
10
th
 Conference on Stochastic Models of Manufacturing and Service Operations (SMMSO 2015) 

 

 

Stochastic Inventory Routing Problem with Transshipment 
Recourse Action  

 

Evangelia Chrysochoou 
PhD Student, Department of Mechanical Engineering, University of Thessaly, Volos, Thessaly, Greece, email: 

echryso@certh.gr 

 
Prof. Athanasios Ziliaskopoulos 

Professor, Department of Mechanical Engineering, University of Thessaly, Volos, Thessaly, Greece, email: 

ziliasko@gmail.com 

 

Major multinationals have recognized that optimizing their global supply chains can yield substantial impact on their 

bottom line. Vendor Managed Inventory (VMI) systems seem to be at the core of most global supply chains serving this 

goal. The concept behind this business model is that the supplier monitors the inventories of each retailer and determines 

the replenishment policy, guaranteeing that no stock out will occur.  Inventory Routing Problem (IRP) constitutes the 

backbone of the VMI model. IRP aims to jointly optimize transportation and inventory decisions. While the IRP 

accounts for almost 30 years of research it is still an open and active area, especially its stochastic counterpart. In this 

paper a two –stage stochastic programming model with recourse action is introduced for the IRP with stochastic demand. 

Transshipment is treated as a recourse action when extra demand is revealed and stock out situation occurs. An exact L – 

Shaped algorithm is developed to solve the problem; computational experiments demonstrate the efficiency of the model 

while proving that the L –Shaped method converge in a finite number of steps. 
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1 Introduction  

Vendor Managed Inventory (VMI) systems seem to be one of the most tractable business models in global 
logistics and supply chain operations nowadays. This is increasingly the case for the electronics and 
automotive industry that manufacture parts in Asia and assemble them in Europe.  This is a deviation of the 
traditional production models where typically parts manufactured in one facility are assembled on a next 

door plan.  Now work-in-progress seems to spread along the whole supply chain, often stretching from 
China to Hungary or Czech Republic.  Recently many of these global supply chains started using Piraeus, 
Greece as the port of entry into the European Union with warehouses and transshipment facilities anywhere 
from Greece to Czech Republic along the European Railway Network that is used for land transport. Most 
of these parts are  assembled in five (5) major plants in Central Europe, operating with Just – In – Time 
production procedures, using the VMI principles, as typically one manufacturer provides assembly services 
for most electronics companies.  3PL entities involved in these global supply chains realized the need to 
adjust their operations to meet the requirement of their clients in this regard, which motivated this research. 
The overall aim is the performance of more efficient resource utilization. 

The main algorithmic component of the VMI systems is the Inventory Routing Problem (IRP), which 
is one of the most interesting extensions of traditional vehicle routing problems. It combines the decision 
making process of inventory management and distribution – transportation of goods. The decision maker in 
such a model has to make three decisions; the amount to be transported; the frequency of shipments and the 
distribution plan. IRP in real life is stochastic since demand uncertainty is the undisputed reality of actual 
problems. The basic difference between the Stochastic and the Deterministic IRP is the level of realism and 
the difficulty of solving instances given that the data are given in a probabilistic sense.  

In a two stage stochastic program a long term anticipatory decision must be made prior to the full 

information of the random parameter of the problem and short terms decisions are available as recourse 
actions once the uncertainty has been revealed. The overall aim is to make “here and now” a decision 
which minimizes the total expected cost associated with both: the long term and the short term decisions 
(Carøe and Tind, 1998). However a key issue in the solution of an IRP is how to model long term effects of 
short term planning decisions.   

Although the IRP is a long term problem, almost all proposed solution schemes solve only a short 
term version of the problem for reasons of computational tractability.  Besides the planning horizon 
modelled typically in number of days, key features that distinguish different solution approaches include: 
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the manner it is determined, the customers that are included in short term problem, and whether the 
customer demand is treated deterministic or stochastic.   

