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Measurements of liquid film flow as a function of fluid properties and channel width:
Evidence for surface-tension-induced long-range transverse coherence
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We study experimentally the influence of the transverse dimension on film flow in relatively wide channels
with sidewalls. Large deviations from two-dimensional predictions are observed in the primary instability and in
the post-threshold traveling waves, and the deviations are presently shown to depend strongly on fluid physical
properties. Measurements for a wide range of fluid properties are found to correlate with the Kapitza number,
which represents the ratio of capillary to viscous stresses. These observations point to an unexpected long-range
effect of surface tension that provides transverse coherence to the flow.
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I. INTRODUCTION

Gravity-driven liquid films represent a good prototype of
convectively unstable, open-flow systems, whose unstable
band of wavelengths extends to zero [1–3]. This low-Reynolds-
number interfacial system involves a complex balance between
energy input, dissipation, dispersion, and nonlinearity that
leads to the formation of pulselike coherent structures (solitary
waves or dissipative solitons [4]), with each pulse containing a
large number of phase-locked Fourier harmonics [5,6]. A key
ingredient of this procedure, which differentiates the above
coherent structures from classical solitons, is the cross-stream
coherence to the flow provided by liquid viscosity [7].

The evolution of the flow from a base state with undisturbed
interface is envisioned to occur through a Hopf bifurcation
that involves strictly two-dimensional (2D) dynamics [8,9],
according to Squire’s theorem that proves the prevalence
of disturbances in the streamwise direction. Subsequent
spatiotemporal growth is considered to depend on the amount
of noise in the transverse direction: with weak 3D noise
content, the 2D flow development is taken to conclusion toward
stationary solitary waves, whose crestlines may exhibit trans-
verse modulations further downstream. With strong 3D noise,
the first 2D stage may be infected by transverse modulations
before concluding the streamwise evolution toward a solitary
wave train [7,10–13]. The selection process of the transverse
lengthscale of these modulations has been discussed in the
above literature, and is typically much shorter than the width
of the flow.

The aforementioned conceptual image is not fully sup-
ported by experimental realizations [14–16], and some specific
issues have been questioned recently [17,18]. In particular, the
latter investigations provide phenomenological evidence that
the width of the flow has a puzzling and strong effect on both
the onset of the primary instability and on the characteristics
of stationary waves in the post-threshold regime. The present
work attempts to uncover the prevailing physical mechanism
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responsible for this behavior by performing and interpreting
experiments with liquids of widely varying physical properties.

A first indication of unexpected behavior comes from
experiments in flat channels bounded by sidewalls. Traveling
disturbances beyond the primary threshold do not retain a
straight crestline but become symmetrically curved around the
centerplane. This wave characteristic can only be attributed
to an effect of the sidewalls that evidently extends throughout
the width of the channel. Symmetrically curved waves were
shown to represent a very strong attractor of the flow at
small channel inclinations [18]. As will be shown later, strong
crestline curvature is related to the prevalence of capillary over
viscous forces. Thus, it appears that surface tension determines
characteristics of the flow over a distance that is orders of
magnitude larger than the capillary length, i.e., it provides
long-range transverse coherence.

Further evidence for an unexpected behavior of film flow
comes from the observation [17] that the critical Reynolds
number for the primary instability depends strongly on channel
width. Significant deviations from the well-known prediction
for 2D film flow at inclination θ [19], Re◦

c = 5/6 cot θ

(derived for unidirectional base flow and long, streamwise
disturbances) were reported [17] for liquid films that extend in
the transverse direction more than two orders of magnitude of
the film thickness. Given that the base flow with a flat interface
is known under these conditions to be one dimensional
throughout the channel, with the exception of thin regions
close to the sidewalls [20], Squire’s theorem should apply. In
spite of this, the instability appears to be strongly affected
by side effects, and the two-dimensional evolution stage is
completely bypassed.

II. RESULTS

In order to understand the above phenomena, experiments
were performed in two inclined flow facilities of adjustable
width, with one 800 mm long by 250 mm wide and the other
3000 mm long by 450 mm wide. Inclination angles in the
range θ = 2–15◦ were tested. The liquids used were aqueous
solutions of glycerol or isopropanol. Data were parameterized
in terms of two dimensionless numbers: (i) the Reynolds
number Re, defined as the ratio of flow rate per unit span
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FIG. 1. R∗ as a function of Ka for several angles, fluids, and
widths. Surface tension is in mN/m. See text for details.

to kinematic viscosity, and (ii) the Kapitza number, defined as
Ka = σ/(ρg1/3ν4/3), and representing the ratio of capillary
to viscous stresses when the intrinsic viscous length and
time scales, lν = (ν2/g)1/3 and tν = (ν/g2)1/3, respectively,
are used. σ , ρ, ν, and g are, respectively, the surface tension,
density, kinematic viscosity of the fluid, and the gravitational
acceleration. Using the capillary length lc = (σ/ρg)1/2, the
Kapitza number is also Ka = (lc/ lν)2. The critical Reynolds
Rec for the primary instability was detected by local film
thickness measurements with conductance probes, according
to the method described in [17]. Spatial characteristics of
traveling waves were documented by fluorescence imaging,
as described in [18].

