill. Naturally, any solution
to a boundary value problem relies on the corrboice of boundary conditions. Gradient theories
are essentially higher-order theories in the sehatthey extend the continuity assumed to the
second spatial derivative of the strain. This esi@m of continuity introduced through the
constitutive equation results in additional bouydasnditions whose physical interpretation is less
straightforward. However, there is way to bypase #mbiguity of the non-local boundary
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conditions since in all cases for a zero valuehef internal length the classical result should be
recovered. This must be true for all the classkiaématic variables and not just the deflections
since a certain set of non-local boundary condstioan yield the correct asymptotic behavior for
deflections but not for the slope or curvature.que set of boundary conditions exist which has
the correct asymptotic behavior for all classigakknatic variables.

The above discussion is the basis for the studsizef effects in elasticity for the concrete

mixes considered, which is described in Chapter VI.

3. MICROCRACKING AND DAMAGE
Material’'s response can be described as the irotial where once the excitation is removed the
deformation disappears (elasticity) and anotherwhere upon removal of the cause, the material
does not return to its original state (inelasticityemi-brittle materials exhibit microcracking enc
their elastic limit is exceeded. A macrocrack isnfed after microcracking has been localized but
microcracking will continue to occur while the macrack propagates. Microcracking and
macrocracks should not be confused. Microcrackmgharacterized by randomness which by
definition is not the case for a macrocrack. Micemking is the source of softening whereas a
macrocrack represents points with zero-transferalodipy. Essentially, a macrocrack refers to
complete damage at a material point whereas migc&org refers to softening experienced at this
point. During softening, stresses and strains oastito be specified at each material point and this
is done by assuming a stress-strain law for theenadt However, damage also implies that the
initial stiffness is reduced. This is revealed upmitoading once the elastic limit has been exceeded
The initial stiffness of an uncracked material iways greater than that of unloading-reloading.
Therefore, since damage can be viewed as a proagesk reduces the initial stiffness it is linked
with elasticity by definition.

The tensile strength of concrete is far less tliancompressive strength, hence failure
initiates from tensile stresses when plain concietested under flexure. Of course, it is a known
fact that failure also occurs under a compressikess which is in apparent contradiction to the
second law of thermodynamics that requires thatksrapen only under tension. However, this can
be explained if the composite nature of concretedssidered since even under compressive
stresses, a composite with inclusions may devetogile stresses around these inclusions. The
composite nature of concrete also affects macr&cpaopagation. If the inclusions’ response is
stiffer than that of the matrix material failurelmoccur there, hence the crack path becomes more
tortuous. The more brittle the composite, the besgious the crack path would be. On the other
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hand, the term semi-brittle refers to the fact twatcrete is not perfectly brittle, that is, it m@ins

its stress bearing capacity to some extend afeep#ak stress is reached. This softening behavior
(microcracking) is also affected by the degree efefogeneity of the material. The so-called
fracture process zone (FPZ) which refers to theabegf localization of microcracking increases as
inclusion dimensions increase. If inclusions argligély small as for example for cement mortar,

the size of FPZ should be much smaller than thenogmsured in concrete.

Microcracking :

Crack patterns from
fluorescent epoxy
impregnation tests on cube
specimens under uniaxial
compression. Cut shown is:

(a) parallel and
(b) perpendicular to the
direction of loading.

(Photography RA Vonk. Reprinted from
the book “Fracture Processes of
Concrete™

(a) (b)

The irreversible character of damage implies thatinitial heterogeneity of a composite is altered.
Homogenization procedures have been applied toogracked continuums and it has been found
that the stiffness associated with the Cauchy rerdiocal stiffness) reduces but the stiffness
associated with the gradient of the strains (na@alstiffness) increases with increasing degree of
microcracking. In the context of gradient theorigss implies that the initial value of an internal
length based on the elastic response of the masd@ld increase with increasing damage. A
thermodynamic proof for this is included in Chapt®f. This also implies that damage
characterization should be local, that is a lo@bmeter should be used to determine the level of
damage. The alternative choice of using a non-lpeshmeter such as the total strain or the total
stress within the context of gradient theories bagn shown to lead to incorrect damage
characterization.

The experimental program undertaken in this wosk a@ims to address the issue of how the
internal length increases with damage or in otherd& which is the particular form of the
relationship between damage and the internal lemgthexponential evolution law is proposed of

the form:
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9= ge"
where g, = initial value of the internal length (elasticityf) = damage parameteo £D <1) and
n = positive constant.

The choice for this particular expression for thieletion law of the gradient internal length
is rooted in the correlation between damage ankbctedn. The inclusion of an internal length in
the formulation affects the predicted deflectioraagiven load level. The relation of damage and
deflection increase resembles that of an exporldatiawhereas the relation between damage and
load decrease is approximately linear. Furthermsirege the initial value of the internal length is
determined from the elastic response of the matehiare is only one parameter to be calibrated
based on the experimental results in the inelasgioon. This evolution law is applied in order to
study size effects in the inelastic range of theccete mixes considered in Chapter VII. It is shown
that with increasing brittleness of the compogiténcreases. Note that the opposite is true for the
initial value of the internal length, since as thaterial becomes more homogeneous the size effect
in elasticity would be negligibly small. Correlatidoetween the brittleness of the concrete mixes

and evolution law parameter n is also discussédhiapter VII.

4. EXPERIMENTAL PROGRAM
All experiments were carried out in the Laboratarfy “Reinforced Concrete Technology and
Structures” of the Civil Engineering Departmenttla® University of Thessaly. However, not all
experiments are reported in the present thesisettrpntal results on un-notched fiber-reinforced
concrete and notched medium-strength concrete lspatimens are not within the scope of this
work.

Experimental results on un-notched low-, normald anedium-strength plain concrete and
cement mortar beam specimens are presented. Typee of tests were carried out for each mix:
uniaxial compression on cylinder and cube specimgplgting on cylinder specimens and 4-point
bending on un-notched plain concrete beam speciwiedslifferent sizes with complete geometric
similarity. The classical material properties ofufig’s modulus and Poisson’s ratio were measured
in both the uniaxial and split cylinder tests basedstrain gage (SG) measurements. Typically,
concrete is assumed to be initially isotropic ah thypothesis was verified by comparing the
Young’'s modulus estimates based on the uniaxialpcession tests with the Young’'s modulus
estimated values in the split cylinder tests. Simvalues where obtained for each cementicious mix
(see Chapter V).
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The geometrically similar un-notched beam specsneith sizes of 100x100x300 (width x
height x span) mm, 150x150x450 mm and 200x200x600were tested under midspan deflection
control. SG’s were used extensively also in theutal tests. The aim was to determine the midspan
curvature and deflection through strain measuresnantl, independently verify any size effect in
elasticity. Strain gradient theories are able ot a size effect in the stiffness because esdignt
they assume that for a given level of stress thieesponding strain is less than that predicted by
classical elasticity. Based on the measured stifsponse compared to the classical elasticity
predictions (in terms of both stiffness and curv@tuan internal length estimate for each mix was
determined. It is also shown that the use of S@s gield meaningful measurements for the
inelastic response, as well. SG measurements danghtral axis location at high damage levels and
plastic strains measured upon unloading were cozdpaith the proposed model predictions and
good agreement was found. This discussion is predem Chapters VI and VII.

In order to establish the relationship betweenithernal length predictions based on the
flexural test results and the microstructural detaf the concrete mix, selected beam specimens
were sawed and their microstructure was mapped.aithewas to estimate the average inclusion
size of the given concrete mix. Gradient theori¢®enapt to account for the presence of
microstructure in an average sense since they ntloeeletail of the microstructure through a single
length scale parameter. The internal length vabneéch cementitious mix was compared with the

average inclusion size estimate in Chapter VI.
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Experimental program

(a) 4-point bending specimen and testing setup
(b) specimen casting

(¢) uniaxial cube compression test

(d) uniaxial cylinder compression test

(e) split cylinder test

hasesassssiss

77777

5. NUMERICAL PREDICTIONS
Experimental results are compared with numericadiotions in Chapter VII. Under 4-point

bending, the middle part of the beam experiences panding and, therefore, an assumed stress-

strain law in tension and compression is sufficifentdamage characterization in this region. Since

the tensile strength of concrete is far less tkmonampressive strength, the compressive zoneeof th
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cross-section under pure bending remains elagtie.stress-strain law chosen, besides the value for
the Young’'s modulus which is measured experimgntakquires an assumed uniaxial tensile
strength and a positive non-dimensional parameténidg the degree of softening. The flexural
strength predictions under 4-point bending and dbeesponding deflections are influenced by
these two parameters. The split cylinder tests prawide indicative values of the direct tensile
strength. Thus, the uniaxial stress-strain law wsas calibrated based on the experimental data of
the 4-point bending tests performed in this study.

Materials exhibiting softening:
1t--- ; —__ Concrete Assumed stress-strain law in tension

| for the concrete and cement mortar
\ Cement mortar . .

- | mixes (Popovics, 1973):

B 081 !
|

- |

(] |

2 ‘ Low-strength /

et | ! (e} ele

7 06 } Normal-strength o__ Bele) ;

o \ f, B,—1+(ele)™

(O] | H

N | Medium-strength

= 0.4 1 |

£ |

o |
|

< 021 |
|
1

0 ‘ : ‘ : ‘
0.0 0.5 1.0 1.5 2.0 25 3.0

Normalized strain €/«

The constitutive law in the form of the expressia, = (B, (¢/,))/(B, —1+(c/5)" ),

proposed by Popovics (1973) for numerical modeliigthe uniaxial stress-strain response in
tension or compression of cementitious materiagdsyery versatile since by altering a single
parameter one can model a response from perfeqtiielio perfectly plastic. In other words, it can

model cement mortar, concrete and fiber-reinforoedcrete, thus, covering the entire range from
very brittle to very ductile softening materials. éxamining inelasticity of cementitious materials
this allows for a unified treatment of the problem.

Once a stress-strain law is assigned, through alsiiteration procedure the moment vs.
curvature prediction for a cross-section can berdehed. Applied bending moment is translated
into applied force through equilibrium and curvatus translated into deflection by using a
kinematic relation. The kinematic relation can txamed in closed-form from the solution of the
boundary value problem in elasticity. The influence the internal length on the classical

predictions is then considered by scaling the dureaand by using the kinematic relation furnished
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by the gradient solution to the same boundary vptoblem. The numerical predictions essentially
rely on the assumed stress-strain law and on théiegrt solution of the structural problem of 4-
point bending. The predictions of the local and-taal model are numerical in nature but closed-

form solutions are used and their objectivity ismd@strated in Chapter IV.

6. SIZE EFFECTS
Size effect in cementitious materials does not feanitself only in deformation-related issues such
as stiffness but also in strength-related sucheasifal strength. The adopted strain gradient theor
with a minus sign in the strain gradient cannotimtesize effect in strength. Gradient theorieshwit
a plus sign in the gradient have been shown toigireize effect in strength but there is very dittl
physical justification for these models and furthere when applied to elasticity, they predict the
opposite of what is observed experimentally in cosijes with inclusions stiffer than the matrix
material. The issue of how the present strain gradnodel can be improved with the inclusion of
an additional constitutive parameter in order tabke to predict size effect in the flexural strgng
as well is beyond the scope of this thesis. Ifghaciple of superposition is applicable in thisea
it can be said that the present findings concertiieginternal length, g, should still hold true.eTh
problem would then simplify to the experimentalilzadtion of this 4' constitutive parameter. This
4™ constant could be physically associated with nsicess concentration due to the composite
nature of the material since as the scale decretheegedistribution of microstresses in the
composite becomes more limited.

The experimental program undertaken in this warluded specimen sizes of a rather
limited scale range (1:1.5:2) concerning the studysize effects in the flexural strength.
Nevertheless, the present experimental resultée@nril strength are discussed in detail in Chapter
VIII. Fracture mechanics and statistical size dfeare the two main sources of size effect in
strength which has been shown experimentally taroddowever, their predictions do not offer a
satisfactory explanation of the observed behavitverwthe present experimental results are
reviewed. Size effect in strength is closely relateth the fact that a tensile strength is assigioed
the material. When un-notched specimens are tégilade initiates at a location which is known to
differ from the bulk material. The so-called waffeet is unavoidable since concrete is cast in
plywood molds and the material in close proximdytie molds is altered to some effect. This is not
accounted in the present study since a singlessstesin law is assumed for each mix but its

presence may explain some of the experimentalrfgedi
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CHAPTER Il
STRAIN GRADIENT LENGTH VIA HOMOGENIZATION OF

HETEROGENEOUS ELASTIC MATERIALS

1. INTRODUCTION
The novelty of gradient elasticity theories is thelusion of an intrinsic length parameter or intar
length in the constitutive equations that desctifbe mechanical behavior of the material. The
inclusion of this parameter allows these theor®xplain the size effect that has been shown
experimentally to exist in heterogeneous materi@lse two simplest and well studied gradient
elasticity theories are the couple stress elagtigit Cosserat theory/} and the dipolar elasticity
theory (or grade-two theordJ The main difference between these two theoriethas in the
assumed strain-energy density function the firsbeistes the internal length with the gradienthef t
rotations, whereas the second with the gradietheftrains. However, in both theories the internal
length is associated with the microstresses thatdawveloped due to the microstructure of the
material. In the present work, the simplest possttipolar model of just one additional length
parameter is employed. This model based on a amgtheparameter appears to be adequate for
predicting size effects in elasticity while it iffatult to verify experimentally models incorponag
more than one internal length parameters.

A typical composite material consists of a matnmrd anclusions. The macroscopic material
properties of the composite depend on the indiVigwaperties of these two phases. The aim of
homogenization is to replace the composite matesidh an equivalent material of uniform
macroscopic properties. Micro-mechanical modelssHaeen developed for both cases of particulate
and fiber-reinforcement. Among the many homogeioratethods that have been proposed are the
Mori-Tanaka methotl the Self Consistent metHod the Generalized Self Consistent methadd
the Differential methotf!®. All these methods aim at deriving the materialpgrties of elasticity
which in the case of isotropy are the modulus abtity and the Poisson’s ratio. However, when
gradient theories are considered, an additionaénahfparameter, the internal length, must be added
Nevertheless, the same strategy of homogenizaaonbe used to yield an estimate for this new
parameter.

In the present work, the elastic energy of the rogeneous Cauchy-elastic material will be

compared with that of the homogeneous strain gnadikastic material and the characteristic length

Strain gradient length via homogenization of hegereous elastic materials 11
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will be estimated as function of the inclusion tedivolume fraction and elastic constants. The

analysis will be limited to the two-dimensional (P&ase of circular inclusions.

2. EFFECTIVE MATERIAL PROPERTIES OF TRANSVERSELY IS OTROPIC
MATERIALS
The following relationships for the effective ma&tproperties are derived with the Generalized Sel
Consistent method for the specific case of cylicalrinclusions, as predicted in [11]. It is notbdtt
subscript m stands for the heterogeneous matrigenmatnd subscript i stands for the inclusion. The
symbols without subscript are the effective matgui@perties of the homogeneous material. The
overall elastic behavior is that of a transversshtropic homogeneous material, requiring five
material constants with two of them, (v) describing the isotropy of the plane,(x3) which is of

interest in this thesis work.

The in-plane shear modulys,is given by:

A(LJ + 2B(lj +C=0 (1)
T, T,

A= 3c(1—c)2(ﬁ—1j[i+nij
um }’lm
J{i N, +N,N, _(inm - nijcs}{cnm(i_lj_(inm +1ﬂ
Hm Hm Hum Hm

B:—ac(l—c)z(i—lj(imij )

with

Hm Hm

+1{nmi+(i—ljc+l}{(nm —1)(£+nij—z(inm —nijcﬂ
2 K M Hm Hm

+E(nm +1)(£—1j{i+ n, +(£nm - nijcﬂ

2 K K Hm
C= 3c(1—c)2(i—1j(i+ni]
Hm Hm
+{nmi+(i—1jc+l}[i+ni +(inm—nijc3}
TR T M Hon

3)

Strain gradient length via homogenization of hegereous elastic materials 12
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where c is the volume fraction of the inclusiond amlenotes the Poisson’s ratio.
The in-plane bulk modulus K is:

Hm c
K=K _+-—"+ , 4

+
Ki_Km+(1/3)(ui_um) Km+(4/3)um

the axial modulus £(in the x direction, normal to the ¢xxs) plane) is:

46— C)(v, ~ V) My

E,=cE +(Q-CE,_, + : (5)
Hm Hm
1-¢) ™ |4g - Fm 14
( )(Ki+ui/3j C(Km"‘“m/gj
the axial Poisson'’s ratig is:
u u
cdl-c)(v, —v m — m
( it m){Km‘*‘Hm/g’ Ki+ui/3j|
v,=¢cv, + (-0, + (6)
Hm Hm
1-c + +1
ool s
and the in-plane Poisson’s ratig,is given by?*
voKowr )
K+wyu
where
2
v _ 14 KV (8)
El

The above solution can be simplified for the twaexte cases of rigid inclusions and porous
materials. The limiting case of a porous material b& derived directly from the general case
represented by Egs. (1) to (8), if weset v, =0.

For the case of fibers much stiffer than the mawoidy the coefficients of th@, terms in A,

B, C of Eq. (2) need be retained with the other gpemanishing small. Hence, the A, B, C
coefficients, when inclusions are much stiffer thiag matrix, take the form:

A=3%(-c)?+n_*@1-c*)(c-1)

B=-3(l-¢)?+(1/2)(n,, +c)n, -1-2n_c*) + (c/2)(n,, +D@A+n, c°) (9)

C=3x@-c)*+(n, +c)@+n,c’)

If u, > o is assumed, the rest of the solution for the c&smid inclusions is found and Egs. (4) to

(8) are modified, accordingly.

Strain gradient length via homogenization of hegereous elastic materials 13
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These results have been shown to give good essmate only for the case of dilute
composition but also for the limiting case of fplicking of the inclusion phase © 1). In addition
to the physical consistency of the results, it $thdae noted that the Generalized Self Consistent
method is the only complete, exact, closed-fornutsmh for the 2D case of cylindrical inclusions.

The normalized composite shear modulus ratigy,,, for elastic cylindrical inclusions for
inclusion to matrix shear modulus ratio values mggrom 1.5 to 15 is shown in Fig. 1. The
assumed matrix and inclusion Poisson’s ratio focades considered are 0.2 and 0.25, respectively.

The limiting cases of rigid fibers and porous miaierare shown in a semi-logarithmic plot in
Fig. 2 and Fig. 3, respectively. Both results dep@weakly) only on the Poisson’s ratio of the matri
and four cases are plotted corresponding to m&woisson’s ratios of 0.1, 0.15, 0.2 and 0.25. A
comparison between three cases with a matrix Possatio of 0.2 is shown in Fig. 4. The shear

modulus ratio for the elastic inclusion casg;ifu,, =2. The rigid inclusion and the void solution

are upper and lower bounds for/p,,, respectively.

5.0

pers] Ml =15 y
4l=2
i ——
_____ 4 =5 s ,
as{ T 4! =10 2
TTTT B/ H,=15

Shear moduli ratio, p/pm
(4]
[=]

Fig. 1. Effective shear modulus ratios for the case oftiglaylindrical inclusions for inclusion to
matrix shear modulus ratio valugs,/p = 1.5, 2, 2.5, 5, 10, 15 (Poisson’s ratio for matrj = 0.2,

and for inclusions;, =

025

50%

Composition, ¢

B0%

%

90%

100%

Strain gradient length via homogenization of hegereous elastic materials

14



SIZE EFFECT IN SEMI-BRITTLE MATERIALS AND GRADIENT THE®IES WITH APPLICATION TO CONCRETE

100

Shear moduli ratio, p/pm
S
N
NI
\y

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Composition, ¢

Fig. 2. Effective shear modulus ratio for the case of djiical inclusions much stiffer than the

matrix for matrix Poisson’s ratio values, = 0.1, 0.15, 0.2, and 0.25.
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Porosity, ¢

Fig. 3. Effective shear modulus ratio for the case of apsmaterial i, = v, =0) for matrix

Poisson’s ratio values,, =

0.D.15, 0.2, and 0.25.
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3.0
— — ——Rigid inclusion
2591 Elastic inclusion ////
---—- Void ////
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= 2.0 .
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=) //////
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G 10 f=T=s

05 e

0.0 ‘ | | |

0% 10% 20% 30% 40% 50%

Volume fraction, ¢

Fig. 4. Comparison between the cases of a porous andcetaatiix material with rigid or elastic
inclusions , /p,, =2) forv,, = 02.

3. CLASSICAL ELASTICITY SOLUTIONS
The solution of a circular ring under plain stramnditions subjected to uniform pressure p applied
at the outer boundary=b and to uniform pressure q applied at the innendawy r = a is'> 4 (see
Fig. 5):
- 1
" 2u,(b*-2a%)
u, =0

2.2 1 _ 2 _nph?
{ba(q p)_+(@-2v, )@a’ ~pb )f} (10)

(p—q)b’a® 1  ga’—pb?®
T 7 b
(p-g)b*a® 1  ga’-pb’
N b? — a2 r_2+ b? — a2 (11)

Ogo =
G,=0
where u, is the radial displacements,, the radial stress,,the hoop stress;,y the Poisson’s ratio

and p, the shear modulus of elasticity. Subscripts r &ndenote radial and circumferential

directions of the ring.

The elastic energy is:

Strain gradient length via homogenization of hegereous elastic materials 16
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b
U, =21 f%(c Gy )dr (12)

I‘I’gl‘l’
The expressions for the strains can be found dyréaim those of the stresses assuming

plane-strain constitutive equatidfsThe constitutive expressions of the non-zerdrstrare:
1

€ :2_{(1_V)Grr _VGGG}
€go = 2_{(1_\/)099 _VGrr}
W m

Fig. 5. Circular ring subjected to uniform external ancimngl pressure.

Rigid inclusions

The above general solution of the annulus problambe modified to yield the solution for the case
of a rigid inclusion of radiug. In this case, the displacements at the inner daynmust be zero. By
using (10) and setting (r =a) =0, we obtain a relation between the inner and opitessures that
satisfies this condition. The inner pressure q rbest

20°@-v,,)p

T brat-2v,) (14)

If we substitute this specific value of g backi@)and (11), we will have the solution for the
problem of a circular ring with a rigid inclusion.
The elastic energydd would then be:

_n(l-opa’l-v, —2v,°)
2u,(1+v, )c@+c—2cv,)

(15)

clh

where c is the composition value equakte a* /b for the 2D case.

We can rearrange (15) to become:

Strain gradient length via homogenization of hegereous elastic materials 17
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n(l— C)pzfz(?j A-v, —2v, %)

Ucl1:
Zum (1+Vm)(1+c_ 2Cvm)

=nx€2xp2xfl(um,vm,c,%) (16)

wheret is an internal length used to normalize the exgioesof elastic energy. The inclusion of this
parameter might appear unnecessary at the momace #i does not affect the solution but its
usefulness will become apparent in Section 11.4

The first derivative ofu, at r = bis:

ou |  _  (@Q+opd-2v,) _ o
o, 2u,@+c@-2v,) "

(17)

Porous material (voids)
The general solution for the case of pores is tyreabtained from the general results of (10) and

(11), if we setj=0. The elastic energy is then:

_ap’b’(L+c-2v,,)

U 18
cl2 2Hm (1_ C) ( )
and if we normalize the expression of the elasigrgy with the internal lengtty we obtain:
2
12np? % @+c 2vpn) 1

Ucl2 = 2um@ <) = nfzpzfz(um'Vm’Cj) (19)

The first derivative ofu at r = bis in this case:
1-c-2
aur :_p( C Vm) :uo (20)

or |, 2u,@1-c) "

Elastic inclusions
The solution for this case can be obtained by soyparsing the solution of two sub-problems
following the well-known Eshelby methodology We first remove the inclusion and assume an

internal pressure q acting at the inner bounf{lary . BY solving this problem we obtain the
displacement(r = a) = u,. We then assume a solid circle with the inclugiooperties of radius
under normal pressure q. By solving this problem obtain the displacemeu(tr = a) = u,. The two

sub-problems are shown in Fig. 1.6. The soluti@enbdth of these problems can be obtained from
the general solution represented by (10) and (pplyang the necessary simplifications for the

second sub-problem.

Strain gradient length via homogenization of hegereous elastic materials 18
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Sub-problem 1 Sub-problem 2 Generic problem

Fig. 6. Superposition of sub-problems 1 and 2 yields theege case of an annulus with elastic
circular inclusions.