With respect to the existing literature the contribution of this paper can be summarized as follows: 

(I) It introduces a formulation for the SIRP with recourse using transshipment as a recourse action. 
(II) It introduces new valid inequalities that enhance the computational process of optimal transported 

quantities under the maximum level policy. 
The paper is organized as followed: In §2 a literature is reviewed, where milestones related to the 

developments of IRP solutions are discussed. In §3 the framework of stochastic programming approach is 
analysed. The proposed mathematical model of our approach and the L – Shaped method are presented in 
§4. Computational results are discussed in §5. Finally conclusions and further steps are given in §6.  

2 Literature Review  

IRP was introduced 30 years ago by the seminal paper of Bell et al., (1983) which studied the case with 
stochastic demand accounting only for transportation costs. Federgruen and Zipkin (1984) extended the 
vehicle routing problem (VRP) model of Fisher and Jaikumar (1981) accounting for the shortage and 
inventory cost. Later Blumenfeld et al. (1985) analyzed the trade off among inventory, production and 
distribution costs on the freight transportation networks. Anily and Federgruen (1990) introduced the first 
clustering algorithm for the IRP. 

Baita et al. (1998) provided the first comprehensive literature review dedicated on this subject, where 
the main solution approaches were classified as being either in the frequency or in the time domain. 
Frequency domain approaches and more specifically the aggregate ones set the basis for the Economic 
Quantity Order model which is commonly used for inventory management. Time domain approaches work 
in a closed loop manner, in a sense that the decisions taken in a one period affect the decisions of the next 
one.  A major drawback of the EOQ models is that it provides headways which are not integer. Hall (1985) 
suggested rounding up EOQ values to the nearest feasible frequency; however, it was proved by Speranza 
and Ukovich (1994a) that this decision raises the overall cost by almost 20%.  Speranza and Ukovich 

(1994b) proposed a mixed integer programming model, which assigns items to frequencies for the one 
origin to one destination case, by using trucks of a given capacity.  Following this approach, Bertazzi et al. 
(1997) studied the more general case with several destinations, and proposed several decomposition 
heuristics which solves the problem in three phases. Few years later Bertazzi, Palettas and Speranza (2002) 
introduced a practical VMI policy, called deterministic order – up – to – level (OU) policy for the IRP. 
Based on the proposed policy Arhetti (2007) developed the first exact algorithm using a branch and cut 
scheme for the single vehicle. Very recently Coelho and Laporte (2014) and Adulyasak et al. (2014) have 
solved multivehicle versions of IRP in a branch and cut fashion under OU and maximum level (ML) 

policies. Solyali and Sural (2011) (based on the work of Arhetti et al., 2007) proposed a strong formulation 
for the inventory replenishment part of the IRP, which provides linear programming bounds and 
significantly better computational results. Transshipment has been studied for the purposes of inventory 
management since the seminal paper of Allen (1958). However to the best of our knowledge, transshipment 
was introduced in the context of inventory – routing problem only recently by Coelho (2012). Coelho have 
included the concept of transshipment in the branch and cut algorithm of Arhetti et al. (2007) and proposed 
also an adaptive large scale neighbourhood search (ALNS) for large scale instances, which was proved to 
be a quite powerful meta – heuristic.  

Reviewing the work that has been published recently related to the IRP under uncertainty, we shall 
refer to the development of four domains; the framework of finite rolling horizon, the Marcov decision 
process for the infinite horizon consideration the robust IRP, the dynamic stochastic IRP.  