We revisit the previously observed [17] strong increase
in Rec for narrow channels and investigate systematically
the dependence of the delay R∗ = Rec/Re◦

c on the physical
properties of the liquid. A key result presently reported is that
R∗ correlates very satisfactorily only with the Kapitza number
or the capillary number (Ca), and not with other dimensionless
parameters that are frequently used to express the effect of
surface tension, such as the Weber (We) or the Bond (Bo)
numbers. We recall that both Ka and Ca compare capillary
to viscous forces, whereas We and Bo compare capillary to
inertia and gravity forces, respectively.

We plot the results using Ka because it depends only on
physical and not on flow properties. Data are shown in Fig. 1
for two channel widths and for a very wide range of Ka. The
lower curve corresponds to W = 250 mm and variation of Ka
accomplished by changing either the viscosity or the surface
tension. We observe that the choice is immaterial, and all
data fall on the same curve. The upper curve corresponds to
W = 100 mm and data for channel inclinations in the range
θ = 3–13◦. It is concluded that the delay R∗ does not vary
with inclination, at least in the range tested.

The functional dependence of the data in Fig. 1 indicates
that the experimentally observed transition tends to the theoret-
ical 2D prediction only in the limit of Ka → 0. The deviation
grows significantly with increasing Ka, and eventually reaches
a plateau for Ka > 2500. With respect to this behavior, it is
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FIG. 2. R∗ as a function of Ka for several widths W , θ = 3◦.

interesting to note that increasing the liquid viscosity causes
a decrease in Ka and consequently results in lower critical
Re, i.e., the flow is destabilized. As this is counterintuitive
with the notion of viscous dissipation, it is conjectured that an
additional attenuation mechanism is active at high Ka, when
capillary forces dominate over viscous forces. This mechanism
should fade out with decreasing Ka, thus permitting the flow
to destabilize at lower Re.

Systematic investigation of the effect of channel width is
undertaken in the range 100 < W < 450 mm, and the results
are shown in Fig. 2. As expected, the wider the channel, the
smaller the deviation from theory. However, differences are
still very significant (i.e., exceed 60%) for the widest channel
tested. Even more impressive, the deviation at high Ka for the
100 mm channel approaches 400%, although the ratio of width
to film thickness is still deceivingly high (>100). In the high Ka
limit, the plateau values depend only on W , and are correlated
satisfactorily by the hyperbolic fit R∗ = 1 + 125/W ∗, where
W ∗ = W/lc.

The aforementioned observations on the delay of the
primary instability hint that when capillary forces dominate
over viscous forces, there exists a strong transverse effect
that bypasses the 2D dynamics and provides an inherently 3D
capillary attenuation mechanism of the traveling disturbances.
The onset of this effect may only be traced to the damping
of free surface oscillations close to sidewalls, which is caused
by (i) the thin viscous boundary layers and (ii) the resistance
to the depinning of the contact line. In order to identify this
capillary mechanism, we now focus on the characteristics of
the waves that develop beyond the instability threshold.

Wave properties are documented by analyzing pictures
taken with fluorescence imaging, which have been properly
calibrated so that brightness is proportional to liquid film
height. It was previously noted [18] that the first fully
developed waves are not two dimensional, but acquire a
parabolic crestline shape whose curvature depends on channel
width. It is presently confirmed that this behavior depends
strongly on Ka. More specifically, Fig. 3 shows snapshots of
waves, in the 450 mm wide channel, created by regular inlet
disturbances of frequency 2 hz at roughly constant Re. With
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FIG. 3. Maps of the height h(x,z) for (a) Ka = 3100 and
(b) Ka = 1320 at Re = 30, f = 2 hz, W = 450 mm, and θ = 3◦.
The color bars indicate the height in microns.

decreasing Ka, the crestlines evidently become less curved,
which is an indication that the 2D limit is approached.