The radial displacement; at r = aof the sub-problem 1, is:

— d:q(l-’_ C— 2Cvm) - 2p(1_vm)] (21)
Zl’lm (1_ C)

The radial displacement, at r = aof the sub-problem 2, is:

U,

_ qa(12;l ?vi) (22)

u, =

The boundary condition of the generic problem defsan=u,. Using (21) and (22), we
obtain the value of q as a function of the outesspure p and the material properties of the matrix

and inclusion. The pressure g must be:

q= 2pp; d-v,) (23)
R (1_ C)(l_ 2Vi ) T (1+ C— ZCVm)

If we feed this value of q back to the solutiortlué two sub-problems, we obtain the solution
of the annulus with a circular inclusion. The alashergy of the matrix would then be:
& (1-o)p°n y
2 [ @-Q)py @-2v)) +py @+ c-20v,,) (24)
x[pmz @-2v,)?(@+c-2v, )+ 20-C)pp,, (L-2v, )A-2v, )+, > 1-2v,, )1+ c(1-2vm)]

cl3_m =

and, if we normalize the expression of the elastiergy with the internal length we obtain:
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2
(bj 1-c)p?/?n

_ ‘ .
B 2 [A-Omg @-2v) +py (L c-20v,)
x[umz @-2v,)* L+ c-2v,,) + 2A-C)u;p,, (L-2v; )A-2v,,) + “iz @-2v,)@+ C(1-2vm)] (25)

= 2Dy Vet V1,60)

The elastic energy of the inclusions is:

22°p’mp, (- 2v )L-v,,)*
[@-c)u,, (- 2v)) +p, @+ c— 2ov,)

cl3_i —

(26)
and, if we normalize the expression of the elastiergy with the internal length we obtain:

ZC(SJ p (L= 2v, )= v,,)°

b
Uc i = =ax/l?xp?xf iU Vi B,V ,C— 27
13_ [(1—C)Hm (1— 2Vi)+ui (1_|_ C_ZCVm)]Z p 3 (].,l n g) ( )

Therefore, the total elastic energy of an annuliils an elastic circular inclusion is:
2 .2 b b
Ucl3:UcI3_m+UcI3_i =nx/{ Xp x f3_m(“mivm’uiivi1C’?)+f3_i(umivm’ui’vi’C’Z) (28)

and the first derivative ofi, at r = bis:

ou,| _ —pl@rom @-2v,) +p, Q-2v)A-c-2v,]_ o
ar|r:b_ 2u,[QA-c)u, @-2v)+p A+c-2cv,)] "

(29)

Note that Eq. (29) gives Eqg. (20) in the case gfosous material i, =0,v, =0) and for rigid

inclusions (1, — «), EQ. (29) becomes Eq. (17).

4. GRADIENT ELASTICITY SOLUTION FOR THE ANNULUS PRO BLEM
Eshel and Rosenféftiwere the first to provide the outline of the geadielasticity solution for the
annulus problem. The problem was solved analytidayl Aravas’ and Gao and Pafkfor plain
strain conditions. The key points of the solutidrttee annulus problem (see Fig. 5) are presented
next.
The material is an in-plane isotropic, compressibamogeneous, linear elastic material and

is described by an elastic strain energy densigtian W which incorporates strain gradient effects

% %
W(e,x) = u|:8ij & + Egij & + ? (K K + 1_ov Kiji K )} (30)
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where ist is a material lengthg is the infinitesimal strain tensor amdthe strain gradient8Border

tensor. Note that the deformation in the out-ofaplalirection x is zero ¢, = Q and als@,, = 0
K =0.

The Cauchy stress and double stress quantitesl) are defined as follows:

oW % oW %
=——=2ug, +——¢; 0, | andr, =——=2W" |k, +———K, 0 31
’Cu agij M|: ij 1— 2\/ ] u:| ijk Kijk 2 |: ijk 1- 2\/ ipp jk} ( )
The following relations also hold true:
ﬂ:ﬁZVT (xijk =£28’cij/axk)andl('=v€ (Kijk :agij/axk) (32)

The dynamic boundary conditions required by thegpal of virtual work, are the Cauchy

(P.) and the double stress tractio® § in the radial direction:

S % k(P Nliet G *
P.(r) = {2 = Czr{vKl(gj il 2v)K2(€ﬂ+c r{vl (ﬁ] 1-2v)l, (zﬂ : r4}(33)
R.(r) =—c é{(l VK [€j+(l 20K, [ﬁﬂ+csﬁ{(l—v)ll(%j—(1—2v)|2(%ﬂ (34)

where K and | are modified Bessel functions of #fi@nd 29 kind (the subscript indicates the order)
and g, ¢, G and @ are unknown constants to be determined from thlewmg boundary
conditions:

P@=-q,R,@=0atr=a
P(b)=-p, R, (p)=0atr=b a5)

The radial displacements are:

1-2v)c, r_ r
Ur(r)——M{T 2 (1 2V)£|:C2 [ﬁj C3|1[£j:|} (36)

and the rest of the solution is:

T (1) =) + ;[07 —f-fﬂj +C—2{K0Gj + (- 2V)K1GH +°—23{| OGJ + (- 2v)|1(%ﬂ 37)
T4 () = 2 (1) +%[c7 +f—gj +C—2{K0Gj _ (- 2V)K1GH +°—23{| OGJ _ - 2v)|1[%ﬂ (38)

and
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1 ((@-2v) C,
N=e2(r+— c, —
8rr() 8rr() 2“{ 2 7 2r2
, , (39)
r r r r
+ (1— 2V){C2|:K 0(2) +? Kl[Zj:| + C3|:| 0(;) —? Il(;j}}}
1 |@-2v) C 4 r r
gee(r) = 889 (I’) +2—H{ 2 C; + 2r82 - (1_ ZV)?{CZK{ZJ _Csl1(zﬂ} (40)
wheret?, 13, €2 andel, represent the classical linear isotropic elastisithution , (i.e./ = 0).
13=A+E2,139=A—EZ andu?,:i[(l—ZV)Ar—E} 41
r r 2u r
with
ga’ — pb? a’b®
A:W’B:(D_q)bz_az (42)
and
C,=C,+2A,cs=Cc,—-2B (43)

The solution of interest correspondsae> . The constants;@nd ¢ must be zero in order
for the displacements to be finite and zerp=at . TBerefore, the unknown constants reduce to just
two, @ and e. However, when trying to calculate the valuestase two constants from traction
type boundary conditions, they both vanish and ghedient solution reduces to the classical
elasticity solution. This is not surprising becauserder for the gradient effects to participatehe
solution, they must be triggered somehow by thendaty conditions. This is in agreement with the
finding of Bigoni and Drugali who considered corresponding results for Cosseadtrials.

In order to overcome this, a kinematic boundarydtiion is assumed at= b

Ml o (44)

rr
or r=b

This condition implies that the 2D gradient elastiaterial representing the composite,
assumes a homogeneous gradient of the radial despknt. Eq. (44) together with the traction type
conditionP,. (b) =—-p will be used. Thus, the gradient material is lahdeith tractions and
displacements gradients that are the same witle thiethe inhomogeneous classic composite system.

The constants now become:

C;=C,=B=0,A=-p Sp4

and
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20[1-2v)p+2uxu? ]

"= ) (b b b b (49)
a- zV)Hl @ + %D - 2£(| @ s Vllm vl (gm
—4€{I2(?j+vll(?j—2\/l ( H[(l 2v)p+2uxu’, |
e b) . (b b b il @)
a- ZV){b(I @ + %D - 2f(| m s V.lm vl @m
The elastic energy of the gradient solutiof i
U, = ni r(r,, 0 Too€e0 T MK T Moo K oee )dr
or U, =n bf/Z( B+ TanEon + A Ko +x9991<999)d% (48)

The values ofk and A are obtained after substituting Eqs. (37) to (#@p (32). After

substituting all the quantities and integrating ¢jnadient elastic energy becomes:
a(=1+2v)p22 | 1(c, Y (bY 1(c,\(bY[. o(b) . ofb
Uy = —=| =21 = ===\l =|-1=
4u 2\ p 4 2\ p 14 14 /
2 2 2 2
AT IS5 vl
2\ p 4 4 l l plLp 4 4\ ¢
2 2 2 B 2]
1fc )| 1 byl (e |_ 1 b
4[5 ool {5 ool 2]

() oo [ a2 (5 o2 2 a2
()

N——

p {
e e-2mdl 232292 49
| )
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where HG is a generalized hypergeometric functiod &eHd" is a regularized confluent
hypergeometric functidf. Both functions are described as:

HG[{a,,....a,}, {by,....b,}, X]=, K @b;x) = ké)(al)k...(ap)k I(0y) () X?T
and HGI'[a,x]=,F@&x)/T @)
wherel'(a) is the Euler gamma function.

Alternatively, the gradient elastic energy can benfd from the external work. The elastic
energy is then equal to:

Uy = b{R (bu, (0) + R, (b)u, ()} (50)
where prime denotes derivative with respect to r.

Substituting the value af’, from (29) into (46) and (47), the gradient elgistisolutions can
be equated with the classic elasticity solutionstii@ three cases of rigid inclusion, porous materi
and elastic inclusions discussed in Section Il.BisTapproach is similar to that of Bigoni and
Drugart®for Cosserat gradient elastic materials.

Thus, we obtain the constantsand ¢ for each case separately:

For the case aigid inclusions (Fig. 7), the constants become:

29 p_(l— 2v) _n (@+0d- 2vm)}
‘ u, l+cl-2v,)
Csu= L "
(l_ZV){b(IO(b +IZ[bD_Z('Z[bJWM[bJ‘ZvIz[bm
? / / ; ; g
_ 4p|:| z(bj + V|1 bj —2vi Z(bj}{(l— 2\/) _L (l+ C)(]__ 2Vm)}
_ 14 4 l W, 1+c@-2v,) o

e L AL )

For the case gforous materials(Fig. 8), the constants become:

{(1 o) (- ;: 2v_ )}
_ Hy (@-0) (53)

e L)AL )
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b b b u (l-c-2v,)
) _4p|:|2(£j + Vll(fj —2V| 2(fjj||:(1_ 2V) _“m(l_c):|

C72= (54)
S LAl
l l l l l l
For the case ddlastic inclusions(Fig. 9), the constants become:
29 [{(1_ 2V) _ H[(1+ C)Hi (1_ 2Vm) Tl (1_ 2Vi )(1_ C— 2Vm]:|
o ! M@=ty @=2v)) +1; (40— 20v,,)] (55)

52 )AL )0 )

= ! ! ! Hn[@=Op,@—2v,) +p, L+ c—2cv,,)]

T e L LAL)) )]

Note that for all expressions of the constastard ¢, the internal length appears only in the

normalized fornb/ /. By substitutingc, ; andc, ; (i= 1 2, 3) in (49), we obtain three expressions

for the gradient elastic enerdy,,, U,, andU ,, respectively.
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(a) (b)
Fig. 7. Homogenization procedure of a material containiiggdrinclusions: (a) Heterogeneous
Cauchy material; (b) Homogeneous gradient material.

(a) (b)
Fig. 8. Homogenization procedure of a porous material:Ha)erogeneous Cauchy material; (b)
Homogeneous gradient material.

(a) (b)
Fig. 9. Homogenization procedure of a material containitagtee inclusions: (a) Heterogeneous
Cauchy material; (b) Homogeneous gradient material.
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5. ESTIMATION OF INTERNAL LENGTH
The energy for a heterogeneous material shown ¢tid®ell.3 and that for a gradient homogeneous
material shown in Section 1.4 were determined Hasethe same boundary conditions. By equating
the two energies, we can derive an estimation efititernal length for a gradient material as a
function of the inclusion radiuws, the composition value ratio ¢ and the elasticemalt constants of

the matrix and the inclusiom(/p,,,v,,v,,). However, before proceeding, we must face thélpro

of how to settle with the other two material prdapesr of the gradient material which in the general
case will not be equal to the matrix material praps.

The problem has three unknowns, namely, the intéength ¢, the in-plane shear modulus
and Poisson’s ratio and there is only one equation to work with, namel

Ug=U, (57)

cl ™
One approach is to limit the solution of dilutifgetconcentration of inclusions and hence assume
that the material properties of the matrix and cosme material remain the same. It is noted that th
results of Bigoni and Drugdhwere derived using this assumption. However, atoémgineering
approach is to extract the two material properbéshear modulus and Poisson’s ratio from a
classical composite model suitable to the problemeu consideration and substitute them to Eq.
(57). By doing so, there is only one unknown lgfte internal lengtht, which can then be
determined. This approach is justified by the thett the gradient material should always reduce to
the classical material if the gradient effect igleeted, i.e./ =0. Therefore the effective material
properties predicted by the classical homogeninasichemes hold true for the composite gradient
material as well. Estimates of the effective malegproperties of the homogeneous gradient material
that correspond to our problem are given in Sedti@n

The expression ol  is highly non-linear and can not be solved expliavith respect td .

It can, however, be solved numerically through t@nation process for different values of all the
parameters. The solution path is shown schematiaalFig.10. Throughout the calculations, a 5-
digit accuracy was maintained. The numerical irdégn of the curves presented in Fig. 11-13

converges as the interpolation order is increased.
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Assumption of a heterogeneous material with elgsbperties,
um, vm, Wi ,vi and composition value c

Estimation of effective in-plane elastic propertiggndv, for each problem
(Section 11.2)

A 4

Estimation ofb//¢ based on Eq. (57), arfda:;
Je(o/ o)

Fig. 10.Iteration process for estimating the internal larag a function of the composition value, c,
and the inclusion radius,

Rigid Inclusions
Estimation for the internal length for rigid incloss is derived by equating the two associated

energiesy .= U, (see Fig.7). The variation of the gradient intéleagth, £, normalized by the

radius of the inclusiom,, with a composition value ratio ¢ is shown in Fid.in a semi-logarithmic

plot for v, values of 0.1, 0.15, 0.2 and 0.25. The resultss® presented in Table 1. It can be seen

that the internal length increases with increasige of the matrix’s Poisson’s ratio.
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Table 1.Estimatedchormalized gradient internal length values for¢hsee of rigid inclusions.

c b/t ta*
Vm:0,1 Vm=0,15 Vm:0,2 Vm=0,25 Vm=0,1 Vm:0,15 Vm:0,2 Vm:0,25

0.1% 4.6 4.5 4.5 4.7 6.802 7.088 7.058 6.707
1% 7.2 54 4.9 5.0 1.390 1.844 2.028 2.017
5% 17.1 9.6 7.0 6.1 0.262 0.468 0.640 0.732
10% 27.8 14.7 10.2 7.8 0.114 0.214 0.309 0.408
20% 47.9 26.4 16.7 12.0 0.047 0.085 0.134 0.186
30% 71.7 42.0 26.7 18.6 0.025 0.043 0.068 0.098
40% 106.2 66.1 43.1 29.6 0.015 0.024 0.037 0.053
50% 163.0 107.3 72.3 50.0 0.009 0.013 0.020 0.028
60% 268,2 186.3 130.2 91.7 0.005 0.007 0.010 0.014
70% 495.5 362.2 263.6 191.0 0.002 0.003 0.005 0.006
80% 1140.7 875.8 664.8 498.6 0.001 0.001 0.002 0.002
90% 4583.1 3685.0 29215 2277.0 0.000 0.000 0.000 0.00

* the composition value = a2 /b? for the 2D case

2/a

v, =010
v, =015
v,,= 020
v, =025

Gradient internal length to inclusion radius ratio,

: ; SRS0=0 == —Q—0-0-0
0.1% 1.0% 10.0% 100.0%

Composition, ¢

Fig. 11.Variation of the gradient internal length to ingtusradius ratio valuei/a, with respect to
the composition value c for the case of rigid aytinal inclusions.
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Elastic Inclusions

Estimation for the internal length for the caseet#stic inclusions is derived by equating the two

associated energidd,,;=U , (see Fig. 9). The variation of the gradient in&rfength, ,
normalized by the radius of the inclusienwith respect to the composition value ratio shewn in
Fig. 12 in a semi-logarithmic plot for inclusion teatrix shear modulus ratio,/p, , values of 2,
2.5, 5, 10 and 15v,, = 0.2,v, = 025). For comparison purposes, the rigid case with= 9.2
plotted as well. These results are also presentd@alle 2. The rigid inclusion case @f, /u,, — ©
gives the upper bound of/o. and //a increases monotonically fau, /u,, >1. The normalized

internal length?{/a , is a decreasing function of the composition valywith //oo — Oasc— 1 It
1 4

is noted that in all cases, whens> then//o — « with I Edc finite. Note also that when
0

u,/p, =1 andv, /v, =1, no physically meaningful prediction was fourslexpected, because this

case is essentially the case of a homogeneous iataféne same was found to be true when the

inclusion is less stiff than the matrix.

Table 2.Variation of the normalized gradient internal lémgalue for the case of elastic inclusions.

b/ ®) o, &)
¢ plpm=2  pilpm=2.5 pilpm=5 pilpm=10 pilpm=15 | pilpm=2  pilpm=2.5  pilpm=5  pil/pm=10  pilum=15

0.1% 52.5 44.1 16.6 9.4 7.5 0.602 0.717 1.909 3.350 3#.19
1% 55.5 36.8 16.4 9.8 8.0 0.180 0.272 0.611 1.018 21.25
5% 54.6 38.5 18.6 12.0 10.2 0.082 0.116 0.240 0.372 4400.
10% 57.3 41.7 21.8 15.0 13.1 0.055 0.076 0.145 0.210 2410.
20% 64.3 49.4 29.4 22.4 20.3 0.035 0.045 0.076 0.100 1100.
30% 72.5 58.9 39.6 32.5 30.5 0.025 0.031 0.046 0.056 0600.
40% 82.5 70.7 54.0 47.9 46.1 0.019 0.022 0.029 0.033 0340.
50% 93.9 85.4 74.9 72.4 72.0 0.015 0.017 0.019 0.020 0200.
60% 106.7 103.5 106.0 113.6 117.7 0.012 0.012 0.012 110.0 0.011
70% 121.2 125.4 153.1 187.4 205.7 0.010 0.010 0.008 060.0 0.006
80% 136.4 152.1 227.2 332.6 398.5 0.008 0.007 0.005 030.0 0.003
90% 164.5 185.9 - 674.2 938.2 0.006 0.006 - 0.002 0.001

) Poisson’s ratio for matrix and inclusions is @rl 0.25, respectively.
(**) composition valuec = & /b? for the 2D case
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/a

Gradient internal length to inclusion radius ratio,

100.0%

Composition, ¢
Fig. 12.Variation of the normalized gradient internal ldngt inclusion radius ratio with respect to
the composition value, c, for the case of elastimdrical inclusions ¢, = 02,v, = 025).

Porous material
Estimation for the internal length for the casev@ifls present in a material is derived by equattireg

two associated energigs,,= U ,(see Fig.8). The estimate of the normalized inteleragth, b,

for the case of porous materials is either in tteepof 1 or negative. This is not acceptable since
it lacks physical justification. In other words,ist not possible to predict an internal length tfoe
case of porous materials or generally when theusichs are less stiff than the matrix. When
inclusions are less stiff than the matrix, the mHstructural load path changes and strain gradient
theories may be no longer applicable. This is ireament with Bigoni and Drug&hwho proved
that predicting the Cosserat microstructural lengtten particles are stiffer than the matrix is not
feasible. It could be argued that the present t®sale complementary to those of Bigoni and

Drugart® who were interested in gradients of rotations @otdof strains as in the present work.

Micromechanical explanation of the results

The internal length predictions in this work showhdt as the composition value is increased, the
internal length estimate decreases. The internajtheis associated with the microstresses that
develop due to the microstructure of the compositavever, when composition value increases the

distance between particles, decreases. Insteadviighan inclusion embedded in a continuum, the
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problem resembles that of a particle with a thiyetaaround it. It has been shotvthat when this
occurs, the strain gradients reduce drastically.

The estimates shown above were based on an axidyimtype of loading. In order to verify
that these predictions hold true for other loadiages, a different loading system that removes this
symmetry is considered next. This loading caseesponds to a remote uniaxial tension and the
details of the solutions are presented in Sectldh The limiting case of rigid inclusions was
considered only and it was found that the matéeradith predictions obtained for both loading cases

are identical.

6. REMOTE UNIAXIAL TENSION
The problem of a circular inclusion of radias,in an infinite isotropic plate under remote unifo
uniaxial tension, P, is considered, as shown in E3g Outside the inclusion, the gradient solufmm

the radial and angular displacements, respectieets’:

2a

R

LR R A N

!

Fig. 13 Inclusion of radius, a, in an infinite plate sedipd to uniform uniaxial tension, P.

{A19+A39+A5%K1(£H
r

P r b4
u, (r,0) = u’(r,0) +—

m +|:Al%+A2§K2[%j A{%)S+A6(%K2Gj+2%Kl[%jj:lcos(%)

ue(r,O)zug(r,9)+E{_ 1-2v A1§+A2(£K2(LJ+EK1(LD A4(EJ +A6§K2(£j}sin(29)
uwl 20-v) °r r l) 2 l r r 1

(58)

(59)
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where A , . are unknown coefficients angf (r,0) and ug (r,0) are the classical expressions of radial

and angular displacements.
The classical expressions of the displacementsdeutke inclusion for the case of rigid

inclusions aré-

ul(r,0) = g—:l{{(ko -1) é + ZYﬂ + {ZQ +P(ko + 1)% + 25[%) }COS(ZG)} (60)

ul(r,0) :g—j‘{— Zé—B(ko +1)i:+ 25(?} }sin(ze) (61)

It is demanded that the gradient displacementsequal to the classical predictions for eveay
r=aandr=b (b>a):
u @0)= 1’ @0) VO
U, @6) = uj @6) vo

Eqgs. (62) describe a system of 6 equations thatbeasolved for the six unknowna, .. The

(62)

coefficients should be:

A,=A.=A,=0 (63)

Therefore, the gradient solution reduces to thesatal solution but this does not mean that
the gradient effect disappears as in the caseisyrametric loading. In essence, the same kinematic
admissible field for either a gradient homogenemaderial or classical heterogeneous material is
applied. Obviously, this kinematic field is the samnly for r >a, but for the case of dilute
composites §<< b) the total elastic energy calculated toe r > a is approximately the same with
the total elastic energy calculated tor r > 0.

The expression for the total classical elastic gynes:

n/2b

Ucl = 4 J J'%r(rrrgrr + Teegee + eregre )drCB (63)
0 a

and that for the total gradient elastic energy is:

ni2b T, € 4 Ty€oy + 2T o€
Ugr — 4"- J-lr e 00~ 00 o~ ro dch (64)
0 a2 +}\‘rrrkrrr +}‘reekree + 2}\‘rrekrre +}\‘9rrk9rr +}\‘999k999 + 2}‘erekere

It is reminded that for the case of cylindrical odioates the following relations hold true:
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ot ot ot
Vi=—Ce + % e, +—2e(ee +ee
T ar rrr ar eee 0 ar er( r~o eB r)
0 10 1( ot 1( ot
V=e —+e,—, = L. = 2266 65
Rl s +r[89 ereJQ,e,erJrr( o +2¢reje;,eeee (65)

+}(8T—re +7T, —reejee(eree +6e)
r\ oo

Under the assumption of dilute composition, equalit the two energies can be demanded
since both systems have the same kinematic figl@. dther two material properties, i.e. in-plane
shear modulus and Poisson’s ratio for the gradieaterial, are extracted from Christensen’s
predictions (see Section 11.2). In Fig. 14, thedction for rigid inclusions is plotted assumirgt
the matrix Poisson’s ratiovs= 0.2. The solid line corresponds to loading case 1 ksge7) and the
diamond symbols correspond to loading case 2 (BY. The predictions for loading case 2 were
derived under the assumption of dilute concentnatibinclusions and hence only the predictions for
c< 5% are plotted. As it can be seen, the agreemerth®two estimates is very good for values of

¢ up to 1% while the deviation between the two preains increases for higher values.

—+—Loading case 1

/a

¢ Loading Case 2

O+

\$\

1] T o

+\+\
+\+\
]

Gradient internal length to inclusion radius ratio,
w

0.1% 1.0% 10.0%

Composition, ¢
Fig. 14 Variation of the normalized gradient internaldénto inclusion radius ratid/a, vs. the
composition value c for the case of rigid cylinaficclusions and two loading casas, (= 0.2).
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7. APPLICATION TO FIBER-REINFORCED CONCRETE
In order to obtain an estimate of the internal tarfgr fiber-reinforced concrete (FRC), one can use
either the assumption of elastic or that of rigidliisions. In this study, a typical FRC rfixvith
hooked-end steel fibers and the following propsriig, =40GPa,v, =02, Ej =210GPa,
v, =03 and c= 08%used for retrofitting RC structures is consider&tie steel fibers have a
circular cross-section with a 5-mm diameter and fthers to cement matrix shear modulus ratio

isy, /n, =485. The density for the cement matrix and the “fiberhclusions is

3

Pm = 2350kg/m3andpi =7850kg/m*, respectively.

The normalized internal length/a, and internal length, estimate according to the proposed

model for the assumption of elastic and rigid “fibenclusions is ¢ /a=06 (¢ =150mm) and

¢ la=23 (¢ =575mm), respectively. It is noted that this specifif® mix was designed to be

used as a 3- to 5-cm thick jacket to existing RiDiroms.

The Ben-Amoz modét for predicting the internal length parameter isdzhon a dynamic
analysis of the micro- and macro-structure. Itased that, in the absence of the dynamic conditions
imposed, the validity of this model becomes questibe. Nevertheless, the Ben-Amoz model is the
only model in the literature that can predict thaia gradient internal length parameter and fis th
reason it is interesting to compare its predictionth the proposed model predictions. The key
points of Ben-Amoz model are described next.

A normalized scale parameter, L/d, which can bense® a measure of the strength of

heterogeneity, is introduced as follows:
Lid=[p, (A +20),/pe (A +20): ]2 (66)

where d= 2for the 2D case and subscrippsand R denote the Voigt and Reuss averaging
guantities, respectively, which are defined asofe:
( )U :Cm( )m+Ci( )i
1 c C. (67)

m |

Or On O

where c is the volume fraction of the inclusions aabscripts m and i denote the matrix and “fiber”

inclusion material, respectively. It is noted tkfas scale parameter is derived by assuming tleat th
strain energy and kinetic energy are of the sarderasf magnitude but this assumption is not always

true..
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The internal length parameters of Mindlin’s work fbe long wave-length approximatiof,
and/, (pp. 69 in [4]) are then associated with the sgaleameter L by the following equations for

the shear and dilatation modes:

02 =L—2{1—M(ci —4|i)}

4 Ky

2 (68)
) :L_{l_ 0-+ 20, - (A + 200 _4“)}

4 (A +2u),

wherel, = (a/b)* = ¢,*for the 2D case.