It was argued above that oscillations close enough to
the sidewalls should be damped by viscous and depinning
resistance. If this is true, then the height of traveling waves
should vary across the channel. These arguments are indeed
supported by the data. In particular, Fig. 4 shows the variation
in wave height moving along the curved crestline for three
different values of Ka. The height is scaled by the Nusselt
film thickness hN , i.e., the thickness of steady film flow with
undisturbed free surface at the same Re. Waves always attain
maximum height at the channel center and decline toward
the sides. However, the nonuniformity along the crestline,
which can be taken as an indicator of deviation from 2D
dynamics, increases with Ka. The dashed lines are mere
tentative extrapolations, based on the conjecture that the
liquid thickness close enough to the sidewalls is the Nusselt
value [18].

The complete free surface structure of the aforementioned
parabolic waves is presented in Fig. 5, corresponding to Re =
33, f = 1 hz, W = 450 mm, and θ = 3◦. It is readily noted
that not only is the wave height at maximum at the center
of the channel, but also a wide central region of minimum
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FIG. 4. Height of the crestline, normalized by corresponding
Nusselt height, over the transverse direction for Ka = 3100 (water),
1640 (18% glycerol), and 1320 (23% glycerol), at Re � 30, f = 1 hz,
W = 450 mm, and θ = 3◦. Dashed lines are empirical extrapolations
toward the walls.

film thickness forms behind this maximum. Thus, these high
Ka waves have shape qualitatively similar to the lambda (or
horseshoe) waves that are observed at much higher flow rates
or inclinations [21,22], and are typical of genuinely three-
dimensional dynamics.

The observed variation in film thickness results in a nonuni-
form pressure distribution inside the liquid. This distribution
may drive secondary flows, particularly in the transverse
direction where pressure differences are not balanced to
leading order by other forces. We note also that the maximum
wave height observed along the crestline at the channel center
is reinforced by a local maximum of curvature below the
main hump. The combined effect of hydrostatic and capillary
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FIG. 5. Map of the height h(x,z) at Re = 33, f = 1 hz, W =
450 mm, and θ = 3◦. The color bar indicates the height in microns
and the arrow indicates the Nusselt height.
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pressure below the hump should direct liquid from the center
toward the sides along the crestline. On the contrary, the
variation in substrate thickness, from a value close to hN at the
sides toward the minimum at the center, should drive liquid
in the opposite direction. Thus, a secondary flow consisting
of two closed eddies, symmetric with respect to the channel
centerplane, should be established.

The above conjectured secondary flow provides an
additional (transverse) draining mechanism for the traveling
disturbances. This mechanism is evidently more efficient in
narrow channels and for liquids with high surface tension. For
example, in the case depicted in Fig. 5, the hydrostatic pressure
gradient in the transverse direction is estimated as �Ph ∼
ρg(h − hN )/2 ∼ 1 Pa, and the capillary pressure gradient in
the transverse direction is estimated as �Pc ∼ |σd2h/dx2| ∼
0.5 Pa. Thus, in the high Ka limit, capillary forces become
comparable to hydrostatic forces in their potential to drive
a secondary flow. It is recalled that the 2D mechanism for
arresting solitary wave growth is capillary dissipation, i.e.,
the enhanced streamwise, viscous dissipation at the small
scales introduced by capillary deformation. It is presently
argued that at high enough values of Ka, the transverse
draining mechanism prevails over streamwise dissipation, and
thus postpones the appearance of the primary instability to
higher Re.

Numerical simulations could serve to confirm the above-
conjectured draining mechanism for traveling disturbances.
As a 3D simulation of the complete Navier-Stokes equations
with a deformable free surface still represents a formidable
task, reduced versions based on long-wave expansions could
be used [7]. The present data (Fig. 4) indicate that an effective

boundary condition in the transverse direction could combine
no penetration and zero wave height.

III. CONCLUSIONS

To conclude, we have presented experimental evidence that
the delay in the primary instability of inclined film flows
in channels of finite width scales with the ratio of capillary
to viscous forces, as expressed by the Kapitza number. The
deviation from the theoretical 2D prediction increases with
Ka, and reaches a plateau for high enough values. This
behavior testifies to a bypass of the 2D evolution stage of
the instability due to an inherently 3D wave attenuation
mechanism, which apparently stems from the effect of the
sidewalls. The dependence of the phenomenon on channel
width, in combination with the strength of the deviation for
large W/hN ratios, indicates the existence of long-range
transverse coherence in this typical example of an active
dispersive-dissipative nonlinear medium. Examination of the
first post-threshold traveling waves supports the notion that
the long-range coherence is provided by a draining mecha-
nism of the disturbances, which is related to the transverse
nonuniformity in the wave characteristics.
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