Applying the simplifications of the simplified stragradient theory used throughout this
thesis, that isa, =a, =a, = 0a, =(A/2)¢*and a, = ul*(see [4], pp. 73), the Mindlin’s internal
length parameters beconte =/, = /. Hence, the Ben-Amoz model gives two differentnestes

for the internal length parameter, which for smadllues of the composition value are
approximately the same. The Ben-Amoz predictiomsttfe specific FRC mix considered here, are:
¢ la=1128and/ =282mm, for the shear mode,

and [/ /a=1122and ¢ =2805mm, for the dilatation mode

The predicted internal length estimates for thees&RC material of the present (about 6
mm) and the Ben-Amoz model (about 28 mm) are dantly different. A definite answer as to
which model is more appropriate would require teengation of an internal length for an FRC mix

independently based on flexure tests.

8. CONCLUSIONS
A homogenization of a plane-strain heterogeneousciBaelastic material was performed and the
internal length parameter assumed in the straidigmatheory was estimated for the case of elastic
inclusions stiffer than the matrix in the caseibkf-reinforced composites. The internal length was
found to be 0.5 to 7 times the inclusion radiusvfery small values ot = 0.1% depending on the
inclusion to matrix shear modulus ratio. The in&rength estimate decreases rather rapidly as the
composition value c is increased and is approxipatero forc > 70%. No prediction was possible

for inclusions less stiff than the matrix and floe textreme case of porous materials.
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CHAPTER 1lI
STRUCTURAL ANALYSIS USING A DIPOLAR ELASTIC TIMOSHE NKO

BEAM - APPLICATION TO MICROCANTILEVERS

1. INTRODUCTION
A term so-called “size effect” is usually used describe the effect of the microstructure on the
mechanical behavior of a member which for differsizes deviates from that expected based on
similitude laws. When the dimensions of the mianesture (grain size, inclusion size, lattice
distance etc.) becomes comparable with the dimesasid the member itself, the assumption of a
homogeneous medium of classical elasticity andnigglication concerning the very definition of
stress and strain no longer suffice. In other wogeds structures are scaled down their behavior
becomes increasingly dominated by the inhomogeneatige of the material itself. The need to
model such behavior without modeling the full detaf the microstructure has led to the
development of enriched continuum models. Thisoisedin an average sense by introducing length
scale parameters in the constitutive equationsababunt for the effect that the microstructure has
on the deformation process. By doing so, theserite have the advantage over classical elasticity
of explaining why scaled down structures are stiff@d stronger. However, in their original
form>234these theories become unpractical since it is gsipte to quantify all these new length
scale parameters with the available experimentdd,dee. static or dynamic flexural tests.
Nevertheless, by simplifying these theories andpkagjust one length scale parameter (for static
cases), calibration becomes rather straight forveard at the same time the key novelty of such
theories which is the prediction of size effecpigserved. For this reason, in this work, a sirgalif
(dipolar) isotropic strain gradient theory is useith just one material length scale parameterng, i
addition to the two classical elasticity parametéhnat is the elastic modulus, E, and the Poisson’s
ratio, v.

Quite small structural elements that are used m dlsign of micro-electromechanical
systems (MEMS) are often in the form of beams (®gsors and actuators) and their design requires
them to deform within their elastic domairthough the stiffness of such micro-devicessseantial
information for their design, in many cases théifreess is determined experimentally and is found
to be higher than that predicted by classical ieifgt Salvetat et a performed flexural experiments
on single-wall carbon nanotube beams with both émxé@sl arranged in a close-packed lattice with
dimensions of 1.4 nm and used rope diameters frésnZ® nm in flexural tests. They found that as
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the diameter decreased the nanotubes exhibitedch stiffer response. The same behavior was
observed in carbon nanotubes by Poncharal etRihg et aP tested polysilicon microcantilevers
with grain size in the order of Ow2n, thickness of 2.4m and variable aspect ratios and although the
authors attributed the stiffness differences inlibams to measurement errors, a closer look at thei
results suggests the existence of a size effean ka al’® performed bending tests on epoxy
polymeric microcantilevers with thickness valuesyirsg from 20 to 115um and showed that as the
thickness decreased the stiffness increased beienatedictions of classical elasticity. Although n
information about the microstructure of the PP ouantilevers is included in this work, high
crosslink-density regions with a diameter of 6 @@ hm have been observed in cross-linked resins
forming on that scale a heterogeneous rather th&wonaogeneous matertdfl McFarland and
Colton'? tested polypropylene (PP) microcantilevers whiaelieha nonhomogeneous microstructure
due to their semi-crystalline nature and found thatmicrocantilevers with a thickness of 15 and 29
um exhibited a much stiffer response which cannoty@ained by any of the possible error sources
associated with the experiments. It is noted thationhomogeneous nature of PP is due to the
formation of spherical particles called spheruliesing its manufacturing process. The authors did
not provide any information about the size of tphesulites in their material but typically theigsi
can be up to 1@m when the specimen is manufactured via injectiotding®. Hong et af* tested
copper (Cu) microcantilevers with a thickness ablénd 2.8im under flexure and reported a stiffer
response for the thinner films. Grain size of coppkns manufactured by electroplating and
annealed in vacuum can be up’thb pm. Yang et at® tested native and cross-linked type | collagen
fibrils with diameters ranging from 187 to 424 nmdafound that the stiffness increased as the
diameter of the fibrils decreased. Note that cekadibrils are assembled of parallel collagen
molecules arranged with a longitudinal stagger @sd contain mineral particles (typically flat and
elongated) with the elongated dimension reachitigesaup té’ 100 nm. It is also worth mentioning
the work of Namazu et &f.and Liu et al® who carried out flexure experiments on single-lys
silicon beams which have a continuous crystaldat(ho grain boundaries) and hence can be seen as
completely homogeneous and found absence of dieet @ stiffness as the specimens ranged from
a nano- to a mm scale. Size effect in strength,gvew was significant. This review of the available
experimental evidence is not meant to be exhausiiveonly indicative of the phenomenon which
the current work attempts to explain, which is thiae effect in the elastic deformation range of
beams is to be expected when the scale of thetsteubecomes comparable with the scale of the

microstructure.
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The need to quantify the departure from the classtasticity predictions and offer the
designer of MEMS a theoretical tool in the formctdsed-form solutions for predicting size effect is
one of the motivations in this work. Of interesttie solution of a Timoshenko be#hoaded
statically. Papargyri-Beskou et @l.have used the same simplified strain gradient rihesing
surface enerdy to solve the bending and buckling of the Bernelliler beam. Their model has
been investigated further by Giannakopoulos anth8i#is’ for the case of a cantilever beam under
flexure and a cracked bar under tension. Nevebetbe Bernoulli-Euler beam is only applicable to
slender beams where shear forces have a negligihlence on the deformations of the beam.

In the present work using the Timoshenko beam katm® it is examined how the gradient
solution is affected when the shear forces areuded in the analysis. It is noted here that theesam
strain gradient elasticity theory has been useWapng et aP* and Lazopoulos and Lazopouloor
the case of Timoshenko beam kinematics. Both thesd#s employ Fourier series to solve the
boundary value problem, whereas in the present waddsed-form solutions are provided.
Furthermore, none of these works address the fsineleterminate members and how they should
be treated and only refer to the isostatic casa efmply-supported beam. As it would become
apparent, by solving the problem in a closed-foenmethodology for treating more complex
structural problems (hyperstatic beams, frame$ etcerges. However, it is beyond the scope of this
work to explore all beam configurations and onlg texample of a doubly-clamped beam is
considered in detail. More differences exist if sodution in the present model is compared to dihat
Wang et af* and Lazopoulos and Lazopouldsind those are discussed in detail in Section. Ill.4
Finally, other non-local theories for the case afmdshenko beam kinematics have also been
considered by Lam et &l.Reddy® Ma et al’, Asghari et af®, Ramezani et &°. These works
employ different gradient elasticity theories thidwe presented one and are briefly discussed in
Section Ill.4. Models that are based on integrab(gy) non-local theories will not be examined in
this work.

Concerning the structure of the present chaptecti®e 11.2 includes the governing
equations and boundary conditions for the Timosbdm&am, while in Section 11.3 the proposed
model is applied to the specific problem of a damér beam with a point load at its free end amd th
details of the solution are investigated. An indeieate beam is also investigated, i.e. a beam
clamped at both ends, loaded by a point load aspaid. In Section 1ll.4, the present approach is
compared with the various Timoshenko beam thednethe literature. Finally, in Section III.5,
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available experimental data on microcantileverthmliterature are used to compare the predictions
of the length parameter for the strain gradiengteday with those for the micropolar elasticity.

2. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS
We consider a straight prismatic beam subjected $tatic lateral loady(x) distributed along the
longitudinal axis x of the beam, as shown in Fig)1The loading plane coincides with the xz plane
and the cross-section of the beam is parallel ¢éoyth plane and symmetric with respect to the xz
plane. The displacement field following the Timoske beam kinematics can be described by the

following relations:

Uy =2 y(X)
Uy =0 (1)
Uz = w(x)

where y (X)is the rotation angle of the cross-section wipeet to the z-direction and w(x)is the z

component of the displacements along the axis xe Nuat the Timoshenko kinematics allow the
boundary conditions to be only defined on the bsatndss-section at the two ends keeping the 1D
character of the solution. It is beyond the scopehs work to solve analytically the true 3D
problem. The important question is whether suchr@agh is justified and this question is addressed
by comparing the predictions of the present mod#i tine 2D finite element results, which suffice
for the case of beams (see Fig. 8).

Using the geometric relations (Egs. (1)), the nerezaxial and shear strains are equal to:

S T o T Cax
2 oz ox dx

The material is a homogeneous, linear elastic nahi@nd thus the non-zero Cauchy stresses

_ou, _,dv
(2)

Ve =26

are equal to:
gxx = ESXX (361)
ox =kGy,, (3b)

where k is a correctioff factor which depends on the shape of the beano'ssesection,v is the
Poisson’s ratio introduced to account for the naifermity of the shear strain over the beam’s
cross-section, E is the Young’s modulus of elastiand G the shear modulus which for an isotropic

material isG = E/2(1+ v ) Note that Eq. (3a) is based on the assumptidrthieaPoisson’s ratio is
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zero. Equation (3a) can be modified to accountHereffect of isotropic Poisson’s ratio, as in Ma e
1-v

al?’ if E =———————E is used instead of E. The simplified form of E8a) will be kept but
@L+v)@-2v)

throughout the manuscript the numerical resultglara/ed usinge .

XY . Fully Clamped end
|

Partially Clamped end

(a) (b)
Fig. 1. (a) Beam configuration and coordinate system (G.@enter of gravity), (b) Clamped-end
configurations.

—» Ux

)
(
\
o]
|
|
|
/—\‘/\

The employed strain gradient theory is a simplifaraof Mindlin’st form Il gradient theory,
using just one material length scale parametethitncase, the non-zero total axial and shearsgses
can be expressed with respect to the Cauchy s$resse

O, = 1-g*V?)ou @)

Gy, = 1-9°V*)ow
where g is the strain gradient material length, dlier-bar quantities are the Cauchy stresses (see
Egs. (3)) andv?® = 9% /ox* + 0%/ 0z” is the Laplace operator.

The total internal elastic strain energy for tharbds:

U= Uy + Uy, (5)

tot—

where U, is the internal elastic strain energy of a clasdieam given by:
1 - -
Ua=7 j J j (cxxaxx+ 26 axzjdxdydz (6)

and U is the internal elastic strain energy of a pugrgdient beam given by:

J‘J’J‘ anx 68 6ze 68xz i anx 68)0( dXdde (7)
OX ax OX OX 0z o0z

Structural analysis using a dipolar elastic Timadtoebeam — Application to microcantilevers 41



SIZE EFFECT IN SEMI-BRITTLE MATERIALS AND GRADIENT THE®IES WITH APPLICATION TO CONCRETE

The variation of the total elastic strain energyddoeam of length L is:
d> \d*y d® | dw dy
) Ell 1-g° +KAG| 1-¢° ——+vy |-EAQ*—
"’( (gdjdz (gdxj(dx "’j gdxzj
2 2
+ow| —kaG|1-gz & [ W, dv
dx® | dx® dx

L
2
+ S\U(EI 1-g? dd jdw+kAGg (d d“’j EAgzdwﬂ
X
0

dx dx?  dx dx

+ SW(kAG g? o j(d Wm (8)
dx .
+ Sw'(g 2g IV "’H
+| dw (kAGg (d w dwjﬂ
i dx?  dx .

whered indicates variation) = .[J-zzdydz Is the moment of inertia about the z-axis ake ”dydz

is the cross-sectional area. Eg. (8) is obtainethfEq. (5), using Eqgs. (6) and (7) by expressihg al
guantities in terms of the independent kinematiciabdes w, v, w' and y' and applying
integration by parts. Note that classical analysss onlyw and ¥ as independent kinematic
variables.

The variation of the worls Wone by the distributed forces|(x), the classical and non-
classical boundary shear forces Q and Y, respégtiaed the classical and non-classical bending
momentsM and m, respectively, is:

— Jatwac-+ [Qow]s Moyl +[Yow: + mow ] ©
0

while the principle of minimum potential energytstathat,
83U, —W)=0 (10)

It is recalled that in classical elasticity, thexding momentM and shear force® are equal
to:

— chy
M _jjcxxsz Bl

— ) dw (1)
Q= j dA = kAG(aﬂpj
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Substituting Egs (8) and (9) into Eqg. (10) and gskgs. (11), the following governing
equations (see Egs. 12) and boundary conditions EBgs. 13) are derived for the gradient

Timoshenko beam:

A 2 2 d2 dM 2 d2 P
1+—qg - " — |—=| 1- 12a
+|g gdxzjdx ( gdsz (122)
d? ) dQ
_g2 | 12b
g dxzjdx g (126)

Q- (1—92 d22 jéj}e‘m} =0 (13a)
dx

|
2] <
|
|

M —(1—g2d—:jﬁ+égzﬁ+ gzd—fj}sw} =0 (13c)

m-— (gz (;_TJ}SW} =0 (13d)

Note that all the above relations reduce to thesital Timoshenko beam expressions in the

absence of gradient, i.¢=0. Also note that the coefficierA/1 in Egs. (12a) and (13c) stems
directly from the cross-tern{dox/0z)(0s, /0 ®) the expression of the strain gradient elastic

energy (Eq. (7)). Considering only the leadingdigat shear term, i.6(0cx./0x)(ds,, /0 Xwill
not capture this additional scaling effect for shd@@erefore, for a complete gradient Timoshenko
beam solution both terms must be considered.

The boundary conditions (Egs. (13)) are mutuallglesive. This means that one can
prescribe the following:

2
d2 _
either Q= (1-92—d 5) Q or w (14a)
X
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_ 2dQ ,
Y=g ™ or w (14b)
M= 1 Zi M +=g2M + 20Q or
=193 F9M gt v (14c)
m = 2_dM or ’ 14d
=97 y (14d)

The end conditions and continuity requirements stexn from the boundary conditions (Eqs.
l4a-d) for a gradient Timoshenko beam are sumndhrimeTable 1. This table is of utmost
importance for solving beam systems with varioud eanditions and connectivity, both statically
determinate and indeterminate. The issue of theopppteness of the non-classical boundary
conditions recommended in Table 1 is discussecati& 111.3 where the finite element solution of
a cantilever beam is considered (see comments negdeding Fig. 8). The physical implication for
y' =0 is that a fully-clamped condition is accounted fa. preventing deformation in all directions
at the clamped end. This brings into consideratia actual implementation of “clamping”. For

example, itis true thay' = @r a partially clamped end support, as shownign Eb).

Table 1L Beam boundary conditions and continuity requinetsiéor the gradient Timoshenko beam.

End Boundary Conditions Continuity Requirements

Condition Classical Non-Classical

End Hinge w=0,M=0 Y=0,m=0 -

Clamped End w=0, y=0 w=0,y'=0 -

Free End Q=0,M=0 Y=0,m=0 .

Internal Hinge M =0 m=0 W W L WS WT, W =W, gt =y
+: —’ r+: r—’ rr+: ”_,\N,+=V\/_,

Internal Roller w=0 - y =y .y o=y oy =y

V\/H— — V\/'_ , V\/”+ — V\/”_

Note: In the case of concentrated moments or fotbesBC's should be modified accordingly. Thisocatgplies to
the case of intermediate supports such as springs.

To illustrate the details of the general solutiBgs. (11) are substituted back into Eqgs. (12) to
obtain the two differential equations for tlex)andy(x)functions describing the solution. The

differential equations are:

A, ,d?\dy , d? (dw j
Ell1+ g2 -2 1S Y _yag|1-g2 L [ &Y, 15a
( 19 79 0 Jax? I Jax Y (152)
and  kag[1_gz & |[9W, dv)_ (15b)
dx? | dx?  dx
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In order to solve theorder differential equations, it is conveniens:

dw
Q(x) :&‘F\V (16)
So, Egs. (15) become:
2 2 2 2
(142 dd ij Y = kéle (fj (1— gz%jﬂ (17a)
x? | dx g X
d? \dQ q
-9 | == 17b
( J dsz dx  kAG (7)

where/ is a length, which can be seen as the shear gradient internal éejugtito:

1
e Y

Note that whem=0, then /=0 and ¢/g=1. Also, if (A/1)g°<<1, then /= gand ¢//g=1
Therefore, for all cases itis true tBat//g< . 1

For a constarg, Eq. (17b) has a general solution of the form:

Q)= -3 _x+ e’ —ce 9 +c, (19)

kKAG
Substituting Eq. (19) into Eq. (17a), the geneodlitson is obtained fory :

2 2

q E 3 kAG E 2 2 X/ 2 X1t

X)=——|— | X' +—| — | c;x“+d€" +d, /€™ +d,+d,x 20
y(X) 6EI(9J 2| (QJ 3 1 2 3 4 (20)

Also, substituting Eq. (20) back to Eq. (16), tlemeral solution is obtained fov:

(c, —dg)x—d—z“x2 +c, +d,%e™" —d, %" +cg’e*’? +c,g%e "

2 2
+ q (¢ 4 _ q Xz_CskAG £ X2
24EI1\ g 2kAG 6EI | g

Equations (20) and (21) contain a total of 8 camistec, andd, (i =1.4). These constants can be

w(X) = (22)

obtained from the 4 boundary conditions, whichwllor 8 independent boundary conditions (Egs.
l4ato 14d).
It is interesting to examine the physical implicatiof the shear gradient length,since is a

function of the cross-sectional shape and the natelengthg. The shear gradient length, for a

rectangular and a circular cross-section, respagtiis:
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: and oire. (22)

where D is the diameter of the circular cross-secand h is the height of the rectangular cross-
section.

The normalized internal length parameitéqg, is plotted vs. the ratio g/h and g/D for the

case of rectangular and circular cross-sectiompeasrely, in Fig. 2. It is observed that the shape
cross-section has a minor effect on the normalizestnal length.

Also, the ratio? ./ /. (circular vs. rectangular cross-section) is pbbtis. the ratich/Din

Fig. 3 for different values of the internal lengty, As noted above, agbecomes very small, the

ratio ¢ /¢

«t approaches asymptotically the value of one. Tloegefas g becomes very small the

influence of the shear gradient length is not dyeaffected by the shape of the cross-section.
Furthermore, there is an interception point of thieves for different g/h values tat 086D, the

same for all values @f, for which it is true that, =/,.,. It is noted that whert . > /¢ ., the

circular cross-section is stiffer than the rectdagane and vice versa.

1
= 081 ——Circular cross-section
? el e Rectangular cross-section
@
< 0.6
£
2
£
- 0.4
(]
N
IS
£
s 0.2+
=z

0 T T T T

0 0.2 0.4 0.6 0.8 1

g/h org/D

Fig. 2. Influence of g/horg/D, on the ratio figr the case of rectangular and circular cross-
section, respectively.
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Fig. 3.Internal length ratio of circular vs. rectangulaesss-sectiory, . / ¢ vs. h/D and the

gradient lengthg .

rect ?

3. EXAMPLES
Determinate beam: cantilever with a point load at lhe free-end
We consider a cantilever beam of length L, loadgd point load at its free-end, as shown in Fig. 4.

The beam has a rectangular cross-section with g and height, h, ankl= (5v + 5) /(6v + 6) *°.

| L [

lp

" pUuUX

W,z

Fig. 4. Clamped beam of length L, loaded by a point |¢adat its free-end.

The classical boundary conditions are:

w(©0)=0, y(©0)=0,Q(L)=P, M(L)=0 (23)
The non-classical boundary conditions are assumeéd:t

v o W o my=o0, Y(L)=0 (24)

dX x=0 dX x=0
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The first two non-classical conditions imply thadetbeam achieves maximum flexural and shear
stiffness without enforcingn and Y at the fixed-end. The last two conditions implgattthere are

no double bending moments and double shear fotcite dree-end. The above conditions define a
set of 8 linear algebraic equations that can beeslolor the 8 unknown coefficients of Eqgs. (20) and

(21). The coefficients for the case of fixed-endridoaded by a point load at its free-end are:

c - P N e’ - P
' KkAGg[l+et?)’ 7 kAGgl1+e™? )’ T KAG'

.  PKALZ* @1+ %) — 20+ v)g 1 €0 - 1)) P L)
4 = _

d = ’ 25
KAQ2EI(L+ e %) o Elgta+et) >
__Pﬁe“/' (LeL/( + 1) B PES(LeZLM 4 20e-" —L) __P_ng
> EIgPret’) T Elg*@+e™’) " Elg’

The deflection at the free end of the gradient Bhemko beam is:
2L/¢
1+ {ﬁj_l—e
L 1+ e2L/(

/ 21+62L/Z_%L/( PL (gjl_GZL/g .
L + 1+| = |0 |= W, + W, 26
{Lj 1+e2L//, kAG L 1+eZL/g ar gr ( )
et g
+3[Ej 1

Wherewgr is the flexural part anav;, the shear part of the deflection.

3 2
W, (x=L1) =&(ﬁj
3ElI\g

Note that Eq. (26) predicts the classical Timosldn&am elasticity solution (including the influence
of shear) in the limit thay >0 (//g > 1):

3

=wh+ws (27)

wherew?is the flexural part andvthe shear part of the deflection. Note that@s-> «, then

W, =Ww) andw, = Wgr, which is similar to the Bernoulli-Euler solution.

The deflection at the free end of the beam predibtethe gradient Bernoulli-Euler solution

(see Eq. (9) in Giannakopoulos and Stamé&i)lis:
1- {gj (COSV(LJ + _r + (Ej tan}{kj - 1}
PL® L g) coshl/g) g g
- + {gj (tan}{kj + (Ljsinb{kj tan}{LD
L g g g g

W ge (x=L)= = WZr_BE (28)
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The normalized flexural deflectiow,” /w?®

'gr cl?

Is plotted in Fig. 5 against the normalized paetan

g/ L, for both the Timoshenko and Bernoulli-Euleadjent solutions assuming tlggt ¢ . This is
true wherg/h << 03(see EqQ. 18). The two solutions then become idainand yield the same

prediction for the beam deflections. Therefore, Timmoshenko solution reduces to the Bernoulli-

Euler solution when: (a)G >« and (b) the scaling influence og through the length/is
neglected.

The normalized deflectionw , /w,,, is plotted in Fig. 6 against the normalized paeter

cl?

g/h, assumingt/h= 3andv= Q As g/h increases, i.e. as the dimensions of thesesection of

geometrically similar beams become smaller, thenbdsecomes stiffer. Unlike the gradient

Bernoulli-Euler solution, which can account only fine influence ofg/L on the deflections, the
gradient Timoshenko solution is able to captureatiditional stiffening effect of the ratiog/h . On

the contrary, the Bernoulli-Euler prediction rensathe same for the same span but different cross-

s
cl?

section. Also, the normalized shear deflectiar, / wy,, is plotted in Fig. 7 against the normalized

parameterg/LforL/h= 3and v= Q The shear stiffness increases as g/L increasésthie

increase in the shear stiffness is less signifidchan that observed in the flexural part of the
deflections.

In order to compare the present model againsteblts from a 2D finite element model by
Giannakopoulos et &, a complete expression for the deflections ofgiaelient Timoshenko beam
is used the finite element results were derivediragsy v = 026 and are shown in Fig. 8 (triangle
symbols). The present model (gradient Timoshenkoenatches overall the finite elements results
much better than the gradient Bernoulli-Euler dohyt as expected. The finite element results
support the present choice of boundary conditidisce considering alternative non-classical
boundary conditions resulted in a considerable aten from the finite element results. For quite
short beams, the error is of the order of about 40 comparable to that for the Bernoulli-Euler
beam. The error is rooted in the Timoshenko kinesgsee Eq. (1)) which neglect the prismatic
surface boundary layers. Taking a Poisson’s ragioesof v =0 brings the FEM results for a very

short beam closer to the Timoshenko approximation.
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Timoshenko beam

Fig. 5.Influence ofg/ L on the normalized bending deflectimrg, Iw
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at the free-end of a

cantilever beam for the gradient Timoshenko anah&alli-Euler prediction g=/, v =0).
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Fig. 6.Influence of g/h on the normalized deflection, /w
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g/h

0.6

cl?
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at the free- end of a cantilever beam

with L/h =3, v =0 for the gradient Timoshenko prediction.
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Fig. 7.Influence ofg/ L on the normalized shear deflectiorj, /w
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at the free-end of a cantilever

beam withL /h = 3, v = Ofor the gradient Timoshenko predictions.

1
0.8 - Timoshenko beam (L/h=2)
------- Bernoulli-Euler beam

c A Finite elements analysis
2 0.6
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8
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Fig. 8. Comparison of the finite element analysis resjtane-strainy, = 0) for the 2D gradient

model by Giannakopoulos et3lwith the gradient Timoshenkd.(h = ,2= 026) and gradient
Bernoulli-Euler beam predictions.

Next, the variation of the axial and shear stralmng the length of the beam is considered.

The axial strain at the extreme fiber of the cresstiong,, is:
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x @&/ (e2L/( pCUS (D) )

oY 1_I_ 1+’
€x (x) = go(aj AV CRESCUS) (ez(x/L)(L/() _1) (29)
L 1+
whereg, is the maximum strain as predicted by classicah8alli-Euler beam analysis and is equal
to:
PL
€y = W (30)
The shear strain,, is:
(2L1g)~(xIL)(LIG) | (x/L)(L/g)
e +€
Vxz (X) =Yo 1- 1+ ezL/g j| (31)

wherey, is the shear strain as predicted by classical $iranko beam analysis and equal to:

I
kAG

The normalized axial straig,, /¢,, is plotted vs. the non-dimensional distanxde. in Fig. 9

Yo (32)

for the gradient Timoshenko beam for different esluof the normalized paramegél and
L/h=3, v =0 (the diamond symbols correspond to the classieah®@ulli-Euler beam predictions).
The solution for small values of g/L approachesngsptically the classical Bernoulli-Euler

prediction €,, — ¢€,). As g/L increases the departure from the classical solutiecomes more

significant (,, — 0). As observed in the gradient Bernoulli-Euler $ioln, the maximum strain
does not occur at the fixed end of the beam (see Fiin Giannakopoulos and Stamotijs
However, unlike the gradient Bernoulli-Euler sobutj the gradient Timoshenko beam has

approximately zero axial strain at the free endgnefor large values ofg/L. The fact that the
maximum strain does not occur at the clamped enthefoeam is due to the imposed boundary

conditions,\|f'|X:O = 0. Actual measurements of strains on the microcargifs clamped end, to the

best of our knowledge, do not exist in the literattBuch measurements are hard to obtain due to the
scale of the problem. A definite answer on whethdroundary layer exists is an issue still to be
explored. However, it is interesting to note thatent fatigue tests on microcantilevers with
dimensions comparable to the dimensions of theasiaucture have shown that the fracture location
does not occur at the fixed eAd®3*of the cantilever. On the other hand, a fatigud tEs
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microcantilevers with a fully homogeneous microstmwe results in a failure at the fixed end of the
beant®3¢
The normalized shear stray, /y,, is plotted against the non-dimensional distaréé in

Fig. 10 for the gradient Timoshenko cantilever beton different values of the normalized
parameteg/ L (diamond symbols correspond to the classical oBinenko beam predictions). The
solution for large g/ L values approaches asymptiiyiche classical Timoshenko beam predictions
(v, = 7o) This is the opposite to what was observed fer nbrmalized axial strains. For very
small g/L values shear can be neglected (> 0), but, as it was pointed out above, it does not

mean that the gradient Bernoulli-Euler solutiorrasovered. Furthermore, as g/L increases, shear
becomes important, which is true when the slendsrmg decreased or when the microstructural

average scale is of the same order of magnitutteeadimensions of the beam.

1
& g/L=0
0.8 g/L=0.005
g/L=0.01
c
| D U PP g/L=0.05
E 0.6 - —--—-g/L=0.1
8
) .
S g
N 0.4 - ’,' \"~\\
E )' ~
S R
0.2 . e
: // - N
v/ - _ _
'/ — N
0 T T T T —
0 0.2 0.4 x/L 0.6 0.8 1

Fig. 9.Influence of the normalized parametgtl. , on the normalized axial strain,, /¢, , along
the length of a cantilever beam with= a@dL/h= 3
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Fig. 10.Influence of the normalized parametgtl. , on the normalized shear straig,/y, , along
the length of a cantilever beam with=0 and L/h= 3

Indeterminate beam: beam with both ends fixed

Little attention has been given to the solutiorsta#tically indeterminate structural problems within
the framework of gradient elasticity. In order tenmtbnstrate how the gradient Timoshenko beam
solution can be applied to such problems, a beaspanfh L and both ends fixed loaded by a point
load P at midspan is considered, as shown in Higltis noted that this beam configuration can be

found in nanoscale elements (see Salvetat%®Niland LP9).

L/2 . L/2

BT -

w,Z

Fig. 11.Beam of span L with both ends clamped loaded jpgimat load P at midspan.

Making use of the symmetry of the problem, onlyf lndithe beam is modeled. The boundary
conditions at the fixed end at the left support are

w(©) =0, y(© =0,

o, v
dx

=0 33
x=0 dX ( )

x=0
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The 4 additional conditions in order to define fodution at midspan are:

QLI =—P/2, w(L/2)=0, I

o, v
dx

x=L/2 dX

=0, (34)

x=L/2
The conditions at midspan imply that the beam igssence fixed but allowed to deflect
vertically. The coefficients for this case are:

.- P . - pe-'% o - PL d - PL(
' 2kAGglL+et®)" T 2kAGg+et®)’ T 2kAG' ! 8EIg-e"'*)

P
c, = 8I(L+v)g® —8let'* 1+ v)g® + kAL /* (L+e"'%9)), 35
) 8kAngI(1+eL,zg)(< )9 a+v)g ( )) (35)
d. - PL/e"'? _ PLAEY* +)) _ PL(L? +20%)
> BEIg*@-e“'*)" " S8EIg?E'* -1 8Elg?

The plots and details of the solution will not lepeated here as in Section Ill.1 since all comments
and remarks hold true regardless of the loading suqgport conditions. The prediction for the

maximum deflection at midspan will be simply presenas:

g 1+ eL/Zk
PL (Y +12(fj 1-et* PL 1-e-/
w,, (x=L/2)= i , +———| 1+ A(QJT (36)
192EI\ g {g} 1+ b/ 4kAG L/)1+e-'9
+24 — | ————
L) 1+e"'%
In the limit,g — 0, the classical Timoshenko beam solution is receer
PL PL
w,=w(Xx=L,g=0)= + 37
a =W 9=0) 192E1  4kAG 37)

If, it is also true thas — o , the classical Bernoulli-Euler solutioRL®* /(192 )obtained.

4. NON-LOCAL TIMOSHENKO BEAM MODELS
It is interesting to compare our solution with atlgeadient Timoshenko beam solutions available in
the bibliography. Non-local Timoshenko beam modelse been proposed by Lam ef,aMa et
al2’, Wang et af4, Asghari et af® and Lazopoulos and LazopowulasAn epoxy beam with material

propertiesE = 144 GPav = 038andg=176u mis considered as an example. The beam’s length,
width and height are. =10 hb = 2handh = 2g, respectively. The applied load = 50uN . Note

that most of the above authors have considerethidasicase of a simply supported beam loaded by
a point load at midspan. The maximum deflectiorthef cantilever beam is equal to the maximum

deflection of a simply supported beam if we setdbpelied load and span of the simply supported
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beam to be double of those for the cantilever b@amfor the simply supported beaR=100uN

andL =20h). Itis noted that only Lam et 3l Asghari et af® and the present work have solved the
problem in closed-form. The other works use Fousiies to describe the solution to the problem.
The normalized maximum deflection predictions facle model are listed in Table 2.

All models assume the same Timoshenko kinematignagons and all can capture the size
effect in stiffness. As it can be seen in Tablalipplar elasticity models give stiffer responsentha
both the micropolar and couple stress models, ag $ihould. Furthermore, micropolar elasticity
models give stiffer response than the couple strextels, as expected.

Two other Timoshenko beam models have been repbgedazopoulos and Lazopoufds
and Wang et &? using the same dipolar strain gradient theoryadrticular, Wang et &f used three

material lengths (,,/,,/,) that are taken equal in their numerical examplesopoulos and

Lazopoulo$® have correctly used the principle of minimum ptirenergy and have come up with
4 boundary conditions (BC), as in the present whidwever, instead of enforcingl =m= & the
hinge supports, they useg =y'= (3ee the recommendations of Table 1 and Egs. if25)
Lazopoulos and Lazopoufds

Although the variational principle allows their ¢be of these BC’s, a hinge support implies
absence of bending moment and, in the case ofdhegitabeam, absence of double bending moment

as well, something which is not satisfied by chogsiy =y’ = 0. In the case of Wang et4.in

their minimization principle, the term associatedhww’, was attributed to the work done by the
bending moment M and not by the double shear foteas has been also done in this work.
Actually, they do not prescribe at all the doulllea force quantity in the expression of the exern
work done and, by doing so, the tedhy in the strain energy has no equivalent in the &sgion of

the external work (see Egs. (27) and (30) in Wang #). It is believed that since the inclusion of
axial stress gradient results in double bending srdnthe inclusion of shear gradients should result
in double shear forces. Furthermore, double shmae$ should be treated as a separate quantity to
the classical bending moment, although their dinoerssare the same. For this reason, although their
formulation requires four (4) BC’s, one of theng.ithe BC steaming fromiy is suppressed (see
Egs. (35) in Wang et &f). Regarding their choice of BC's, they assumedséime BC'’s with the
couple stress model of Ma et?4].but this is possible for the particular choicetlid Fourier series

expansion fow andy that was assumed in their work.
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Next, the three works (present, Lam ef ahd Asghari et &) that solve the problem in
closed-form are considered and their predictiorthéncase of a less slender beam are compared. The

same example as before is considered but for dhesfgL = 5h. The w,, /w, ratio for the three

models becomes 4.42, 2.19 and 12.35, respectifsbuming a slenderness value equal to one-half
of the original value didn't affect the Lam et%gbredictions since this model accounts only for the

influence of theg/h ratio. If g/h is kept the same, any changabénslenderness of the beam will

not affect the Lam’s prediction. Both, the presant the Asghari et &. models predict higher
flexural stiffness values than the classical moddwever, the Asghari et . model predicts
surprisingly high increases in the stiffness valugsce it predicts that the stiffness for g/L=0s1
eight times that for g/L=0.05.

The aforementioned comparisons assumed the same fealthe internal length. Clearly, all
theories can be forced to give the same stiffnésbe material length is taken appropriately. How
appropriate each theory is depends on the masrsaém. Consistency for a theory requires testing
independent beam configurations for the same na&tdro the best of our knowledge such tests do

not exist.

Table 2. Maximum prediction values for different non-loGamoshenko beam models for the case
of an epoxy beam (internal length is assumed threesa all cases).

Non-local Timoshenko models W, /Wgr
Dipolar elasticity

Proposed model 412
Lazopoulos and Lazopoufss 3.85
Wang et aP 3.00
Micropolar elasticity

Lam et aP 2.19
Couple stress elasticity

Ma et al?’ 1.58
Asghari et af® 1.59

5. EXPERIMENTAL EVIDENCE ON MICROCANTILEVERS
In this Section, experimental results on microdawérs available in the bibliography are used in
order to explain the size effect observed. Furtloeemthe predictions of the present model for the
microstructural length are compared with the prgais of micropolar elasticity in order to illustea
another import issue concerning the validity of #hocal models.

Micropolar elasticity predicts that the stiffness of a cantilever beér, dP/dwgr , is:

Structural analysis using a dipolar elastic Timadtoebeam — Application to microcantilevers 57



SIZE EFFECT IN SEMI-BRITTLE MATERIALS AND GRADIENT THE®IES WITH APPLICATION TO CONCRETE

b, )
K=K, 1+ (Tj (38)

where K is the classical prediction ar‘ﬁnL is a length parameter equal to:

b,? = (L06—154v)A? (39)
wherée) is the micropolar elasticity length, if all the teaal length scale parameters are assumed to
be the same.

McFarland and Coltdd tested polypropylene (PP, Basel/Montell ProFax 3332
microcantilever beams manufactured by injectiondimg) with two different mold geometries and
compared the measured stiffness of the beams. Ebengjry of the microcantilevers and the
experimental to classical model stiffness ratiauealK,,,/ K, are summarized in Table 3. The last

two columns of Table 3, list the internal lengthiraate according to the gradient Timoshenko beam

solution and micropolar elasticity, respectively.

Table 3. Geometry and results for polypropylene microcamtl tests by McFarland and Coltan

E v L b h Kexp/ Kel 9@ L O

(GPa) (um) (um)  (um) (um)  (um)
3.3 0.3 836 125 29.37 5.075 16.87 24.24
3.1 ' 398 123 15.85 4.347 8.23 11.86

@ strain gradient Timoshenko solution
®) micropolar elasticity solution

Lam et aP tested epoxy polymeric (Bisphenol-A epichlorohgdriesin with 20phr

diethylenetriamine hardener) casted microcantiewéithe same slenderness ratio and four different

thicknesses. The geometry of the microcantilevensl aheir stiffness ratio&,,,/K, are

summarized in Table 4 (Fig. 12 in Lam ePjalThe last two columns of Table 4 include the gad
Timoshenko beam and micropolar elasticity inteteabth estimates. The proposed model predicts

an internal length value of 6.73 £15%#hwhile the micropolar elasticity a value of 10.617%um.

Table 4. Geometry and results for the epoxy polymeric niardgilevers tested by Lam et®al.

E h Slenderness g®@ A ©
\Y K / K
(GPa) (um) Lih PR um)  (um)
20 2.357 6.41 9.53
38 1.321 572 8.80
15 0.3 75 10 1.143 7.27 11.60
115 1.071 7.51 12.53

@ strain gradient Timoshenko solution
®) micropolar elasticity solution
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Ding et al® tested LPCVD polysilicon microcantilevers with stant thickness and varying
the L/h ratio. Based on these flexure tests they ddrase estimate for the modulus of elasticity, E,
using classical elasticity. However, in a sepapaige?®, the same authors tested the same material in
tension and found a different value for the modufiglasticity. The modulus of elasticity estimate
derived by the tension experiments was used invtbik to interpret the flexure experiments and it
was found that the beams exhibit a stiffer respdhae that predicted by classical elasticity. The

geometry of the microcantilevers and their relastiéiness K.,/ K,) are summarized in Table 5.

The last two columns of Table 5, list the estimaibthe internal length obtained from the gradient
Timoshenko beam solution and micropolar elasticggpectively. Our model predicts a value for the

internal length of 0.29 +13%mwhile micropolar elasticity predicts a value of ®#414%um.

Table 5.Geometry and results for the LPCVD polysilicon mizantilevers tested by Ding et?al.

E© L b h g® A®
Kexp/ Kl

(GPa) @m)  (wm)  (um) P (um) (um)

16 50 1.215 0.278 0.425

34 40 1.209 0.295 0.413

164 023 4 40 24 1.154 0.248 0.354

18 10 1.276 0.324 0.475

@ strain gradient Timoshenko solution
®) micropolar elasticity solution
© derived from tension experiments (see Ding &?all.

Hong et alt* tested Cu microcantilevers keeping the same vadthvarying the L/h ratio.
They also used the flexure experiments to derivessiimate for the modulus of elasticity, E, using
classical elasticity. Hunag and Spaefiezonducted uniaxial tensile experiments on thinfiGos
and reported a Young’'s modulus value. The valuedas the uniaxial tests was used in this work
and the experimental stiffness reported with the predicted by classical elasticity were compared.

The geometry and the relative stiffnesg,,/ K, of the microcantilevers are summarized in Tdble

The last two columns of Table 6, list the estimaibthe internal length obtained from the gradient

Timoshenko beam solution and micropolar elasticity.
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Table 6. Geometry and results for the copper (Cu) micrakzvers tested by Hong et 4.

E © L b h g®@ )
\Y Kexp/ K¢l
(GPa) (m)  (m)  (um) P (um) (um)
129 50 10.5 1.021 0.361 0.630
102 0.31 104 50 2.8 1.177 0.351 0.497

@ strain gradient Timoshenko solution
®) micropolar elasticity solution
© derived from tension experiments (see Huang ar S

Obviously, all non-local theories can predict a nostructural length and the magnitude of
this length will vary depending on the theory udddvertheless, consistency of a theory requires thi
prediction to be the same for different geometbesfor the same material. Both non-local theories
predict an average value with approximately theesamor. Furthermore, both theories are able to
explain the size effect measured in the experimertd quantify the departure form the classical
elasticity predictions. The main difference is lie tmagnitude of the internal length predicted key th

two theories. The micropolar length is approximat% greater than the dipolar length=1.59).

As mentioned in the introduction (Section Ill.1het microstructural length parameter is
associated with the microstructure of the matdriahn average sense. In other words, the exact
physical correlation between the internal lengthd ahe dominant feature of a material’s
microstructure is a topic still wide open. The siegp correlation would be for the internal lengbh t
be equal to the size of the dominant feature ofnterostructure. From the experimental results
presented in this Section, only Ding et® girovide information about the microstructure oé th
material used in the experiments under flexureirfigseze of polysilicon in the order of Oi2n). The

present model predicts an internal length valu®.80 +13% um, whereas micropolar elasticity
predicts a value of 0.42 £148n. It seems that the proposed model successfulldigieethe size

effect dependence on the microstructure’s scaliisiparticular case. Concerning the other three
experimental works, information concerning the mstructure is not provided by the authors. The
predictions of both theories fall within the typicange of values for the microstructure scale for
these materials. In the absence of the expliottriétion for the material used in the experimemts,
conclusion can be made on which theory is morerateu

The correlation between the dominant feature ofntherostructure and the internal length
may be more complex. For example, size effect le@s lalso observed on ZnO nanobelts with the
structures being stiffer as the diameter of thessisection decreased from 40 nm to 10°%nm

Although the ZnO nanobelts are single crystallimpiaftzite-structured) and can be seen as
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homogeneous materials, their source of size effesbmehow geometric. Essentially, as the scale
decreases, the surface-to-volume ratio increasesiderably and this results in more atoms being at
the surface than in the bulk. When deformation ogcthe surface reconstruction affects the
mechanical properties of the nanowire. This wadicently explained by molecular dynamf€s
simulations, but can be equivalently explainedha tontext of gradient elasticity, if an internal
length is assumed. Obviously this line of thinkisgather speculative at this point, but as stmastu
are pushed to the limit, surface effects could ml®vexplanation on why materials that are
homogeneous in the atomic level will exhibit sifiees.

Finally, the difference between the predicted matength values leads to another important
observation regarding the limitation of both theeriAlthough the formulae allow for any value of
the internal length, it is tacitly presupposed tiha&t microstructural length is of the same orddess
than the dimensions of the cross-section, otherthiseassumption of a continuum is compromised.

In other words, the prediction must satisfy tligth or A /h is less than or equal to 1. Son efal.

performed cantilever flexure tests on thin filmsadiminum and gold with grain size to thickness
ratios close to 1 and in some cases greater tham this extreme limit, it is questionable whether
isotropic gradient theories are still applicablécipolar elasticity reaches this threshold for bena

stiffness rations than the present strain gradienbshenko model.

6. CONCLUSIONS
The governing equations and boundary conditionghferproposed model were derived for a strain
gradient Timoshenko beam using a simplified (digokirain gradient theory assuming only one
additional material length. The problem was solwvedosed-form and a methodology was described
for solving more complex beam problems, i.e. indeteate beam configurations. This model
reduces to the gradient Bernoulli-Euler solutiod @am the classical Timoshenko solution, when the
necessary simplifications and limits are considexed also is in good agreement with the 2D finite
element model. Furthermore, the proposed modelus@d to interconnect the size effect observed in
experiments of microcantilevers, obtaining gooduitssregarding the material length. Finally, the
proposed model was compared with the micropolastielty model and it was found that both can
capture the size effect in a consistent mannerdewhe proposed model predicts approximately 50%

smaller values for the internal length than thaidgsted by micropolar elasticity.
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CHAPTER IV
A GRADIENT ELASTO-DAMAGE MODEL FOR SEMI-BRITTLE
MATERIALS WITH EVOLVING INTERNAL LENGTH —
BEAMS UNDER 4-POINT BENDING

1. INTRODUCTION
The aim of this work is to present a new approatiicivis based on a strain gradient damage
constitutive law for modeling semi-brittle matesigand composites. There are two reasons that
justify such an effort. Materials which exhibitatr softening are size sensithand their inelastic
response manifesting itself through microcrackingusd be described using a non-local médel
other words, a length parameter is necessary rgtfenmodeling any size effect present but also
for ensuring that damage is not localized. A strgiadient theory can include such a length
parameter and can address these issues in a glyysassistent manner. Gradient theories can also
address the issue of size effect in elasticity.

Elasticity and inelasticity for the case of softepimaterials are coupled by the very nature
of the problem since damage is defined as a logbeoinitial (elastic) stiffness due to material
degradation. In this work, a weak type non-locaihfolation based on strain gradient elasticity is
used and damage is seen as a process affectiggattient internal length.

The first issue addressed is whether the gradmitetrial length should evolve with damage.
A constant internal length is assumed by a numbaxisting non-local damage theori&s but
there is strong evidence that this length is netstant. Geers et #.considered a finite element
formulation of a gradient damage model and condutti@t an evolving internal length with an
upper bound limit is necessary in order to predidamage zone of a finite width. Pijaudier-Cabot
et all” used acoustic emission experimental results amdomiechanical arguments to justify that
the internal length increases with damage staftiogn an initial value. Aggelis and Shiot&ht®
considering Rayleigh wave propagation in cement#tionaterials with thin inclusions simulating
prescribed levels of damage, found increasinglgnster dispersion of the Rayleigh waves with
increasing damage. This, in the context of a gradiastic damage model, can be explained by
assuming an internal length increasing with darffage?! and Li et af? arrived at the same
conclusion by using a homogenization procedureadeermto derive a strain gradient constitutive law
for the case of linear-elastic materials with marexks. In the present work, a thermodynamic

formulation is employed to confirm this. However, has been shown that, based on
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thermodynamic® and experimental evidence on aluminum and nicketa¥bream$’, this length
should decrease with accumulated plastic strains T due to the inherent differences in the

physics of gradient plasticity and damage theoeg (Sig. 1).

»Cel 777777 S

€,

e € |
Vgpl Sd 8el

\J

(a) Plasticity (b) Damage

Fig.1. Stress-strain diagram illustrating a loading-udiog cycle: (a) plasticity and (lsjamage

(“el”, “pl” and “d” denote elastic, plastic and dagpe, respectively).

2. THERMODYNAMIC FORMULATION

A thermodynamic formulation of a classical damagelet based on the Helmholtz free energy was
proposed by Mazars and Pijaudier-Cabd¥lurakami and Kamiy&, Wu et al’ and many others.
However, in the present work, the approach of &rbased on Gibbs energy is followed (implying
isothermal conditions). Ortiz’'s model for concretas extended to include strain gradient effects by
employing a simplified model with only one lengthrameter, g, which is the simplest case of
Mindlin’s?® Form Il strain gradient elasticity theory.

Gibb’s energy density for isothermal process wittie framework of strain gradient

elasticity in a Cartesian frame() is:
G=1T1C1T+17\..'.BZQ\.—AC Q)
2 2
wheres(1;) is the Cauchy stres§; (Cy, ) the 4th-order elasticity tensdt(1;, ) the double-stress

taken ash =gVt (A = 9°0t; /X, ), B the 4™order tensor taken &8 = (1/g*)C and A°the free
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energy density for microcrack formation. The synsb©) and (. ) denote the two- and three-index
product, respectively, i.e. (B:A); =B} LoBih=A, B, A (C)y =Cyy T

ijmn "V kmn » ik Pijmnkmn »
1:C:1=1,Cy 1y, and repeated indices imply summation from 1.to 3
The stress-strain relations corresponding to Gilgniergy density (Eqg. (1)) are given by
£=0G/0r=C:t=¢°+¢andk=0G/0h=C:Vt=Ve=V(e°+¢'), where g(g) is the
infinitesimal strain tensor and = Ve (i«,; = d¢;/0x, ) the strain gradient8order tensor. Also, the

total stress isc=1-VA=1-g°V?t. The equilibrium equations and the kinematic baupd
conditions originating from the total stress expies can be found in Georgiadis and GrentzZ8lou
The stress-strain time rate relations are given hy=C:1+C:t=¢°+¢ and
K=Vi*+Ve =xk°+x', where ()=a/6t and the superscript “e” and “i” denotes the etastid
inelastic rate of deformation due to degradatiothefelastic material properties, respectively.

Microcracking can be physically viewed as addedilfi¢ity to the initial flexibility of an
uncracked material. Following Ortfz the elastic compliance tensor is taken as a cteization of
the state of material damage. Therefore, the elastnpliance can be described by an additive
formulation:

c=C’+cC° 2
where C° is the elasticity tensor of the uncracked matenigially assumed as isotropic ar@f is
the added flexibility due to microcrack opening anthe current applied stress field.

In essence, the inelastic flexibility is the suntlwe initial plus the additional flexibility due
to the presence of distributed microcracking in thaterial which is justifiable in terms of the
softening and is in line with self-consistent cédtions of the overall elastic compliance of elasti
media with distributed crackifg® Hence, the total strain and strain gradient dueracking can
be written as:

e=(C°+C°%):t=¢+¢°

K=(V£0+Vzc=KO+KC 3
Opening and closing of microcracks
Cracks in concrete, as well as in other quasitenttaterials, can develop even under compressive

stress conditions. Also, opened cracks can clodenah propagate further. The closing of cracks
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and the resulting stiffening of the material exptathe characteristic S-shaped hysteretic loogds tha
for example are observed experimentally in flexanaimbers subjected to cyclic loading.

In order to mathematically model opening or clos&drocracks, the positive and negative
orthogonal projectiong®”and P~ of the strain space onto the positive and negatorees C* and
C are introduced. This operator assigns to everye sthtstrain ¢ its point P'eand P ¢ on

C*"andC", respectively. Ife®and d®(a= 12,3) denote the eigenvalues and eigenvectors of the

total straing , respectively, so that; = >¢®d®d® , then, the positive projection afis given by:
a=1

(P'e), =¢; :§l<s(a)>di(a)dj(a), where<x>:(x+|x|)/2 is the Macauley bracket, and the negative

projection isP~ =1 — P (I =identity tensor).
For a given state of stressconsistent with the closing mode of microcracks, following

minimization problem must be satisfied:

—c 2 _
minimize:%s:(C%C ) :g-1:¢ subjecttoe*@ >0 4) (

where C’ is the added flexibility due to opening of all micracks and:°® are the eigenvalues of

the inelastic straing® =¢-C°: 7. For a given state of stress gradi&ht, the minimization problem

is:
minimize: %Va (CO +Ec)l :Ve-Vr.. Ve subject to:Ve*@ >0 (5)
The solution to problems (4) and (5) can be appnaexed respectively as:
£~C%:1+P*(C :1") andVe~C°:Vt+P*(C : (V1)) )(6

3 . .
where t; =P'(1,) = z<r(a)>qi(a)qj(a), t®and q® the eigenvalues and eigenvectors of and
a=1

(Vo) = §(6<r‘a)>/6xi)+qj(a’q§a) (for Eq. (6a) see Orttd). In order the stress-strain relations are

a=1
consistent with Egs. (6), thesf =C°:1=P*(C :1*) and V&°=C°:Vr=P*(C":(V1)*) should
hold true.

Finally, the added flexibility tensor due to theeaphg of microcracks can be approximated
as:

C°=P*:C :P" (C% =P"jm C mnpaP paks) (7)
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Recalling also that = C°: 1, the positive and negative strain projections dasethe positive and
negative stress projections can be approximated Rigs®)=P" (Ec :P* ('r)): P*(Ec :'r+)

andP™ (£°) =P~ (C_Ic : 1,-’), respectively.
To further illustrate the necessity of the abovehamatical manipulations, a microcrack
normal to a unit vecton is considered. Any stress acting upon a planaraniack can be analyzed

in any of the four possible loading configuratiothspicted in Fig.2. Cases (b) and (d) refer to
nonzero positive projectionstE& 1) while cases (a) and (c) to nonzero negative ptiges
(t=1"). The orientation of the stress in cases (b) ands( normal to the crack plane, that is
n-t*-n=0 and n-t"-n=0, respectively, preventing crack propagation. Tfegeg microcrack
opening occurs due to a tensile stress in casan@)a compressive stress in case (a). These two
cases correspond to a tensile and a compressivengpmode 1 and t, respectively. Thus, the

added flexibility tensor due to microcrack opencan be decomposedécs=6|cT +E|CC , and the

inelastic deformation due to microcracking can kgressed as :sz +s‘,’c. Microcrack opening

under moded and t implies that::«:fT > Oand s‘fc <0, respectively.

Summarizing, the Gibbs energy becomes:

1‘lr:CO :1'+£1'+ :Cip it +1‘r* Cle T +
G={2 2 2 8)
1 2y, . 0. 1 2 + . ~C . + _pC
2g Vt..C .V‘t+zg (V)" -.Cir (V1) -A
It is true that the stress gradient in Eq. (8) meBionly moderlcrack opening since there are no

terms of the typ&vt) . This is further clarified in Section IV.3.
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(c) (d)
Fig. 2. State of microcracks: (a) and (d) opening modeafid (c) closing mode (Ortiz, 1985).

Damage rules

The evolution of the tensorial damage parameéfé(Eq. (2)) can be described based on the

evolution of C¢ according to a damage rule of the general f@rfn- E,CT +E,°C (Ortiz?8) with:

ClcT =pR,, () andE|cC =HR|C(T) 9)
whereR,_(t), R, (r)are material response functions™@rder dimensionless tensors) which

determine the direction in which damage should p@nd p is an internal scalar parameter

(dimensions “arealforce”), which may be regarded aseasure of the cumulative damage resulting
in a decrease of the unloading elastic modulugldsticity theory, the parametgrresembles the
accumulated equivalent plastic strain. A local@atanalysis for the case of uniaxial tension is
included in Section IV.5, where it is shown that ffroposed non-local model leads to objective and
mesh-independent results if used in a FEM analysis.

Initially, the material is assumed to be uncrackgé 0) and initial conditions reign. The

proposed damage rules presented include only thehga(local) part of the total stress. The
proposed model will be calibrated through experitakstrain data and hence the damage rules will
be associated with the energetically conjugate tipyaof strain, that is the Cauchy part of the tota
stress. It should be emphasized that this assumpts a physical justification since the damage

surface of a quasi-brittle material is establisttedugh experimental results of uniaxial tests iand
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the case of uniform loading there in no gradiefeatf The choice of local stress in Eq. (9) can be
further justified from the work of Simone et *Alwho showed that the use of a non-local
dissipation-driving state variable (i.e. the tatkss or total strain of the gradient formulati@ads

to an incorrect failure characterisation in ternisdamage initiation and propagation ahead of a
macro-crack. In the proposed approach, the inelastrains are used for the tensorial
characterization of damage. A similar approach usel by Bu¥, introducing a mixed (local and
non-local) formulation for damage characterization.

The irreversible character of damage necessithtgs(t> 0. The conditiong > 0 refers to
active damage mechanisms, whjle- Orefers to elastic behavior. Thereforig, (r)and R,_ )

must be positive definite. Furthermore, the inteieagth of the material, g, is assumed to be a

function of the damage level, thatgis g(u), and the rate of change of the internal length is,

§=p(dg/du).

It should be emphasized that the present work sedbaon gradient elasticity, while
inelasticity (damage) is treated as a process taifpeche parameters of gradient elasticity, the
internal length and the classical elastic propsitidn this thermodynamic formulation there are

two internal variables, the damage paramatemand the internal lengthg, with a constraint

demand for the internal length to be a functiontied damage parameter. Based on these
assumptions, the energy density dissipation inéguake Eq. (1)) can be expressed as:

d:%r .C* :r+%gZV‘r . C°:V1 +%(gz)(w)+ A C(VT) —A°>0 (10)
where d signifies the rate of energy dissipationsis.

Substituting Egs.(9) in Eq. (10), the rate of emerglissipation becomes:
117+ ‘R, Tt +%1¢" ‘R, it Jr%gz(V‘r)+ ~ R, (V1)

> It B A ‘
d= n-A°>0 (11)

+gj—3(v1)+ . C (V)
The rate of energy dissipation should be positiveoeding to the P law of thermodynamics.
SinceR, , R, , C} andCj are positive definite and >0, it follows that
dg/du>0 (12)
is true. This shows that if the internal lengtlaliswed to evolve with damage, then it must inceeas

or remain constant with increasing damage.
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The inelastic free energy density,, associated with microcrack formation is a functad

u. The rate of the free energy coincides with thergy release rate per unit microcrack length.

Using a micromechanical model of fracture, as difjoation (see Section IV.3 for diluted

microcracking), the rate of the inelastic free gyeas defined as:

Ac=p 9 =[Et(u)2 +5[@a(u)j Ju (13)

du | 2 3\ oo

where t(u)is a critical stress for damage extension ands the direction normal to the critical
stress (along the microcrack). Note tl&é]l) is half the microcrack length and Eq. (13) recuiingo
tests: a uniaxial testf(u) /0w = 0) to establisht(u) and a pure bending test to estabdigh)/ow .
Substituting Eq. (13) into Eq. (12), it yields:
1

§T+ R, 17 +%‘r" ‘R T —gt(u)2 +%gz(V‘t)+ R (V)T

d= g 10 ot » >0 (14)
g + . ~C. + H
+g—(Vr)" .C (V)" -=| —=
9, (V' -C (V) 3( = a(u)j
Since1 >0, Eqg. (15) necessitates:
%‘l”:RIT :‘F+%1‘:F\’IC :‘r’—gt(u)ZZO, and (15a)
2

1gZ(V‘r)+ SR (Vr)” +g%(V‘r)+ ~.C: (V)" -E(wﬁ(u)j >0 (15b)
2 T du 3\ Jdo

The effects of stress gradient and damage whidbente the inelastic response can be treated
separately in Egs. (15a) and (15b). Eq. (15a) spoeds to the case @f=0 and Eq. (15b)
addresses the influence of the internal lengthargl consequently of the stress gradient. In the
absence of the stress gradient effect in Gibb’sggn@rtiz’s mode is recovered using Eq. (15a).

Next, a stress function F is defined, in the form:

F(r):%'r*'R :T++%T:R|C:T:F|T+F|C (16)

‘R,
Substituting Eq. (16) into Eq. (15a), a damage tioned is obtained as:
O (T, 1) = F(r)—gt(u)z >0, (17)

and if inequality in Eq. (17) is not satisfied theaterial behaves elastically. Also, for further

damage to occur, the equality must be satisfiedexpression (17) (see Fig. 3). Therefore,
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F(t) = (n/2)t(n)* defines the elasto-damage boundary in the loce$stspace. Thus, the onset of

damage is characterized by the criteria:
O (1, 1) = F(1) —gt(u)z —0and(@®/ot): 1= (0F/81):1>0 (18)

These relations imply that for further damage tiness point must lie on the current damage surface
and the stress increment must point outwards oéldic domain. A stress point inside the current

damage surface will imply gradient elasticity.

t(w gh=p =—
ext(y) < x

Elastic region t(w)
(No damage)

Damag O(t,pn) <0
surface

DO(t,u) =0

cxt(n)

Fig. 3. Damage surface and damage criterion in the latatipal stress space.

Associated damage rule
The damage rule is associated, if the followingtiehs hold true for the damage direction tensors:
oF
R.,= Ic™ ,lc -
T otor” ¢ otot
This assumption reduces the calibration to thergetation of the scalar functions F rather than the

(19)

tensorial quantitie®R,_andR, _ . Furthermore, the inelastic strain rate tensor dutamage is:

é:i:C:T=C°:r:(P*fczP*):r:u(R,T:r*+R|C:r’) : 20§
which, using Egs. (19), can be written as:
g L(OFR, dR Y .
g =0 ——+—= |=poF/ot=pod/or (22)
ot ot

Eq. (21) implies that the inelastic part of theastrrate tensor points outwards and in a normal
direction to the damage surface (see Fig. 3). | d¢bntext of a rate independent damage

formulation, as suggested by Ortiz (1983), it ietthat
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| :17+®17+ andR. =c 1
To(ttith)

R le — — _
(1)

(22)

where gis the “cross-effect” coefficient governing thedé of damage under compression

(¢, =0 for no cross-effect)(x® 1), = 1,7, the dyadic product tensor aifd: ) = 7; 7; the trace of

the (t® 1) tensor. The value of the critical streigg) and the “cross-effect” coefficiente, can be

determined from uniaxial test results. Then, th@alge surface simplifies to:

CD=%T+:T++%CET":T_—gt2(u) (23)

It is worth noting that according to the presapproach since the effect of microcracking is
directly linked with the elasticity tensor, an ialty isotropic material would become anisotropic
with damage. In the case of non-associative daneagtition and/or initially anisotropic elastic
behavior, as observed in rocks, microcracking matyoccur along the principal stress trajectories

but localizes along specific weak surfaces in thatemiaP’. Any existing directionality of

microcrack opening, can be included in the respéursetionsR, andR,_.

3. ENERGY DISSIPATION DURING MICROCRACK EXTENSION
Two 2D isotropic cases are considered, as showigird. Case (a) depicts a microcrack subjected
to a uniform tensile stress and case (b) a micobcuader a stress gradient. The model predictions

in this study do not assume interaction betweemtizeocracks and elastic anisotropy.

y
/ /
() (b)

Fig. 4.A crack with a length of 2a under: (a) uniaxialgem and (b) pure bending.

trrtrtrt

v i v vy vy

For a crack of length 2a, loaded by a uniform tensiressy, as shown in Fig. 4(a), neglecting

mode Il the stress intensity factors for modes rdall aré® K, =tJrasin’¢ and

A gradient elasto-damage model for quasi-brittleemials with an evolving internal length 71
— Beams under 4-point bending



SIZE EFFECT IN SEMI-BRITTLE MATERIALS AND GRADIENT THE®IES WITH APPLICATION TO CONCRETE

K, = t/nasinpcosp, and the energy release rate ¢s: (K|2 + KHZ)/E*, where E” = E for plane
stress andE” = E/(1-v?) for plane strain, E is the elastic modulus aride Poisson’s ratio.
The crack can occur at an arbitrary angle valpassuming the same probability of

occurrence at all possible angle values. Therefibve,2D average energy release rate per unit

microcrack length extension, is

dG\ w17, nt?
— )= — |sin = 24
<da> = nj (oMo =—— (24)

Where< > denotes the average of the quantity encloseckibitiackets.
For a crack of length 2a, under pure bending, @asvshin Fig. 4(b), the stress intensity
factors for mode | and 11 8 K, = (dt/dy)(2a/3)*?sin®(¢) andK, = (¢ /dy)(2a/3)¥?sin?(p)cosE)

respectively. The average 2D energy release rataumé microcrack length, a, for all possible

angles, is:

23 foreom-2 59

-n/2

Crack propagation under a non-uniform stress field been considered by Stallybfdsmd used
by Huang and Detourn&yto improve the accuracy of crack propagation mtémtis in quasi-brittle
materials subjected to an indentation.

Damage can be introduced in different ways depgndimthe damage parameter definition.
The damage parametgr, is associated to the damage parameter D through (El) and
differentiating both parts yields:

dD

dEW =

(26)

Accounting for the effect of damage on the Youngisdulus, the free energy density

required to form microcracks should be:

A=t <d—G> (27)
1-D\ da
Thus, the energy dissipated during microcrack pyapan is:
dA, 1 2<<:|G> 28)
dD (@-D)°\da

Making use of Eq. (26), the energy dissipated ducrack propagation can be expressed with
respect touas:
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2
A, =(1_D)ZE*%=E*<"—G>=LZ+1 L 29)
du dD da/ 2= "3ldy

Obviously, the crack length, a, and the internaigth, g, are a function of the damage
parameter. Thereforeg=g(n) =y @ anda=y ™" (g)=&(u). It should be noted that a stress
gradient cannot induce crack opening under a cosspre mode (see Fig. 4). The stress gradient is
essentially a bending moment and thus, one-hathefcrack length will be under a compressive
stress and the other half under a tensile strdes.|8tter corresponds to a tensile opening mede |

whereas the former to case (c) of Fig. 2, whichsdwa& induce crack extension.

4. APPLICATION TO PLAIN CONCRETE
The proposed model is applied to plain concretensesubjected to 4-point bending, with damage
occurring in the middle part of the beam subjediedure bending, where since axial normal
stresses are principal and a uniaxial law for theceete is assumed to be sufficient for damage

characterization.

Uniaxial Response
The uniaxial response of plain concrete under tansr compression is assumed to be of the form:

T, =Eyg;, for g <gg, and,t; = 1-D;)E¢g; ::LE';igi,forsi > g, (30)
+ Bl

where E,, is the Young’s modulus of elasticity of the un&@d material,e, the strain value
depicting the end of a perfectly elastic respors iaitiation of damage an®, (dimensionless),
u, (stresd) are two equivalent damage parameters. The indeg,t is a subscript denoting
compression or tension, respectively.

In a thermodynamic formulation,u is used to avoid imposing the additional
constrainD <1. However, both damage parameters can be used; sinc

1
1+Egu

D=1- (31)

It is obvious from Eq. (31) that i =0, thenD=0 and if u —» «, thenD — 1. In other words,

both u and D describe the initiation and the evolutiordamage in the same way but the limit for

complete damage is bounded in the cas®gfbut this is not true fqr. There is a one-to-one

correspondence between D andnd dD/dHL:O =E,.
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If a relationship of the form:

_ Bi(e/e)
0B S (el ) 2

is assumed for the stress-strain response of ptainreté?, wheref; is the maximum stress, the
strain at maximum stress arffj a material parameter defining the steepness ofsdfiening

branch, a damage law for compressioa ¢) and tensioni(=t) can be derived based on Egs. (30)
and (32):
Bi —1+(gy /‘C'i)ﬁi

D, =0for e<g,,and D, =1- — for e>¢ (33)
B —1+(e/e)"
where the Young’s modulul,, , is equal to:
Bifi (34)

E =
; (B. —1+ (g /)" )5i
The threshold strain valueg,and €., for uniaxial tension and compression, respegtivel

are assumed to occur at a sttéss = 08f, and t,=04f_, respectively. Therefore, the critical

strain, g,, , signifying the onset of damage can be determuséuy Eq. (32). Furthermore, assuming

that the Young’s modulus is the same in uniaxiakiien and compression, an estimate for the

tensile to compressive strain ratio at the peasst(Eq. (35)) is obtained as follows:

i_ Btft(Bc _1+ (SOC/SC)BC) (35)

g, BB —1+ (e /e)")

Flexural response
The local normal longitudinal strains in the pétrthe concrete beam specimens under pure bending
are assumed to be linearly distributed along thethdeof the beam’s cross-section (z-
axis)e,, =¢,, +kz, whereeg_ is the strain az = 0 and k is the curvature. In the elastic region of
the beang , =0 and beyond the elastic limit the neutral axistshipwards £, = 0).

For a given value of k, and using the assumed tawifiaxial tension and compression, the
value of¢ , which satisfies equilibrium is determined throwghiteration procedure. This implies a

1D discretization of the cross-section to stripsdepth dz in order to evaluate numerically the

h/2
integral, N=b [c, dz=0. Essentially, in the proposed model, the inpuapuaater is the curvature
-h/2
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at midspan and the output is the bending momeracigpM = bhr.!{/z?xx Zz, corresponding to the
assumed linear axial strain distribution along hiegght of the cross-section. The number of strips
used to discretize the cross-sectional area isechbased on a convergence requirement of a mesh
refinement so that when the number of strips isbtkxlithere is a change of less thar? kBm in
the predicted value of M. It is noted that the omtpf this procedure is a local M vs. k prediction
curve which is size independent, since it is onliuraction of the assumed uniaxial stress-strain
response. A 2D mesh refinement study is also imduith Section IV.5. The non-local M vs. k
prediction curve is obtained by scaling the localvature estimate using Eq. (44) for 4-point
bending (see Section IV.6). This implies that pcedg size effect for ultimate strength is not
feasible for the proposed non-local model.

The local M vs. k response prediction can be ti@ns¢d to a force vs. midspan deflection
curve by solving the boundary value problem foirapdy supported Timoshenko beam under 4-

poind bending (see Section IV.6). Using Eqgs. (44) é46), a local kinematic expression for the
midspan deflectiors_ is obtained in terms of the curvatuke,, 8, = 0.13611L°k,, whered,,
is the midspan deflection corresponding to the a&wme k. The non-local force vs. midspan
deflection curve is determined by imposing a simkamematic relation between curvature and
deflection, based on the gradient solution of tbariglary problem (Egs. 41 and 45). Unlike, the
local (classical) predictions, the non-local kingimaelation is affected by the internal length, g,
which evolves with damage. Therefore, this kinemediation is computed for the current value of
g, which evolves with damage.

Regarding the evolution law for the gradient lengtth exponential expression is assumed of
the form:

g=g,e"™, for nD>0 (36)
where g,is the initial internal length, D the damage parsmand n a positive constant which
defines the ratio of the gradient valge (at D=1) to the initial gradient internal length (gt D=0).
Since the initial value of the gradient internatdéh is based on elasticity, there is only a single
unknown parameter, n, to be determined based oeriexpntal data in the inelastic region. It is
worth noting that, according to Le Bellego ef‘alattempting to calibrate a gradient damage model

assuming a constant internal length (independenthef damage level) resulted in a lack of

objectivity when experimental data from geometricainilar notched beam specimens were
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considered. This could be partially remedied if inoreasing value for the internal length is
assumed with damage.

5. OBJECTIVITY OF THE PROPOSED MODEL PREDICTIONS
The total strairg, is related to the total displacemeut(e; = (0u; / 0x; +0u;/0x;)/2), whereg; is
the gradient enriched strain. The damage rulegjof{® provide the stiffness evolution as functions

of the Cauchy stress, which in turn relates to the total strain as:C™":¢. For a 1D case, the

equilibrium equation do/ ox = 0) within the framework of the proposed gradient eidzecomes:

80@4_ dc O, 0c0°U doc 0'u _

= i + = 38
Oc OX 0Ot,, OX Ot ox? O o OX* (38)

The constitutive law assumed in this work can beressed as:

o(e.€ ) = (1- D(e) E(e ~ g% ) (39)
where D(g) =[e, (e —¢,)]/[¢(e, —¢)] is the damage loading function for uniaxial tensig, the
strain signifying end of elastic behaviog, the strain signifying complete damage aadthe
applied uniform axial tensile strain equatjp

Assuming a harmonic perturbation for the displaceme= A cos@x), where ¢ = wave

number and A = amplitude, Eq. (38) becomes:

= Hg—“-l)jg%z -1]}0 (40

u~ & t0

€

It can be seen that Eq. (40) yields a real wave bmrmwith a critical value of

L
g

G = / S0 , which is identical to that in Rodriguez-Ferranaét®. Such a result renders a
€y "€y

non-local model suitable for regularization if exoyed in a FEM analysis.

A 2D mesh refinement study of the presented mantahie beam specimen with dimensions
200x200x600 mm at a load level of 0.84Rin the post-peak softening branch is shown in E@.
The numerical results are derived assuming tk=88f MPaf, = 389, f, =309 MPa, 3, = 65

(c,=12313), E= 34 GPa,v=0.2 ande~=0.0015. Based on the 1D-discretized midspan cross-

section (strips of depth dz), this load level 084R.eak corresponds to the first detection of a
damage value of D=0.95. Three sizes for an “xyxi gith a width of b=200 mm are used: (a) 20 x
200 x 20 mm, (b) 10 x 200 x 10 mm and (c) 5 x 2mm. It can be seen that mesh-independent
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damage predictions are obtained along the beamtgtHe The calculated damage levels are the

same for both local and non-loc&lvs.s predictions (see Fig. 8c). A damage value of @05,
corresponding practically to zero stress transégrability, may signify major crack development.
The present model’s prediction that a major crawkng at a load level of about 0.84Rin the
post-peak softening branch is in agreement withustoo emission findings for concrete beams
under flexuré® and uniaxial tensidf. Also, it is noted that a non-zero midspan damasiee D is
computed at 0.74Rx in the ascending branch of response. A damage=\@ilD>0, signifying
softening under uniaxial tension, can be assocmiddmicrocracking activity. Acoustic emission
measurements on notched and un-notched concrete bpacimens tested under flexure have
shown that microcracking activity becomes deteetddafore the peak applied load is reached and
at load level of 70% to 80% of the peak Ithfd

l-zvy

] ] D<0.1
_— 01 <D<O.3
0.3<D<0.5
0.5<D<0.7
= 1 0.7<D<0.9
— 0.9<D<0.95

(o) D>0.95

———_

(C) ] midspan
Fig. 10. Numerical damage level predictions of a 2D megimement study of the proposed model
for specimen size S3 (200x200x600 mm) at O:&#&k the post-peak softening branch: (a) grid of
20x20 mm, (b) grid of 10x10 mm and (c) grid of Gxn.

[IHE
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6. MIDSPAN DEFLECTION FOR 4-POINT BENDING BASED ON GRADIENT
ELASTICITY
The boundary value problem for a dipolar elastimdshenko simply supported beam has been
solved in closed-form by Triantafyllou and Giannp&olog® and only the relevant work is
included here.
The expression for the midspan deflection of a sisppported beam with an orthogonal

cross-section subjected to two equal concentratdis| P/2, at a distance L/3 from the supports is:

5= 1223;5 (éﬁ(l—fbﬁ%5(92(%)2(11_—; j(l—fsh)J (41)

where P is the applied load by the actuat@=[(1-v)/(L+v)@-2v)|E,, Eo = Young’s modulus

of elasticity, E:g\/l/(1+(A/I)gz) is a “shear” gradient internal length, arig,f,, are non-

dimensional functions of the internal length g, Ees. (42) and (43),

11 4L 2L L

e® [68—2]+ 29 e + 2969(3E+1j

n st 2L
_ 2% [39+1)+e69(2—69)+1— 3%
__9 L L (42)

fon = L 2L 2L 4L 2L
2\g 2L 4L 2L
{Z{l—eg ]L+{1+esg +e¥ +e? B

Oy O,+0Oy+0,+0+0g+0a
fo=—ty 22T TR T A TR T Oy (43)
A A

where

L 5L 7L 11 2L

L5t 1 ’ 2L 4L 2t 2L
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Note that in Eq. (41), the effect of the Poissaat®o on the Young’s modulus is taken into account.

In the absence of gradient, igg=0 (¢//g=1), EqQ. (41) reduces to the classical elasticitytsonh:

23PL°

216( h

T 1206
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2v

)

(44)

The expression for the normal axial strain of tearh at midspan at a distance z from the n.a. is

given by:
L L A ¢ 2t
5 X% 2+ 22" +3-e¥ -3 -e¥
PL(/ L L
Ex = kz=—|— 1- VA (45)
6El\ g 4L
1+ de?
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where k = beam’s curvature ardh/2<z<h/2. Of course, in the absence of gradient, ge.0,

Eq. (45) reduces to the classical expression attial strains:

PL
= k Z=——"217Z 46
8xx_cl cl 6E| ( )

7. CONCLUSIONS

In the present study, a strain gradient damageyhe@roposed based on the influence of the stress
gradient on Gibb’s energy. It was shown that, ihigrostructural internal length is related to the
level of damage, then this length should be eithereasing with damage or remaining constant.
Furthermore, a simple continuous damage model wasoped for the case of 4-point bending.

A gradient elasto-damage model for quasi-brittleemials with an evolving internal length 80
— Beams under 4-point bending
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CHAPTER V
EXPERIMENTAL PROGRAM

1. MATERIALS

Five (5) cementitious mixes were used for the bepatimens tested: low-strength concrete (LC),
normal-strength concrete (NC), medium-strength cetec(MC1, MC2) and cement mortar (CM).
The mix proportions are shown in Table 1 and thevesianalysis for the aggregates used is
described in Table 2.

Table 1.Concrete and cement mortar mix proportioning.

Quantities (Kg/m®) Dry Air-
Mix o @ & wic dditives ©  density Slump- o tent©

ement® Aggregate ratio Additives (kg/md) (cm) (%)

CM 450 1350 293 (0.65) 3.6 2100 CE 2.5
LC 208 1980 162 (0.78) 1.6 2335 25 3.0
NC 276 2080 176 (0.64) 1.5 2365 10 2.5
MC1 448 1720 204 (0.45) 4.0 2410 22.4 2.0
MC2 447 1640 207 (0.46) 6.0 2440 15.6 2.0

@ cement type CEM 11/42.5

®) crushed limestone (compressive strength 100 MPa)

© plasticizer Sik& Viscocret® for M, MC1, MC2; Sik&Sikamen® for NC; Sik&Plastime® for LC
@ air content of fresh mix (Gilson HM-30 pressureteng

© not measured

Table 2.Sieve analysis of the aggregates used in the cenoerst mixes.

Sieve % passing
opening

(mm) LC NC MC1 MC2 CM
32 100 100 100 100 -@
16 85.8 84.1 80.6 787 -
8 70.7 67.8 60.0 577 -
4 62.7 59.7 49.6 491 -
2 45.4 43.3 35.7 355 -
1 29.6 28.2 23.3 23.2 100

0.5 - - - - 30
0.25 12.9 12.3 10.2 10.1 -
0.075 8.0 7.6 6.3 6.3 -
@ not measured
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2. CLASSICAL MECHANICAL PROPERTIES

The classical mechanical properties of the fiveg&nenticious mixes were determined based on
uniaxial compression and split cylinder tensiontseshe cylinder (150x300 mm) and cube
(150x150x150 mm) specimens were tested under wia@ampression using a DMG 3000kN
testing machine. The tests were performed followihg ASTM recommendatioh$ and the
determination of the Young’s modulus and Poissoat® from the compression test was obtained
using four strain gages (SG) placed at mid-height (SG’s at 90 on each diametrically opposite

location). The Young's modulusEf, and E;p) and Poisson’s ratio were also estimated from the
split cylinder tension tests based on SG measurenoétwo SG’s attached on each of the flat faces

of the cylinder specimens (see Fig. 1) and usirg dlasticity solution of a disc subjected to

diametrically opposite compressigh The split cylinder test data except to an estnfar the
Poisson’s ratio also provide a second independsimhate of the Young’s modquE(p) based on
the two tensile measured strains, in addition t® #stimate based on the compressive strain
measurements of the uniaxial compression te§t)((see Section V.4). Loading rates ranging from

0.7 to 1 MPa/min were used for this fedthe measured mechanical properties are summairized
Table 3.

Wooden

. . ~ strip ; :
- 1% configuration 2" configuration

Fig. 1 —Split cylinder tension test setup and strain gag&umentation.
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Table 3 —Measured mechanical properties for the LC, NC, M@C2 and CM mixes.

Mechanical

. LC NC MC1 MC2 CM
properties

Uniaxial compression of cubes (150x150x150 mm)

f28day, MPa 19.96:0.4 (3)®  26.48:0.8 (3) 45.03:1.1(3) 48.480.7(3) 30.540.1(3)
f, MPa® 21.63+0.4 (3) 29.760.5(3) 52.521.0(4) 54.620.7 (3) -@
Uniaxial compression of cylinders (150x300 mm)

fc, MpPaD 15.92:0.4 (5)  20.5%2.1(4) 34.622.53) 38.0%3.6(4) 32.422.4(4)
E, GPa® 25.40:2.1 (4) 30.681.5(3) 33.634.3(3) 34.530.6(3) 22.1a1.1(3)
v o 0.22+0.01 (4) 0.230.02(3) 0.2%0.01(2) 0.230.04(2) 0.230.01(3)
Split cylinder tension (150x300 mm cylinders)

fsp, MPa® 2.67£0.3 (3) 3.06:04(3) 3.3801(4) 34301(3) 2.8%0.1(2)

Etsp,GPéb)v(C) 22.17+1.4 (3) 30.841.1(3) 31.681.4(3) 31.821.1(3) 22.38 (1)

ESp GP)©  2620:1.4(3)  31.9234(2) 327%0.8(3) 359306 (3) 25.41 (1)

0 0.23+0.04 (3) 0.17(1) 0.210.02 (3) 0.230.06 (2) 0.25 (1)
@ number in parenthesis denotes the number of tegtimens considered for the reported average.valu

®) tests performed after 1 month for LC, NC, MC1, MCH# after 8.5 months for CM.

© estimated Young's modulus far= 02 (see Section V.3).

@ not measured

The Young’'s modulus and Poisson’s ratio valuesinbthfrom the uniaxial compression and split
cylinder tension tests for all mixes are shown werthe compressive strength in Figs. 2 and 3,
respectively. The 95% confidence limit for the Ygism modulus of elasticity (in MPa) from
reported experiments dateorresponding to at 20% deviation of the value predicted by the

empirical formula of Eq. (3) is also shown in Fig. 2,
E=1.7832¢10°%y% ° 3)
where f_ is the cylinder compressive strength (in MPa)s the specific weight (in kg/fp It is

noted that Eq. (3) is applicable to concretes Viittestone aggregates and normal addifives

The majority of the experimental values for the Wgis modulus fall within the expected
range as represented by the limits of Eq. (3). ¥seeted, the Young’s modulus of the concrete
mixes considered in this study is higher than tfidhe cement mortar. It is known that the Young’s
modulus of limestone varies from 50 to70 &Rad hence limestone aggregates should be stiffer
than the matrix material at least for a normal- ametlium-strength concrete resulting in a higher
Young’s modulus value.

The experimental values for Poisson’s ratio ramgenf0.16 to 0.27 and apparently seem to

be independent of the compressive strength. Thia mgreement with the findings of oth&fs
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Furthermore, similar values for the Poisson’s ratere obtained for both concrete and cement
mortar mixes since the range of the Poisson’s ratloe for limestone (0.15 to 0.3Bjs similar to
that of cement paste. Hence, the limestone aggegdatlusions have a negligible effect on the
Poisson’s ratio of the composite.
The compressive strains obtained from the uniacoahpression cylinder test at 40% and

55% of the peak stress are plotted versus the @ssipe strength in Fig. 4. It can be seen that as
the compressive strength of the material increabesstrain values for the same level of stress
increase as well. This is a due to the fact that Young’s modulus increases with increasing
compressive strength. Also, the difference in sfdor the two assumed stress levels remains
approximately the same with increasing compressiiength. This observed behavior rentfeas

constitutive law expressed in a normalized forntipalarly suitable for cementitious materials.

45

95% confidence

limits of Eq. (3) T
40 T
u]
8
G o 0 o o
o - o % +
w T 0%
- 30 A 0 oy q_
= A MC1 LMC2
9 ©
g 25 o .
NC
% Di 1 " [ ]
]
3 20 LC
>
O Uniaxial Compression
15 1 < Splitting tension (vertical SGs of Fig.1)
+ Splitting tesnion (horizontal SGs of Fig. 1)

10

12 16 20 24 28 32 36 40 44
Compressive strength, f . (MPa)

Fig. 2. Measuredroung’s modulus vs. compressive strength for mx@sNC, MC1, MC2 and
CM (solid symbols are for CM mix).
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0.28
+
0.26 -
oo + + o
0.24 - + =
> a o | ]
=
g 022 o o
@ T oo
£ 0.20 o o o
8 + +
3 0.18
o . i
o +
0.16 - +
0.14 - O Uniaxial Compression  + Splitting tension
0.12

12 16 20 24 28 32 36 40 44
Compressive strength, f . (MPa)

Fig. 3. Measured Poisson’s ratio vs. compressive streraytmfxes LC, NC, MC1, MC2 and CM
(solid symbols are for CM mix).

1000

o O a=55% =}
= =}
2 800 A a=40% o
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% oo °
S T 600 | g A oD
e A o
%1:' A A
= N
2 c 400 o o AN
g th g
E® ﬁ é A
2 200
£
=
O
0 | | | ‘ ‘ ‘

10 15 20 25 30 35 40 45
Compressive strength, f . (MPa)

Fig. 4.Measureccompressive strain at 40% and 55% of the peakssiescompressive strength

(solid symbols are for CM mix).

Mechanical properties used in the analysis

The Poisson’s ratio of concrete ranges typicalliwieen 0.14 and 0.3% In this work, a similar
value range was observed with the majority of taeadeing greater or equal to 0.2. This can be
attributed to the stress limit chosen for derivthgse estimatési.e. 40% of the peak stress, since

the Poisson’s ratio of concrete appears to incredtie the load level from about 0.15 for a
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relatively low stress level to about 0.25 at a le&aa| close to 70% of the peak strés#t is widely

accepted that a reasonable value for the Poissimnafaconcrete to be used in an analysis is 0.2.
The measured values for the two classical matprigperties used in Eqgs. (1b) and (2b) for each
mix in order to compare their experimental flexuredponse to the classical elasticity predictions

are presented in Table 4.

Table 4.Measured material parameters used in the analysis.
Mix LC NC MC1 MC2 CM

(Glia) 25.0 30.70 32.7 34.0 22.3
v 0.2

Based on the predictions of Eq. (1b) and (2b) fbeam specimen with L/h=3, a deviation
of +1 GPa in the Young’s modulus value translates t6586 difference in both the flexural
stiffness and the curvature predictions, while siateon of +0.01 in the Poisson’s ratio value
translates to a less thanl% and +1.5% difference in the flexural stiffness and ctuva
prediction, respectively. Thus, it is reasonabl@ssume that a deviation of the measured flexural
stiffness and curvature values from the classicadliptions of up to about 10% can be attributed to

the expected variation of the E andalues.

3. SPLIT CYLINDER TESTS
The stresses for the 2D problem of a disc subjetctetiametrically opposite uniformly distributed

compression (see Fig. 5a) are

G, (1,0)=—P(A,+A,+B,+B,+ ) (4)
T
5, (F.0)=—P(-A,~A,+B,+B, +D) 5)
T
T, (1, 6) = B(Cl _Cz) (6)
T
with
A Q-r°)sin2@+0) , _  [-T*)sin2(a-0)

Pt 41-2F%cos2(a+0)’ 2 F+1-2F%cos2(a—0)’
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—2 =2
B, = tanl(?[z tan( + e)j ,B, = tanl(ii;z tan(. — e)j C,=

(L-72)-7? + cos2(a - 0) )
7 +1-2r? cos2(o — 0)

(1—F2X—F2 +cosZ(a+6))
CZ = 2 — y q) =
r*+1-2r°cos2(a + 0)

Ofor 0<O0<n/2—-qa
nfor t/2-a<0<n/2

where ¢, = the normal stress in the r-directios, = the normal stress in thedirection, t = the

shear stress in thebrplane, p = the applied uniform pressure =2the angle at the disc’s centre that
defines the part of the disc’s circumference unctenpression, R = the radius of the disc and
r=r/Ris the normalized radial coordinate.

For a loading width of 20 mm and a radius of 75 (um= 764°), the maximum stresses at
the center of the dis®= andr=0) are:

5, (00) =0, =f,,= 0976 andc, (00)=oc, = 29765 (7)
wherec = 2P/ 7 LD, P =total load, L= cylinder’'s length arld = 2R = disc’s diameter. Note that

when o — 0, then o, (00)=c and ¢, (00)=-3c, which corresponds to the idealized case of a

disc subjected to a point load.

0.75 f\

0.5 1

0.25 -

(]
Normalized radial distance

-0.75 )

Normalized stress

pL LT

Fig. 5 (a) Disc subjected to diametrically opposite corspi@n (b) Normalized principal stress
distribution along the y-axis fas, /6 ando, /o .
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The principal stresses are shown in Fig. 5b anddnesponding strains along the x- and y-

axis assuming plane-stress conditions®are

sr(T’,ezn/Z):sx=—%%(—(l+v) (1—7")sin2o +(1—v)cot‘1ﬁ+—icotoc]) (8)

T +1-2r? cos2a.

(1-T)sin2a
T +1-2r? cos2a

g (r,0=0)=¢, :—%%((h V) + (1—v)tan1£gtanajj (9)

where E =Young’'s modulus,=Poisson’s ratio and d =loading width.
For the strain measurements on each flat face ef djlinder specimens, the ratio

e,/¢e,yields an estimate for the Poisson’s ratoand for an assumed value of(v=0.2 was

assumed in the present study) the ratw's, and /¢, yield two independent estimates for the

Young’s modulus of elasticityE;p and Egp, respectively (see Fig. 6, experimental resuliagis

the P! configuration shown in Fig. 1). It is noted thhetsplit cylinder test has also been used by
others®>1"to determine a value for Young’s modulus and Poissatio.

250 250 2.50
omax = 2.49 MPa
2 o o
= =3 =
w
— 1501 ® 5 © 150 |
c - -
g g g
? Q @
- 100 - % 1.00 4 s 1.00 -
o o] ge
3 kS 2
3 I —sG1 o
2 1 =3 9 0.50
s 50 ——SGl1,4 & 0.50 <2 < sSG3
——SG2,3  scs4
0 T \ \ \ 0.00 | ‘ | 0.00 ‘ ‘ :
0 25 50 75 100 125 0 50 100 150 200 0 80 160 240 320
Measured strain g, (MS) Measured strain €, (MS) Measured strain | gl (us)
(a) (b) (c)

Fig. 6. Split cylinder test tensile strain SG measuresentthe flat cylinder faces for the LC mix:

(a) ey vs.ex, (b)o vs.ex and (C)o vs.gy.

A number of studi¢§?° have examined the failure mechanism of concretieuthe biaxial
stress state present in a split cylinder test bgitaong the evolution of microcracking. They found
that cracking starts at approximately 70% of thakplead and that the geometry and that the test
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setup may significantly affect this value. In thregent study, the Young’s modulus and Poisson’s
ratio estimates were determined based on the sibpiee principal stress-strain curve between a
stress at a tensile strain of 88 and a stress at 50% of the peak stress, sincéineamity was
apparent around 60% of the peak tensile stressHigeébb). The tensile and compressive strains
that correspond to 50% of the peak values aregal@gainst the splitting tensile strength in Fig. 7
It is interesting to notice that the strain valu@sresponding to the 50% of the peak load are
approximately the same for both concrete and cememtar mixes and are not significantly
affected from the material’s strength.

The measured splitting to compressive strengtlo tagether with the results of empirical
formulag!-?3are plotted versus the compressive strength fdr ek in Fig. 8 (f and £, values are
shown in Table 3). Good agreement with the empiecaations is observed for the normal- and
medium-strength concrete and less so for the logrgth concrete although the deviation is not
significant. The empirical equations are not agllle to cement mortar which is also included in
Fig. 8.

Finally, it is noted that a gradient elasticitygadn to any problem reduces to the classical
solution if the internal length is zerg £ 0) or if the stress gradient is zerdof; / ox, =0). In the
split cylinder test, the stress distribution is @pgmately uniform near the center of the cylinder
where the measurements are made (see Fig. 5bYimgsii a negligibly small stress gradient

(0o, /0r=0). This implies that the measured Young's modulug Boisson’s ratio from the split

cylinder test can be seen as independent of thieegtainternal length of the material as is theecas

for the uniaxial cylinder compression test as well.

210
A A
Q 180 1 A
~ A A A
% 150 | A b
< A A
0 120 -
o (m] El
s 90 a] B
ot o o o
£ 60 -
s
) 30 - O Tensile strain A Compressive strain
0 ‘ ‘ ‘
2.0 25 3.0 35 4.0

Splitting strength, f ¢, (MPa)

Fig. 7. Tensile and compressive strains at 50% of thiiapgl strength vs. splitting strength (solid
symbols are for CM mix).
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0.20
a Present data
0.18 Ref. 29
& N8 | Ref. 30
5 0164 . - — - —-—Ref.31
S 014 -
o
£ 0.12 4
o
[
2 010 - =
99} = o
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0.06 ‘ | ‘ | ‘ ‘

10 15 20 25 30 35 40 45
Compressive strength, f . (MPa)

Fig. 8. Splitting to compressive strength ratio vs. coesgive strength.

4. FOUR-POINT BENDING TESTS
Setup and specimens
A total of seventy-one (71) geometrically similaam specimens with an aspect ratio of L/h=3 (see
Table 5) were tested under 4-point bending. Theeti{B) nominal beam sizes considered have
dimensions of 100x100x300 (width x height x spamn n51), 150x150x450 mm §2 and

200x200x600 mm 3. The specimens were tested using an MZSOKN hydraulic actuator

under midspan deflection-control. The midspan a@#ft@ was the average of two DC displacement
transducers (DCDT’s) measurements one on each ddfidbe specimen. Two instrumentation
configurations were used for estimating the beamvature: either using two SG’s placed at
midspan in the axial direction (one at the top and at the bottom fiber of the cross-section) or
four SG’s placed at midspan in the axial direc{iovo on each side of the beam at a distance 2 or 1
cm from the top and bottom fiber). For a limitedwher of specimens both arrangements were used
(see Fig. 11). The experimental setup is shownign &together with a detailed representation of
the instrumentation.

The beam specimens of each mix were cured togeiitiethe cylinder and cube specimens
in the same environmental conditions and the dhtesting for each mix is included in Table 3.
The uniaxial compression, split cylinder tensiord akpoint bending tests for each mix were

conducted in parallel and were completed in lean thtwo weeks period.
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Table 5. Experimental program.
Specimen Number of specimens tested

size CM LC NC MCI MC2
S1 3(3) 8(4) 8(4) 84 4@

S2 2000 7(3) 7( 8() 4@
S3 2000 3(1) 3@ 20 2(0

Note: Number in parenthesis denotes the numbgegfimens with strain
gage instrumentation.

Applied
1 load, P

==l [

CDT

SG

|
DCDT 1 DCDT 2

Aluminum fram 1,2
AN h=L/3

SGl I SG

I J

. E ]
" Leather pad SG
——
¥

Pin support b=h
Midspan
cross-section

i
., 3, Uz ., L3

A 71 71

(@)

(b)

Fig. 9. Experimental setup for the 4-point bending testss¢hematic of the testing setup and (b)
photo for size S2 beam specimen.
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Experimental post-peak softening response

The post-peak flexural response of the concretenbdasted under 4-point bending is captured by
displacement control. A DCDT located at midspan wsed as the controlling displacement sensor
and all tests were performed at a constant ra@0ifl mm/sec. However, once softening initiates,
the experiment becomes unstable since energydasetl back from the elastically deformed steel
reaction frame where the hydraulic load actuatattisched t& Before the peak load is reached the
hydraulic jack is moving downwards increasing tpeleed load but after the peak load is reached,
through the controller the jack’s cylinder movesmvapds resulting in unloading of the beam
specimen. This is done through a Proportional-kateDerivative (PID) closed-loop feedback
algorithn?* of the Flex-40 MTS controllét. The choice of the proper PID value is essentidgdiye
through a trial and error procedure since it i<gfeto the experimental setup used (stiffnesthef
reaction frame) and the stiffness of the speciri@rs procedure unavoidably resulted in the loss of
the post-peak response for some of the specimdresspecimens for which a post-peak softening
branch was captured successfully for each mix gedisien size considered in this work are listed
in Table 6. Concerning the CM mix, although vari®iB values were used, the post-peak response
was lost for all specimens. It appears that th@aese of the CM specimens in the post-peak
softening branch was the most brittle, resultingnnextremely unstable crack growth. Note that for
the rest of the concrete specimens, even whenastepgeak response was not fully recorded, failure

was not catastrophic since the specimen didn’apsk although it was almost fully cracked.

Table 6 -Number of beam specimens with recorded post-peféérsog branch.

Specimen Mix
size CM LC NC MC1 MC2
S1 0(3) 7 (8) 0 (8) 6 (8) 5 (5)
S2 0(3) 6 (7) 4 (7) 8 (8) 3 (5)
S3 0(3) 3(3) 3(3) 3(3) 2(3)

Note: number in the parenthesis denotes the tataber of tested specimens
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CHAPTER VI
SIZE EFFECT OF CEMENTITIOUS MATERIALS IN ELASTICITY

1. INTRODUCTION
The aim of this work is to demonstrate that siZeafin elasticity exists in composite materials
when the size of the microstructural details is parable with the macrostructure. On that respect,
cementitious materials such as concrete are ideeé gshey can be viewed as composites with
inclusions (aggregates, fibers etc.) embedded nmatix material. It is noted that this simplified
view of the microstructure of concrete is sufficiéor the aim and purposes of gradient elasticity
which attempts to introduce a new constitutive peater (length) that accounts for the influence
that the meso-scale microstructure has on the retoobural response. So far, the attention of
researchers to gradient elasticity was motivatechfflexural tests on micro-beams and this field
was the first actual implementation of these trefrin this work, in order to test the hypothesis
that for a given composite a certain microstructtae result in size effect phenomena in elasticity,
four (4) concrete mixes of maximum aggregate size=82 mm and cement mortar af6=1 mm
are considered. However, the scale of the microstre is not the only factor that affects size &ffe
phenomena. The relative stiffness of the two phasa composite, i.e. matrix and inclusions, is an
equally significant factr To investigate this issue, similar component wwufractions and
aggregate gradation is used for the four (4) cdeamxes considered, while the water to cement

(w/c) of the mixes is altered from 0.78 to 0.45\(lto medium strength concrete).

2. ELASTIC STIFFNESS AND CURVATURE

The measured elastic stiffness and curvature dhatdoeo flexural response for each specimen
reported here correspond to the slope betweendalésel of 10% and that of 50% of the peak
applied load. The experimental to classical ela#xural stiffness ratio is plotted vs. the nomina
beam size in Figs. 1(a) to 1(e). The curvaturemeds correspond to the stiffness ratio with the
internal length estimate derived from Eq. (45) ectn V.6 and substituted back to Eq. (41) in
Section IV.6. Also, the theoretical predictionstbé dipolar elasticity model for different beam
sizes and for different values of the gradientrimié length are shown in Fig. 1. The experimental
results are also presented in Tables 1 to 5.

The experimental applied total load vs. midspawvaturre results for a representative MC1-
S1 specimen are shown in Fig. 2. A total of six &’ attached to that specimen. It is noted that
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two types of axial SG’s were used: 20-mm long (S66&3, SG4, SG5) and 10-mm long SG's
(SGO, SG1).
For this particular setup, the following obsergat were made:

I) the SG’s in tension (SGO and SG2) at the twposjie vertical beam faces record practically
the same strain indicating that the concrete streasurements appear not to be affected by the SG
lengths used, while the SG at the extreme bottamilee fiber (SG4) records higher strains than
SGO0 and SG2 for the same load level, as it shadd Fig. 2b),

i) the SG at the top extreme fiber of the compi@s zone (SG5) records lower values than it
should, practically the same as those of SG1 &I @& the side faces (see Fig. 2¢),

lii) midspan curvature estimates derived from tli& rtSeasurements on the vertical beam faces
predict a n.a. location that deviates less tharfro¥a the centroid of the cross-section, while i th
top/bottom extreme fiber SG measurements are Urgeddviation is more than 15% because of the
unreasonably high measured strains at the bottdrarez fiber (SG4),

Iv) the measured elastic force to curvature raditue of S=7.64 Nm for this specimen (see Fig.
2d) is based on the average of the consistentnmstef the n.a. prediction curvature measurements
(SGO, SG1, SG2 and SG3).

Based on the midspan deflection and curvature mewmsnts, the gradient internal length
estimate for specimen MC1-S1 wag =106 mm andgs= 116 mm, respectively, while the
overall average gradient internal length of the M1 was found to be,,, =123+ 28 m (see

Fig. 5).
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Stiffness ratio, K exp/Ka

Stiffness ratio, K exp/Ka

Stiffness ratio, K exp/Ka

Fig. 1 —Experimental to classical elastic flexural stiffaeatio: (a) mix CM, (b) mix LC, (c) mix
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Table 1 - Experimental results in the elastic resptse range of CM mix.

Average Stiffness, K = P Curvature Coefficient, S = P/k
Specimen Dimensions (N/m) (Nm)
Code b h Ka Kexp Kexp/KcI Ok @ S Sexp Sexp/ S Os ®)
(mm)  (mm) (mm) (mm)
CM-S1-01 100.7 100.3 341.67 357.75 1.047 2.6 4.190 .254 1.014 3.4
CM-S1-02 100.5 100.2 340.14 349.63 1.028 1.6 4.170 .5414 1.089 8.5
CM-S1-03 99.9 100.2 338.20 371.06 1.097 4.7 4.146 40Q%4. 1.061 7.1
CM-S2-02 150.0 149.9 505.29 535.23 1.059 4.7 - - (* - -
CM-S2-03 150.6 150.7 514.27 487.43 0.948 0.0 - ¥ (** - -
CM-S3-01 197.6 198.6 654.23 675.28 1.032 3.7 - } (** - -
CM-S3-02 198.6 198.6 657.54 705.00 1.072 7.3 - )-(* - -

@ internal length estimate based on the stiffness (see Eq. 41 in section IV.6)
®) internal length estimate based on the curvatuegficient ratio (see Eq. 45 in section IV.6).
) data not used{? not measured

Table 2 - Experimental results in the elastic resptse range of LC mix.

Average Stiffness, K = Pb Curvature Coefficient, S = P/k
Specimen Dimensions (N/m) (Nm)
Code b h Kei Kep Kep/Ka gk®@ G Sexp S/ S gs®
(mm)  (mm) (mm) (mm)
LC-S1-01  99.4 100.9 384.89 517.50 1.345 11.9 . ) - (* . -
LC-S1-02 100.1 1015 39322 567.75 1.444 14.1 - (%) - -
LC-S1-03 99.8 101.2 388.44 485.22 1.249 9.5 - -0 - -
LC-S1-04 995 101.5 390.98 484.60 1.239 9.2 - -0 - -
LC-S1-05 99.7 102.0 396.21 497.74 1.256 9.7 4896 6.881 51.40 17.2
LC-S1-06 100.2 101.4 39258 515.56 1.313 11.1 4.839 6.277 2971. 14.8
LC-S1-07  99.6 102.1 - - - - 4904 6.117 1.247 13.7
LC-S1-08 100.2 101.6 - - (*%) - - 4869 5.553 1.141 106
LC-S2-01  149.3 152.3 59359 704.94 1.188 11.7 - NM - -
LC-S2-02 1499 150.7 578.74 830.69 1.435 20.8 - N.M. - -
LC-S2-03 150.4 152.7 592.82 78851 1.330 17.2 - N.M. - -
LC-S2-04 151.0 150.2 602.63 811.53 1.347 17.8  16.77 21.039 .2551  20.7
LC-S2-05 150.6 150.6 586.17 790.66 1.349 17.9 - (*%)
LC-S2-06 1504 151.2 596.09 761.89 1.278 15.3 16.56 18.841 .1381 15.6
LC-S2-07 150.2 152.7 607.65 755.84 1.244 13.9 16.94 19.618 .1581 16.6
LC-S3-01 197.9 198.8 753.42 981.53 1.303 21.5 - - (*% - -
LC-S3-02 199.0 200.0 738.73 989.80 1.340 233  36.141.336 1.144 21.1
LC-S3-03 199.5 1995 749.14 992.35 1.325 225 - (™)- - -

@Internal length estimate based on the stiffness (ate Eq. 41 in section IV.6)
®Internal length estimate based on the curvaturéicieat ratio (see Eq. 45 in section IV.6).
(™ data not used? not measured.
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Table 3 - Experimental results in the elastic resptse range of NC mix

Average Stiffness, K = Pb Curvature Coefficient, S = P/k
Specimen Dimensions (N/m) (Nm)
Code b h Kcl Kexp Kexp/KcI Ok @ Scl Sexp Sexp/ Scl Os ®

(mm) (mm) (mm) (mm)
NC-S1-01 101.0 102.0 493.22 671.06 1.361 12.3 - N -
NC-S1-03  99.4 100.7 469.32 60595  1.291 10.5 - -0 -
NC-S1-04 101.2 102.0 49476 65840  1.331 11.6 - -0 -
NC-S1-05 995 101.8 483.15 673.49  1.394 13.1 - -0 -
NC-S1-06  100.9 101.7 - - - 6.036  7.394  1.225 13.1
NC-S1-07 99.4 1027 - - - 6.125 8.190  1.337 15.9
NC-S1-08 100.6 101.8 488.03 617.24  1.265 10.0 - -0 - -
NC-S2-01 149.3 1523 719.76 84885  1.179 11.3 - -0 - -
NC-S2-02 1499 150.7 703.61 902.75  1.283 15.5 - -0 - -
NC-S2-03 150.4 152.7 730.57 940.20  1.287 15.8 - -0 - -
NC-S2-04 151.0 150.2 703.21 892.15  1.269 14.9 - -0 - -
NC-S2-05 150.6 150.6 706.43 897.31  1.270 15.0 - -, - -
NC-S2-06 150.4 151.2 712.13 892.86  1.254 144  19.622.735 1.154 16.5
NC-S2-07 150.2 152.7 728.84 87215  1.197 121 20.222.968 1.135 15.6
NC-S3-01 1979 198.8 903.88 1163.3  1.287 20.6 S ) - -
NC-S3-02 199.0 200.0 92355 1128.8  1.222 17.3 S ) - -
NC-S3-03 1995 1995 919.95 12156  1.321 224 450381529 1.144 21.1

@Internal length estimate based on the stiffness (ate Eq. 41 in section 1V.6)

®Internal length estimate based on the curvaturéicieat ratio (see Eq. 45 in section IV.6).

™ data not used? not measured
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Table 4 - Experimental results in the elastic resptse range of MC1 mix.

Average Stiffness, K = P Curvature Coefficient, S = P/k
Specimen Dimensions (N/m) (Nm)
Code b h Kol Kexp Kexp/KcI OK @ S Sexp Sexp/ S Os ®)

(mm)  (mm) (mm) (mm)
MC1-S1-02 100.9 1034 543.68 647.00 1.190 7.9 - -0 - -
MC1-S1-03 100.4 102.6 529.96 708.99 1.338 11.9 - -0 - -
MC1-S1-05 99.7 102.7 526.97 678.86 1.288 10.6  6.5317.636 1.169 11.6
MC1-S1-06 100.0 103.3 537.70 660.51 1.228 9.0 6.6847.646 1.144 10.9
MC1-S1-07 99.6 102.3 - - - - 6.448  8.004 1.241 13.6
MC1-S1-08 99.7 102.4 523.11 662.54 1.267 10.0  6.478.378 1.294 14.9
MC1-S2-01 150.6 151.4 762.85 967.82 1.269 15.0 - -0 - -
MC1-S2-02 149.6 154.3 795.08 981.83 1.235 13.8 - -0 - -
MC1-S2-03 149.8 1534 78351 979.52 1.250 14.4 - -0 - -
MC1-S2-04 150.5 153.1 783.30 876.87 1.119 8.3  21.7834.02 1.103 13.8
MC1-S2-05 150.1 151.1 756.27 950.48 1.257 145  20.9123.10 1.105 13.8
MC1-S2-06 150.8 153.9 795.86 998.12 1.254 14.6 - - - -
MC1-S2-07 150.0 153.3 783.51 970.20 1.238 13.9 - -0 - -
MC1-S2-08 150.0 153.0 779.79 1009.6 1.295 16.1 - -0 - -
MC1-S3-01 200.9 200.8 1003.7 1128.3 1.124 11.3 - =M - -
MC1-S3-03 200.0 200.4 9940 1081.6 1.088 8.6 - - - -

@Internal length estimate based on the stiffness (age Eq. 41 in section IV.6)
®)nternal length estimate based on the curvaturéficieat ratio (see Eq. 45 in section IV.6).
(Mdata not used) not measured

Table 5 - Experimental results in the elastic resptse range of MC2 mix.

Average Stiffness, K = Pb Curvature Coefficient, S = P/k
Specimen Dimensions (N/m) (Nm)
Code b h K Kep Kep/Ka  g® Sy Sexp Sexo/ S gs®
(mm) (mm) (mm) (mm)
MC2-S1-01 100.7 103.4 563.42 625.00 1.109 5.2 - )-(* - -
MC2-S1-02 995 102.8 - - - 6.799 8.570 1.260 14.1
MC2-S1-04 999 102.7 54899 579.25 1.055 3.0 6.804 .13 1.195 12.4
MC2-S1-05 100.2 103.3 559.97 647.10 1.156 6.9 6.9617.343 1.055 8.9
MC2-S2-01 150.1 152.9 810.11 879.65 1.086 6.4 22.5122.659 1.006 3.4
MC2-S2-02 150.8 152.7 811.15 93535 1.153 10.0 - - - -
MC2-S2-03 150.0 153.0 810.92 878.38 1.083 6.3 22.5423.055 1.023 6.7
MC2-S2-05 150.8 150.9 787.57 905.95 1.150 9.8 21.76@4.304  1.117 14.5
MC2-S3-01 200.3 200.8 1040.1 12176 1.171 14.4 - =M - -
MC2-S3-03 199.5 200.8 10353 10685 1.032 3.7 - )-(* - -

@Internal length estimate based on the stiffness (age Eq. 41 in section IV.6)
®)nternal length estimate based on the curvaturéficieat ratio (see Eq. 45 in section IV.6).
Mdata not used) not measured
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Fig. 2 Experimental data for beam size S1 of MC1 mixXy ¢ahematic and photo of the
experimental setup, (b) normalized applied loaderssile axial strain, (c) normalized applied load
vs. compressive axial strain and (d) applied loadocalculated midspan curvature based on the
strain measurements.
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3. DISCUSSION OF RESULTS
In this section, the magnitude and the observetiescaf the gradient internal length estimate is
discussed with reference to the details of the n@dte microstructure. It is noted that for a grewli
elasticity theory:
(i) the predicted internal length based on curvatucedmilection experimental data should be
the same for all sizes and
(i) for a given material, a consistent model shouldabke to predict adequately its flexural

response with an estimated internal length valdependent of the specimen size.

Influence of the microstructure on the gradient internal length

The gradient internal length is an additional ciagve parameter which is introduced for
modeling the details of the material’'s microstruetut has the dimension of length because it is
introduced in association with the strain gradierthus, it is reasonable to assume that its
magnitude is related to the dominant feature ohti@ostructure. However, this correlation is done
in an average sense, since the microstructurepocates many scales and this is especially true for
concrete which contains inclusions of various sksggregate gradation) and of different volume
fractions (see Fig. 3a). Furthermore, in the cdseoncrete one can only control the quantities of
the different constituents, but after mixing andto® the actual locations of the aggregate pasicl
is completely random, and it is possible for a giveix to have different microstructural details in
specimens of the same size. This is especially fioughe beam specimen size S1 with cross-
sectional dimensions only about 3 times the maxinaggregate size ofnd=32 mm. Thus, it is
reasonable to expect a significantly higher scadtied difference between the internal length
estimates based on curvature measurements anddhese on deflection data for specimen size S1
than for larger sizes S2 and S3. This can be atathto the lack of the necessary material volume
for the average prevalent microstructural detdilhe mix to be represented at any cross-sectton. |
is true that gradient theories are continuum tlesorin which although what constitutes a
representative volume element (RVE) for the matesanot directly addressed, it is always
presupposed in the analysis. However, in termsookistency of the theory the influence of the
RVE on the gradient internal length is “naturallgiccounted for by the present model, since for
decreasing the size the scatter in the predicifdests ratios is predicted to increase as wek (se

theoretical curves of Fig. 1).
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The results for the CM (cement mortar) mix, whichncbe perceived as almost
homogeneous mix relative to the other concrete s{see Fig. 3b), show that even the gradient
model predictions for g = 1 mm does not deviate miuem the classical elasticity predictions (see
Fig. 1a). Furthermore, experimental elastic stgfeatio values higher and lower than 1 with a
scatter less than 10% were obtained for the mygjofithe cases. The CM mix was also the most
brittle of all the mixes resulting in relatively swther crack surfaces. For the concrete mixeshen t
other hand, significantly rougher crack surfacesew@btained due to the presence of larger size
aggregates. In addition, as the strength of themahincreases the less torturous the crack sarfac
is expected and more aggregates will fracture atbegcrack path (see Fig. 4). This is due to the
fact that the matrix and inclusion heterogeneityeiduced and hence a crack will not be forced to
change direction. Thus, the gradient internal lengalue should decrease with increasing
compressive strength (or Young’s modulus of elag)icand should decrease with decreasing

average inclusion si2é

Fig. 3 —Microstructure at different scales: (a) concreltg,cement mortar.
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(b) (© (d)
Fig. 4 —Cross-sectional fracture surfaces 150x150 mm fecispen size S2 (a) mix LC, (b) mix
NC, (c) mix MC1 and (d) mix MC2 (marked areas derfoactured aggregates).

The average gradient internal length estimate denisig all tested specimens for each mix
is plotted versus the Young's modulus of elastigityFig. 5. It is noted that estimates of the
gradient internal length of up to 4.8 mm for sizZg 3.2 mm for size S2 and 9.6 mm for size S3
correspond to a stiffness ratio ot{Kc=1.1. Therefore, also shown with dashed line in Bigs
the average gradient internal length limit valu&¢ & mm which can be seen as a lower limit for the
experimental findings for size effect in elasticityternal length estimates lower than this valae c
be interpreted as proof of insignificant size efffet elasticity and vice versa size effect in
elasticity is found only for the concrete mixes arat for the cement mortar and similar internal
length values were determined for all mixes indeleatly of the use of either the midspan
deflection or the axial strain (curvature) measuwets. Concerning the magnitude of the internal
length of the concrete mixes, it is found to deseewith increase of the Young’s modulus and is
similar for mixes LC and NC. The first can be &fiited to the decrease of the elastic mismatch of
the mixes and the latter possibly indicates thavalba specific inclusion to matrix stiffness ratio
value, the internal length is less sensitive tdhier increasing this ratio (non-linear correlation
between g and E for mixes with the sameJd
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Fig. 5 —Gradient internal length estimate, g, for each wsixthe Young’s modulus of elasticity, E,
based on the 4-point bending test results of gecady similar beam specimens.

Gradient internal length and average inclusion size

The average size of the inclusiorts,() for a concrete mix is difficult to define, besauaggregates

have irregular shapes and their average size caadily up to 1.5 to 2 times the sieve opening used
for gradation. In order to establish the average f the material’'s microstructure, selected
specimens of all sizes for each mix were sawedepetipular to the beam axis at random locations.
The average inclusion size was estimated using nvethods. The first was to average their
maximum size identified in a cross-sectional cute Becond method accounted for the irregular
shape of the aggregates and the estimation ofvdeage inclusion size was based on an average
aggregate area. The shortcoming of the latteras ahnominal shape for the aggregates must be
assumed in order to transform an average equivalgytegate area on the plane of the saw-cut to
an average length. Truly, heterogeneity is threeedisiondl, while the above averaging methods
are either 1D or 2D. The mapping of the microstitetfor the MC1 mix for specimen size S1
using both methods is shown in Fig. 6. For thigipalar specimen, the first method yielded a value

of d_, =129mm, whereas based on the second method the estieyaads on the assumed shape

av —

of the “equivalent” aggregate, i.e. for square-githpggregatel,, = 8mm, for circular-shaped,

d,, =92 and for equilateral triangular-shapet]l, =  IBf. Given the angular shape of the

av —
aggregates used, the triangular shape seems npoeseatative
The results on aggregate measurements from adbtalelve (12) cross-sectional cuts of

the tested beam specimens are shown in Table i6.rbted that aggregates with a maximum
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dimension of less than 5 mm were assumed to beop#ine matrix material. It is obviously rather
difficult to determine the average inclusion sipe fieterogeneous materials such as concrete. The
measurements included in Table 6 suggest an “agéiaglusion size ranging from 10 to 20 mm
for all mixes, thus verifying that all concrete m$xhave approximately the same microstructure
(see also Tables V.1 and V.2). This “average” isidn size range corresponds to a gradient
internal length value of about 15 mm withte880% scatter. The standard deviation for the interna
length estimate based on the 4-point bending tessilts is 27.4%, 22.8%, 19.5% and 52.6% for
mixes LC, NC, MC1 and MC2, respectively (see Fig). 1 This can explain most of the scatter
observed without considering the experimental errand uncertainties accompanying the
measurements. On the other hand, the apparenti@ssoof the measured average aggregate size
with the gradient internal length estimates for livg- and normal-strength concrete mixes is far

too good to be coincidental since the internal tiengalue was found to bg =157+ 43 and

149+ 34 mm for the LC and NC mixes, respectively. It isclided that the gradient internal
length is about equal to the average inclusion siz@& composite material provided that the
heterogeneity is high (high of matrix and inclusianismatch) as in the low-strength concrete. For
lower values of the elastic mismatch as in the cddbe higher-strength concrete mixes (MC1 and
MC2), the internal length estimate based on theeempental results for MC1 and MC2 is

g0=123+ 24 and 7.8+ 4.1 mm, respectively.
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Fig. 6 —Mapping of the microstructure for estimating the€eage” inclusion size in a 100 x100
mm cross-sectional cut of size S1 specimen forMd.
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Table 6.Average inclusion size of the microstructure fortjgées larger than 5 mm.

dgy (mm) @ day (mm) ®
Mix
S1 S2 S3 S1 S2 S3
LC 15.3 17.3 18.6 13.8 16.6 16.8
NC 11.8 14.7 16.8 11.5 13.7 15.4
MC1 12.9 13.2 16.4 12.4 12.7 15.8
MC2 13.5 14.7 16.0 12.5 14.2 15.0

@ 1D averaging
®) 2D averaging assuming equilateral triangle shapadgregates

4. CONCLUSIONS

The size effect in elasticity was investigated gsinTimoshenko dipolar elastic beam médeid

the experimental results of un-notched geometsicthilar beams of five (5) cementitious mixes

(four concrete mixes with»@d, =32 mm and one cement mortar mix witheg1l mm) tested under 4-

point bending. The size effect was verified indegeily from both the experimental load versus

midspan deflection and load versus midspan curgadata. The key findings of the present work
can be summarized as follows:

1. A stiffer response than that predicted by classtadticity theory is measured for cementitious
composites withfup to 40 MPa in the flexural elastic response eamiggeometrically similar
un-notched concrete beam specimens for specimahth&i maximum aggregate size ratio
values up to about 6.5.

2. The internal length introduced by the gradient tiiegmd described in this work is estimated to
be about equal to the average inclusion size ofntlagerial’s microstructure for the lower-
strength mixes considered in this study, whilesitequal to about one-half of the average
inclusion size for the medium-strength mixes. ppegrs that the internal length parameter value
for a truly high-strength concrete mix with a coegsive strength of above 45 MPa will be
even lower.

3. The size effect in elasticity is affected by bdik tnclusion size and the elastic mismatch of the
different phases of the composite, and it increagtsincreasing inclusion size and decreases

with less elastic mismatch.
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CHAPTER VII
SIZE EFFECT OF CEMENTITIOUS MATERIALS IN INELASTICI TY

1. INTRODUCTION

Size effect in elasticity was investigated and stm@ate for the internal length (gsydor the mixes
considered was obtained based on a proposed graslesticity model. The microstructure of
cementitious materials undergoes significant chamye to microcracking in the inelastic range of
response. This in the context of a continuum danfiageulation is defined as a degradation of the
elastic material properties (softening). Therefaoe, initial value of the internal lengthofgshould
also be affected by this evolution of damage. Micacking can be seen as a source of
heterogeneity which augments any initial heteroggn® the composite due to the presence of
stiffer inclusions inside a matrix material (seeagter V). This implies that with increasing the
accumulated microcracking activity (increasing acualate damage), the initial value of the internal
length @ should increase. A thermodynamic formulation @f pinoblem has shown this to be true.

The present experimental results are compared sigdi@ predictions of a gradient elasto-
damage modélfor the case of beams under flexure. Damage cteization is based on an
assumed uniaxial stress-strain law for each mix endefined in a classical manner through the use
of a damage parameter M£ D <1), with D=0 signifying elastic behavior and D=1 aestress
transfer capability (complete failure). The aim this work is to examine whether sufficient
experimental evidence can be found in support ef hiapothesis that the internal length should
increase with damage and furthermore to investigatevolution law based on the experimental

evidence.

2. COMPARISON WITH THE PRESENT EXPERIMENTAL RESULTS

Peak applied load
The uniaxial stress-strain law parameters (seedd@ebf.4) in tension and compression used in the

analysis for each mix are summarized in Table ® Véddue of axial straig,, corresponding to the

uniaxial compressive strength, was determined friitra SG measurements in the uniaxial
compression cylinder test. A strain value of ab@@015 for the concrete and 0.0018 for the CM
specimens was measured in the present tests. AhhddG measurements are probably highly
unreliable during inelastic deformations, the ceteicy of the measurements appears convincing
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for considering these values in the analysis. Heunhore, based on the present uniaxial formulation
(see Section 1V.4), the predicted strain valuessprandeoc (threshold strain value that signifies the
end of a perfectly elastic response), are alsaded in Table 1. It can be seen in Figs. V.4 ar V.
that similar strain values were measured by SGithénuniaxial cylinder compression and the split

cylinder tests, respectively.

Table 1- Input material parameters for each cementicioixs m

Uniaxial stress-strain law parameters Young's
Mix Compression Tension modulus
fc@ &  g0c® bc® ft O f@ bt © gor@ g @ E®@
(MPa) (x10°) (x109) - - - (x10%) (x109) (GPa)
LC 15.9 1500 250 1.643 0.80 4.5 70 110 25.0
NC 20.5 1500 270 1.707 0.85 5.0 65 100 30.7
MC1 34.7 1500 430 3.360 0.88 6.0 80 120 32.7
MC2 38.0 1500 450 3.890 0.90 6.5 80 110 34.0
CM © 32.4 1800 600 5.183 0.95 10 130 130 22.4

@ measured (see Table V.3).

®) Eq. (4) and assumed elastic limit at @.4f

© based on the 4-point bending peak load and carnelipg midspan deflection.
@ Eq. (5) and assumed elastic limit at 0.8f

©) assumed elastic behavior up to peak stigss, =<, ).

The measured peak applied load and midspan defhefdr all sizes of each mix where used
in this work in order to judge which values for theiaxial tensile stress-strain law parameters b
and f were more appropriate for each mix since direcaxial tensile tests were not performed.
Concerning the details of the present model, tfecebf h and f on the predicted peak load and
midspan deflection can be decomposed as followserimg the valueifand keeping the same b
results in a decrease of the predicgehk and Beak While increasing dand keeping the same f
results in a decrease of the predidgdkand RBeax

The measured peak load value for each beam sizenands included together with the
model predictions in Figs. 1(a) to 1(e). The scaifehe predicted peak load values corresponds to
a + 5% deviation of the assumed tensile strength vallies deviation is not significant given the
number of uncertainties of the assumption thatéheile strength is a material propértly can be
seen that with the exception of size S1 speciménseoNC and CM mixes, no size effect in the
flexural strength is apparent since the predicteakgdoad values shown in Fig. 1, if computed as

o, = P/bh, yield a size-independent flexural strength. Alsote that for all mixes specimens

considered it is true that, >f_ >f, , as expected
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The measured peak load midspan deflections faestikd specimens are listed in Table 2. It
can be seen that for mixes MC1 and MC2, an increfifee peak load with size is accompanied by
an increase in the corresponding midspan defleciibis is not observed in mixes LC and NC,
where the peak load of beam sizes S2 and S3 oetule same midspan deflection. A similar

inconsistency is observed in the CM mix for bearesiS1 and S2.

Table 2- Measured midspan deflection at peak load (valuesm).

Mix size S1 size S2 size S3

LC 0.035:0.004 0.0490.010 0.0490.009
NC 0.036:£0.003 0.0420.004 0.0450.008
MC1 0.029+0.005 0.0460.004 0.0580.004
MC2 0.034+0.005 0.0480.007 0.0680.002
CM 0.053:+0.001 0.0520.003 0.0720.007
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Peak load (kN)

Peak load (kN)

Peak load (kN)

Fig. 1— Peak load vs. size (experimental results and noat@redictions): (a) LC mix, (b) NC
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Initial softening and large deflections

The model predictions are compared with the expamiad results in Figs. 2 to 5. The classical
(local) and gradient (non-local) predictions argoashown. The non-local predictions were derived
using the internal length parameters shown in T8bke can be seen that the non-local predictions
are in better agreement with the experimental tesban the local predictions, especially for large
deflections. Furthermore, a significant scattethia softening response is observed for the size S1

specimens for all mixes. Regarding the CM mix, thidiscussed in Section VII.4.

Table 3- Gradient internal length evolution law parameters

Non-local Mix
parameters LC NC MC1 MC2
Averagego 17 15 12,5 8.0
(mm)
n 0.90 1.30 1.65 2.00
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Fig. 2— Comparison of the experimental results with nucaépredictions for the LC mix: (a) size
S1, (b) size S2, (c) size S3 and (d) all sizes.
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Unloading path predictions
Unloading/reloading and monotonic (no unloadingjdevere performed with the majority of beam
specimens being unloaded/reloaded at least thmeestat different load levels in the post-peak

softening branch of response. The unloading pathdHs depicted by an expression of the

form,P=P—- (1-D)K,(8-3), where Pand & are the values on the load vs. midspan deflection

softening branch where unloading stafis,is the average cross-section damage parameteirt p
(P,3) and K, the initial flexural stiffness for the uncrackedncrete. Thus, the inelastic (plastic)
midspan deflection upon complete unloading is:
8, =8-P/L-D)K, 7)
Three representative experimental Pdvsurves including the unloading/reloading cycles
for the MC2 mix, one for each beam size, are cosgaiith the non-local predictions in Fig. 6.

The analytical normalized applied load at unloadanity respect to the peak Ioaﬁ’,/Pp vs. the

eak’
normalized inelastic midspan deflectidi, /8 , and midspan plastic strain, / €, curves (see

Section VII.5) are plotted in Figs. 7(a) to 7(dyeévher with the experimental results for all
specimen sizes. Both local and non-local predistiam@ shown in Fig. 7. The unloading estimates
depend on the initial flexural stiffness of the el K ,, and thePvs.5 model predictions. These

predictions are closer to the experimental findiwhen the influence of the gradient internal length
is considered and this is reflected in the unlogdi@ues shown in Fig. 7.
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Fig. 7- Inelastic deformation after unloading (experina¢nesults and numerical predictions): (a)
LC mix, (b) NC mix, (c) MC1 mix and (d) MC2 mix.

3. DISCUSSION OF RESULTS

The assumption of an increasing internal length

A measure of the difference between the local amttlacal predictions is the ratio of predicted

midspan deflectiongiocaldnon-locai at a given load level in the post-peak softertangnch of the

flexural response. It can be seen in Figs. 2 teabthis ratio increases with increasing damagel lev

or increasing midspan deflection. For example tfierbeam specimen NC-S3 (see Fig. 3c), at load
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levels of 0.75F:ak 0.5Reakand 0.25F:akin the softening branch the predicted deflectidioréoca/
dnon-ocal IS 1.47, 1.74 and 2.26, respectively. This is ttuassuming an increasing internal length.
On the other hand, the experimental results (sge Rito 5) clearly show that the accuracy of the
local predictions deteriorates with increasing dgenl@vel and within the context of gradient theory
this is naturally modeled by assuming progressiveger values for the stiffness associated with
the strain gradient, that is dg/dD>0. For thefrs#$s associated with the Cauchy strain it is true
thatdK /dD=-K, <0 (see also Fig. 6) with the difference between liheal and non-local

predictions being that o grad>Ko,cl, if g, is not negligibly small, that is the rate of deage of

the elastic stiffness of the uncracked materiakduced. This “stiffening effect” is revealed upon
unloading and it shows that the assumption of goeantial evolution law for the internal length is

appropriate yielding predictions for all mixes @o$o the present experimental results (see Fig. 7)

Evolution of gradient internal length with damage

The post-peak response in the 4-point bending festisnposing midspan deflection at a constant
rate, right after the peak applied load shows laerasharp loss of load resistance with a subsequent
continuously decreasing rate of loss of resistaiités behavior shows that the relation between
damage and midspan deflection is non-linear. Ingresent strain gradient model, the relation
between damage and predicted resisted load is ffexdted by the value of g since damage
characterization is based on the Cauchy stressgsstaming through Eq. (39) of Section IV.5.

Forg >0, however, the predicted strains and hence theatune and deflection values for the same

load level are lower than the predictions of thealanodel. In addition, consistency of the theory
requires the internal length evolution law to bmaaterial property. The cases of a constant interna

length @=9,) and a linear evolution lawg=g,(1+y D)were examined but in both cases

calibration of the associated parameters was rjettte. This lack of objectivity was remedied by
assuming a nonlinear relation for the evolution.law

Microcracking, which is the source of damage in estitious materials, is influenced by
the composite nature of the materials. Stress trdalifon due to microcracking becomes more
limited with decreasing brittleness because itoicéd to occur in the matrix material. Naturally,
localization of microcracking leads to major-cratdwvelopment and, in that respect, brittleness is
related also to the number and size of fracturgpeagtes along the fracture surfatsee also Fig.
VI1.4). Furthermore, it has been shown that microkireg activity becomes more localized for
increasing brittlene&sandthis abrupt degradation of the material due to thiglalization of damage
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naturally results to a decrease of its deformatiapacity. Therefore, increasing brittleness should
affect the rate of increase of the internal lengith damage. The present findings support this
hypothesis since the non-local parameter, n, fociies with the samengk was found to increases

from 0.9 to 2 for concrete mixes with increasingtleness (see Fig. 8).

The evolution law assumed in this wogks g,e™, implies that ifg, = Q then g(D) =0.
However, a different evolution law which allows fgr=0 at D =0 might be applicable to high-
strength concrete and CM mix or concrete mixes gt 0. In principle, absence of size effect in

elasticity does not necessarily mean no size effedhelasticity, since microcracking although

influenced by the microstructure occurs even inrlggaomogeneous quassi-brittle materials like
CM. The present experimental results for CM arewsed and compared to the experimental
findings of Gettu et afor high-strength concrete in Section VII.4. Thim, materials exhibiting

practically no size effect in elasticitg{ = )Qan evolution law of the forng,=g,D", should result

in reasonable predictions.

1

7 Y —-—--LC (bt=4.5) o 8 i
/ S NC (bt=5) o || —-—--Lcm=09
« 0.8 P N | —— — MCL (bt=6) a || NC (n=1.30)
° \ MC2 (bt=65) | B || — - MCl(n=165)
8 7 \\ CM (bt=10) =3 MC2 (n=2.00)
g 0 / "\ 3 5 CM (n=4) v
7] Y =
© /,' E
o4 ; g
IS J __g
£ S )
S N
202 C_és
z
0 . | | | ‘
0 05 1 15 2 25 3 0 02 04 06 08 1
Normalized strain  &/g; Damage, D
(a) (b)

Fig. 8 — (a) Normalized stress-strain law in tensionf, = (Bt(glgt))/(Bt -1+ (a/st)ﬁ‘)and (b)

Normalized internal length evolution vs. damageoDdll mixes based og(D) = g,e™ for the
local and non-local numerical predictions.

4. HIGHLY BRITTLE MATERIALS
It was not possible to capture the post-peak switehranch for any of the cement mortar beam
specimens due to the extremely unstable crack groygical of very brittle material. Furthermore,
the experimental load vs. midspan deflection, shawhig. 9 with the model predictions, showed
no sign of non-linearity up to the peak load fdrksam sizes. Note that the local and non-local
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predictions coincide up to the peak load sincetieldshavior is assumed up to the peak tensile

strength (see Table 1) amyis negligibly small for this mix.
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Fig. 9 — Experimental load vs. midspan deflection cufee<M mix up to peak applied load with
the numerical predictions.

Gettu et aP investigated size effect in high strength conc(éte- 85MPa, d__ = 95mm)

in notched beam specimens subjected to 3-pointibgndhey reported the midspan deflection
recorded at the peak applied loag-(f and at 0.1Rakin the softening branch of the response. The
ratio of these two deflections can be seen as asuneaf brittleness. The value of this ratio was
found to be 212+ 063 based on the test results of seven (7) specimensromus sizes. For

comparison, the same ratio for the MC2 mix£38 MPa, d_,, = 32mm) was 758+ 192 If an

evolution law of the formg=g,D" with ;:=54.6 mm and n=4 (orogl mm and n=4 using Eq. 7) is

assumed for the gradient internal length and agpieethe cement mortar mix, then the local
estimate of the deflection ratio is 6.80, wherdas non-local one is 3.0%idca/ Onon-local= 2.2).
Although the post-peak softening branch of the cgmeortar beam specimens was not recorded, it
is reasonable to assume that the brittleness sfrifaiterial should be similar to the brittleness of
high-strength concrete and in that respect the local- model predictions appear to be more

realistic.

5. FLEXURAL STRAIN MEASUREMENTS
Casting of beam specimens in plywood forms unadydareates a boundary layer whose

properties can differ from the core mateflal However, it is shown that despite the objectibns
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concerning what is actually being measured on thface of specimens with strain gages (SG’s)
due to the complex nature of microcracking, sonefuklsnformation can be extracted from the SG
measurements.

The tensile concrete strain measurements at therbaide of the midspan cross-section for
two LC-S2 specimens are shown in Fig. 10. It casden that the axial normal tensile strain value
stops increasing before the peak load indicatiagy ¢brtain damage has already occurred before the
peak load and that within the elastic deformatiange every cross-section experiences a level of
strain proportional to the applied load. Howeverg® cracking occurs, tensile strain measurements
cannot be fully trusted.

The location of a major crack for un-notched spetismunder 4-point bending cannot be
predicted neither forced to occur at the midspasssection although in some specimens a crack
developed nearly at the midspan section. Wherottgsrs, the recordings of the SG’s placed on the
top extreme compressive fiber of the midspan csession show interesting measurements and two
examples are shown in Figs. 11 and 12.

The strain values measured on the side face dighm specimen at a distance of 2 cm from
the top compressive fiber for two LC-S3 specimemssiown in Fig. 11. The following sequence
of events is observed. Initially compressive sgaircrease linearly, i.e. the n.a. coincides whih t
centroid of the cross-section. In the post-peatesaig branch, as a consequence of the n.a. ghiftin
upwards towards the fiber where the SG was attadiedstrains start to decrease. As damage
increases, the measured strain value from compeessirns to tensile indicating that for
P/Ppeak=0.33 and P/Ppeak=0.28 for LC-S3-01 and 3025 respectively, the n.a. should be
located at z=80 mm, where the SG is placed. Tssulistribution predicted by the present model
corresponding to these load levels is shown in Eig.. It can be seen that the location of n.a. is
predicted very well.

Representative SG measurements at the extremenopressive fiber of an MC2-S3 beam
specimen are shown in Fig. 12. It can be seenuihart complete unloading a permanent straii) (
is recorded which, however, is not due to inelagd@formations at the top fiber, since that part of
the cross-section subjected to compressive strebeestd remain elastic. Furthermore, as shown in
Fig. 7, the normalized plastic midpsan deflectiangl strains after unloading are similar for each
mix. The strains measurements confirm a “stiffespanse” in the inelastic beam’s response range

and this can be seen as experimental evidence ttieat adopted constitutive equattpn

(e, ) = (1- D(e))E(e - 9% ) , is appropriate.

Size effect of cementitious materials in inelasfici 121



SIZE EFFECT IN SEMI-BRITTLE MATERIALS AND GRADIENT THE®IES WITH APPLICATION TO CONCRETE

11

—LC-S2-01
—LC-S2-02

0.9
0.8 1 SG “relaxing”

SG signal lost
0.7 A

0.6

0.5 A ] ]
LC-S2-01 é

0.4

0.3 - SG
i
0.2 4 LC-S2-02 é

Normalized load, P/P peax

0.1 3

0 \ \ \ \
0 25 50 75 100 125 150
Axial strain (x10 )

Fig. 10—Measured longitudinal flexural strains at the exieebottom (tensile) fiber for two size S2
beams of the LC mix.
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measurements at=80 mm and (c) numerical predictions of axial stréis$ribution at midspan
along the beam height for load levels in the sofig branch P/Ra=0.33 and P/Ra=0.28 for two

size S3 beams of the LC mix.
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Fig. 12 (a) Normalized applied load vs. midspan deflect{bh Normalized applied load vs.
compressive strain at the extreme top fiber focspen size S3 of MC2 mix.

6. CONCLUSIONS
The size effect in the inelastic flexural deforroatirange of the concrete beam specimens tested
under 4-point bending was investigated for five ¢gjnentitious mixes (four concrete mixes with
dmax=32 mm and one cement mortar mix withagtl mm) by testing un-notched geometrically
similar beams under midspan displacement controé Key finding of the present study can be
summarized as follows:
1. An increasing gradient internal length with damagelds non-local predictions that are in
better agreement with the experimental results tharocal predictions
2. A non-linear (exponential) relation between damage the gradient internal length was found
to satisfy the objectivity requirement of a sizedependent internal length evolution law.
3. The brittleness level of the response for the ceitiens mixes studied is found to affect the
internal length rate of increase with damage, ihatgher rates of increase of the internal length
are found for higher brittleness levels.
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CHAPTER VI
SIZE EFFECT ON STRENGTH FOR CEMENTITIOUS MATERIALS

1. INTRODUCTION
Size effect in cementitious materials does not feanitself only in deformation related parameters
such as stiffness but also in tensile or compressivength such as peak load predictions. In
Chapters VI and VII, a strain gradient formulatiointhe problem was used in order to account for
the former, while predicting size effect in strdngtas not possible. The study on size effect in
flexural strength is presented in detail in thisapier and the present experimental results are
discussed. The fracture mechanics prediction @& effect in flexural strength for the case of un-
notched beam specimens and the statistical sigeteffe investigated and it is shown that they only
partially explain the experimental results. The posite nature of concrete, the boundary layer
effects and diffusion phenomena are also discuasddt is argued that the observed behavior can

be attributed partially to these factors.

2. SIZE EFFECT ON STRENGTH
Size effect in flexural strength is not possibléha present formulation of the problem which elie
on an assumed uniaxial stress-strain law for ce@gretension and compression. However, a size
effect in flexural strength is apparent based enetkperimental results for some cementitious mixes
(see Fig. 1). These results are discussed andoanpacred with the predictions based on other

possible sources of size efféét!12

Statistical size effect

The statistical size effect preditishat the flexural strength of concretg, , is affected by size as

h™™ which ish™/8 for n=3 (3D similitude}and Weibull modulus m = 24 according to Bazant
and Novak”,

The measured flexural strength for all concreteawmiis plotted against the beam size in a
logarithmic plot in Fig. 2. If statistical size efft was present, the slope of a linear approximatio
for the on vs. size data plotted in a logarithmic plot shoblkl equal to -3/24= -0.125. If the
statistical size effect predictions are compareith whe present experimental results it is concluded
that the source of the deviations observed cammattiibuted only to statistical reasons and thet t

main source of the observed behavior is becauss stlurces of size effect are present.
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Fig. 1. Comparison of measured flexural strength valgesize with the present model predictions:
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Fig. 2. Measured flexural strength values vs. beam size.
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Specific fracture energy
The fracture energy of concrete is typically obgégiraccording to the RILEM methbérom a 3-
point bending test of beam specimens with spedfioensions depending on the maximum

aggregate sized For a notch depth, a, and beam height, h, anmaimi ratio, (h —a)/gh=3.125

is specified. In the present study, for the un-hettconcrete beam specimens tested under 4-point
bending the ratio of hfgxis equal to 3.125, 4.69, and 6.25 for beam size &1,and S3,
respectively.

The fracture energy per unit fracture surface &atefined a&. =W,/ A, where A is the
nominal cross-sectional area of the beam specinmetWa is the work supplied to statically

fracture the beam specimen and is eqifal to
Sy
W, = [ PE)d5+ 2R3, = W, +W, (1)
0

where Pis the applied loadP, is the equivalent self-weight of the beam antufes supported by
the beam andl, the ultimate midspan deflection. The equivalentocemtrated self-weight at each of
the two load points, = 0734 glL(g= uniformly distributed self-weight), is estiredtby equating

the midspan deflection for linear elastic behawothe case of a simply supported beam subjected
to a uniformly distributed load, g, to the midspheflection under 4-point bending and of the same
span. Note that, if the equivalent self-weightesedmined based on equating the maximum bending

moment at midspan an equivalent lddgd= 075 , ¢i-found. It is noted tha®, for the un-notched

beam specimens tested for this study, was lessli#aaf the total peak applied load. For all beam
specimens tested, the 4-point bending test wadnated in the softening branch region of response
after at least 90% of the maximum load resistana® hast.

The fracture energy per unit fracture surface aesalts for each concrete mix are plotted
against the specimen size in Figs. 3(a) to.3d3ignificant but similar scatter is observed fdr a
beam sizes and no trend of the reduced scattpparent with increasing size.
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Fig. 3. Fracture energy Jor all beam sizes: (a) mix LC, (b) mix NC, (c)>C1 and (d) mix

MC2.

The average value of the specific fracture eneayyefich size is shown in Table 1. The

average value of all tested specimens for eachisnessumed to be the fracture energy of the

material and is used in the analysis. This avevafjge for each mix, is similar to values reportgd b

other$>8%or concrete mixes withl, ., >20 mm

Table 1.Measuredspecific fracture energy values for all concreteaaiand beam sizes.

Fracture Energy, G (J/m?)

Mix

Average
S1 S2 S3 G
F
LC 232+65 276:37 25753 255:56
NC - ) 220+35 186:13 20532
MC1 202+39 21816 19331 207429
MC2 212+52 201+38 22554 211+47

) not measured
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The specific fracture energy and the characteristigith () for each concrete mix are
plotted against the compressive strength in Figs) @nd 4(b), respectively. The so-called
“characteristic” length of a cementicious material defined as:l, =EG./f’ (E=Young’s
modulus, f,=tensile strength and.=fracture energy), which is a measure of the irvaithe

material’s brittleness. Note that an increase efdbmpressive strength does not necessarily result
in an increase of the specific fracture energysTéidue to the fact that the fracture energy @dn n
distinguish the different effect on ductility anditbeness resulting from an increase of the
compressive strength However, regarding the brittleness of the comcmeix (see Fig.4), the
calibration of the softening parameteryielded 4.5, 5, 6, 6.5 and 10 for mixes LC, NC, M®IC2

and CM, respectively. Increasing the softening ipatar is equivalent to assigning a steeper
softening branch to the material’s uniaxial stresain law (see Chapter VII). Furthermore, the
non-local parameter, n, of the assumed gradieatriat length evolution law was found to increase

with increasing brittleness.
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Fig. 4. Fracture parameters vs. compressive strengtimifas NC, LC, MC1 and MC2: (a) Specific

fracture energy, 6(b) Characteristic lengthnl

Fracture mechanics size effect on flexural strength
Expression (2¥° for the size effect on the modulus of rupturetfa case of un-notched concrete
beams based on a cohesive crack model predicts that

Size effect on strength for cementitious materials 129



SIZE EFFECT IN SEMI-BRITTLE MATERIALS AND GRADIENT THE®IES WITH APPLICATION TO CONCRETE

f, 3—@+99h/1,)

. P 244 )L 87(011)) 2)

wheref, is the modulus of rupturef( =c ), f, is the uniaxial tensile strengtip,=1 for pure
bending and, is a length parameter. The length paraméteis linked to the characteristic
length|,, through the relationl, =c |, , where the factoc, ranges from 0.4 to 0.6 and is
associated with the softening branch of conéretdie steeper the initial softening after the peak
load, the smaller they. It is assumed that, = @6r mixes LC and NC, and, = (6r mixes
MC1 and MC2.

The predictions based on Eg. (2) are plotted thighpresent experimental results in Fig. 5.

It is noted that concerning the tensile strengihife values shown in Table VII.1 are used.
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Fig. 5. Normalized measured flexural strength values watipect to the assumed tensile strength of
the concrete mixes vs. beam size compared to thesoee crack model predictions.

Fracture mechanics size effect on splitting strengt
For the case of the split cylinder test configumatused in this study (see Chapter V), the spittin
to the uniaxial tensile strength ratio can be prtedi by the expression {8)

fe 1
— =1.0233+
f, - 673+ 2627D

/I )

cyl
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where f_jis the splitting strength ardl,is the cylinder diameter. It is noted that Eq. (8)
applicable for 04<D_,/1,< 10and that it was showh to be in good agreement with the
experimental results for cement mortdr (, = 5mnamd granite specimens.

The measured splitting strength (see Table V.3ecassumed uniaxial tensile strength (see
Table VII.1) ratios are shown together with Eq.i8)ig.6. The predictions of Eq. (3) are good for

the concrete mixes witb ., /1,<0.4 and the asymptotic behavior predicted is edsdistic.
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Fig. 5. Comparison of the measured splitting strengghtd the calibrated uniaxial tensile strength,
ft, ratio with the cohesive crack model predictions.

Empirical prediction of size effect in flexural strength
The CEB-FB modéfcode empirical expression (5) can predict the sffect on flexural strength:

s,  006h%
T =1t ooon® ()
. 1+ 006h

where h is the beam height in mm.

The predictions of Eq. (5) are plotted with thegemr® experimental results in Fig. 6. It can
be seen that correlation with the present expetaheesults is good for beam size S3 for all mixes
and significant deviations are observed for sizesu&l S2.
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Fig. 6. Comparison of the measured flexural strength, and calibrated uniaxial tensile strength,
ft, with the predictions of the CEB-FIB model codepamcal Eq. (5).

3. DISCUSSION

The heterogeneity of a material and the relativenstth of the different phases of a composite have
been shown experimentally to affect the detailmatrocrack propagatié. However, with regard
to how microcracking may affect the measured peak,the issue of propagation of a macrocrack
offers little insight for an un-notched beam spemim Impregnation tests have shown that
microcracking in concrete exhibits some random attaristics that a major crack by definition can
not include. Any effect microcracking will have tme peak load should be the same for all sizes
according to the present model predictions, sinaeafe at peak load is size-independent.
However, lattice model simulatiollshave shown that as the scale of concrete specinsens
decreased, the detail of the microstructure canifgigntly affect the predicted peak load. This
implies that as the macroscale of specimens dexsedhe measured behavior will be less
representative of the material. Note that in intetipg uniaxial tension tests for concrete, a rafio
h/dmax=3.75 was argued to be too sn¥all

Other inherit uncertainties associated with caséind curing of the beam specimens like
formation of a boundary layer with different profest’ and diffusion phenomepalue to different
cooling times of the core and surface material, banimportant for the case of un-notched
specimens and their influence cannot be negleéiedexample, the reduced flexural strength of
size S3 specimen of the MC1 mix could be attributethduced microcracking due to hydration

heat phenomena since relatively very small sizecefé observed in sizes S1 and S2. Also, the very
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high flexural strength especially for size S1 foe tCM mix (h/¢ha=100) which showed no size
effect for sizes S2 and S3, could be the resudt lmbundary layer rich in cement concentrated at the
bottom of the specimen during casting. The samédcbe argued for the very high peak values
measured in specimen size S1 of the NC mix. Adssjze effect on flexural strength was not
present for mix MC2. This might be seen as proathefabsence of the material's size effect or as
proof that the true material’s size effect is shveeld by other factors affecting the results. Finally
the size effect on flexural strength measured ler LC mix can be attributed to material’'s size
effect since a regression analysis of Bazant’s paxameter size effect ldwvas possible only for
this mix.

A review of the present experimental results ctiNety does not reveal a single source of
size effect which can be identified as the soufdd® observed behavior. However, considering the
relatively small size range of specimens usedimgtudy (1 : 1.5 : 2), other souréemt associated

with the material size effect on strength are etgubto influence the measured peak load values.
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MAIN CONCLUSIONS

Given the increasing awareness regarding the u=fslof gradient elasticity theories and
the significant amount of theoretical work that heeen produced in the last decade or so, it is
rather surprising that the discussion concernirgrétationship between the internal length and the
material’s microstructure is more or less limitesbally to the vague statement that the internal
length parameter of the material is a function bé tdominant feature of the material’s
microstructure. The main aim of this thesis wasneestigate the physical correlation of this
internal length assumed by dipolar elasticity te thnaterial’s microstructure. To the author’s
knowledge, the estimation of an evolving interraidth parameter for cementitious materials based
on experimental evidence has not been done indke por this to be attempted and in order to
investigate a possible size effect in elasticipnirflexure tests of concrete beams, the two claksic
material constants, the Young’s modulus and Poissatio, should be determined independently.

A homogenization procedure applied to heterogenematgrials in this study showed that
the internal length is best described as a meaduhe heterogeneity which cannot be defined only
in terms of the dominant feature of the microsuet (size of inclusions) but also of the
matrix/inclusions elastic mismatch in the materibhis was verified experimentally by testing
concrete specimens of various mixes with similarcrostructural details but with different
matrix/aggregate elastic mismatch. The internagjtierestimate determined based on this model
was found to decrease with decreasing level otielagsmatch.

A gradient enhanced elasto-damage model applidakilee case of concrete beams under
flexure, which relies heavily on the elasticitywodn of the boundary value problem for the case of
a dipolar elastic Timoshenko beam, is presentethis work. A closed-form solution of this
problem and a methodology for solving more comgiieam problems, such as indeterminate beam
configurations, is described. This model reducetheogradient Bernoulli-Euler solution and the
classical Timoshenko solution if the necessary Bfioations and limits are considered. The
elasticity solution of the boundary value problemswised in conjunction with an assumed stress-
strain law applicable to semi-brittle materialsarder to produce numerical predictions for the
inelastic response of the beams tested. The maodpbgped is shown to lead to an objective (mesh-
independent) damage characterization.

In this study, the presence of size effects inteiaag and inelasticity of cementitious

materials was investigated based on midspan deiteend axial strain measurements of un-
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notched concrete beam specimens tested under iBplaEment-controlled 4-point bending for
concrete with a compressive strength of up to 4@Mme geometrically similar un-notched beam
specimens tested had a beam height to maximum gajgrsize ratio of up to about 6.5. Since
concrete possesses rather complex microstructatailsldue to the presence of different aggregate
sizes with specific volume fractions (aggregatedgtion), the internal length estimate for a given
mix is compared with its average inclusion sizejolhdescribes its inherent heterogeneity. The
average inclusion size for the concrete mixes camed in this study with a maximum aggregate
size of 32 mm, obtained by mapping the actual rsicocture on cross-sectional cuts of the
specimens, ranged between 10 and 20 mm. An estiohdlte internal length for a given concrete
mix was obtained based on the applied load vs. pamsieflection and curvature measurements of
the beam tests. A stiffer response than that piesdlicy the classical elasticity theory is measumed
the flexural elastic response range of the beastede The proposed model predicted an internal
length estimate of abol®+5 mm in the case of the concrete mixes with a dSicpnit elastic
mismatch for which cracking occurs predominantlyhie matrix material (lower-strength concrete).
It should be noted, that the same internal lengthmaite was obtained independently of the use of
either the midspan deflection or the axial straieasurements. These concrete mixes are
representative of a composite with inclusions msiiffier than the matrix material. It is important
that the internal length parameter in this caseaggpto be practically equal to the average inotusi
size of such a microstructure. On the other haowlet internal length estimates of abdt- 2 and

8+ 4mm (about one-half the average inclusion size)eweund for the two concrete mixes with a
higher compressive strength. The lower internajtlerestimates for the higher-strength concrete is
attributed to the lower elastic mismatch in the nostructure of these mixes, due to which a
significant number of aggregates were fractured@lbe crack path. As expected, the size effect in
elasticity is found to be insignificant in the cagkthe cement mortar mix with a maximum
aggregate size of 1 mm, which can be viewed asmpletely homogeneous material.

Furthermore, it is argued that microcracking imsebrittle materials, which is the source of
material softening, should also affect the initiaternal length parameter valueg, gvhich is
associated with the given heterogeneity of the nadidf a microstructural internal length is reddt
to the level of damage, a thermodynamic formulatbthe problem showed that this length should
be either increasing or remaining constant with a@igen An experimental investigation of the
particular form of the gradient internal length kxmn law verified this theoretical finding sinde

was shown that an increasing gradient internaltlemgth damage yields non-local predictions that
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are in better agreement with the experimental tesléin the local predictions. Finally, a non-linea
(exponential) relationship between damage and thaeéient internal length was found to satisfy the
objectivity requirement of a size-independent in&rlength evolution law for the cementicious
mixes considered in this study. Also, it was fouhdt the rate of increase in the internal length

value with damage is increasing with increasingflbness level of response.
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