Related to this paper is the work by Campbell et al. (1998) that set the basis for the rolling horizon 
framework, especially as used by Bard et al. (1998) in their decomposition scheme, and Jalliet et al.(2002) 
that optimally incorporated the long term delivery costs to short term planning horizon.   Kleywegt et al. 
(2002, 2004) formulated the stochastic IRP as a Marcov Decision Process (MDP) over an infinite horizon. 
Adelman (2004) introduced a price – directed approach to deal with the stochastic counterpart of the IRP 
where the future cost is approximated by the duals. In contrast to the MDP Hvattum, et al. (2009) presented 

a framework based on scenario tree and proposed efficient heuristics that set the basis for our stochastic 
programming approach. Solyali et al.(2012)  proposed two mixed integer programming formulations of the 
robust version of the problem, which produce policies leading to feasible solution and optimal cost for any 
realization of the demand.  
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Bertazzi et al. (2013) as well as Coelho (2012) rely on a dynamic programming formulation that allows 
the design of a hybrid rollout formulation aiming to find good quality solution. To the best of our 
knowledge this is the first approach that uses the rollout approach to solve the stochastic IRP.   Finally, we 

refer to Andersson et al. (2010) and Coelho et al. (2014) for a comprehensive overview of the VMI 
problem and solution methods.  

Our paper builds on Arhetti et al. (2007) and Coehlo’s (2012) approach by treating  transshipment as a 
recourse action, while the OU to level policy is not applied for the first stage decisions of IRP. Instead, new 
valid inequalities are proposed in order to determine the optimal quantities to be delivered for the ML 
policy. This approach was motivated by the fact that in the context of a deterministic model all parameters 
are known in the beginning of the process; thus a vendor can take advantage of the fact that knows the total 
demand of each stock keeping venue in advance and can transport quantities in an early stage in order to 

fulfill the future known demand. However, the amounts that a vendor is able to transport are bounded by 
the amounts that are made available at each stage.  

3 Stage Stochastic Programming Framework 

Following the typical notation of stochastic programming approaches (Kall and Wallace, 1994; Birge and 
Louveaux, 1997) , a two stage stochastic programming model can be stated as follows: 
 

      
             (1) 

Subject to:      (2) 

     (3) 

Where:               
   (4) 

Subject to:            (5) 

     (6) 

The objective function consists of two components: the first one is related to the first stage decision 

process and the second one to the expected cost of the second stage decision process. Constraints (2) and 
(3) formulate the feasible solution space of first stage decision process.    , corresponding to the 

expectation of the second stage decision process, and   denotes the possible outcomes of each scenario 
with respect to the probability space (Ω, P). The objective function of the second stage decision process (4) 
is related to the respected decision variables and expresses the additional cost required performing recourse 
actions. The first component of left side equality (5) includes the parts of the first stage that are affected by 
the realization of   and the second component includes the recourse actions that are foreseen to be 
implemented at the second stage to incorporate uncertainty. Finally, the right hand side of equality (5) 
represents the variable parameters of the first stage process that have to be met. By considering only   
discrete probability distribution functions P, the expectation of the second stage decision process can be 

stated by the following  
                          (7) 

Based on (7) it is convenient to formulate a large LP that forms the following deterministic equivalent 
problem. 

      
         

        (8) 

Subject to:      (9) 

                 (10) 

          (11) 

In order to solve the stochastic programming model with recourse, first the decision maker implements 
the first stage decisions x; then the system will be subject to the random process denoted by (Ω, P) which 
results in an outcome      . Finally the decision maker will execute the recourse actions of the second 

stage decisions y accordingly. Using a Benders decomposition approach the process is divided into four (4) 
steps. In the first step, the initial master problem of the first stage decisions is solved. Next, for each 
scenario     of possible outcomes the sub problems of the second stage decisions are computed.  Step 

three is used to perform convergence tests, which are satisfied when the desired accuracy is achieved. 
Finally, in the forth step the master problem is solved with a column generation scheme by adding the 
proper produced optimality cuts from the dual prices of the second stage decision process. Based on the 
linear programming duality all second stage decision variables are projected out to the master problem in a 
cutting plane scheme. The master problem which constitutes the first stage IRP problem is solved and 

provides these solutions to the second stage decision process. If the second stage problem is feasible and 
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bounded, an optimality cut is added to the master problem; otherwise a feasibility cut is added. The process 
is repeated until an optimal solution is found or the optimality gap is achieved.  

4 Mathematical Formulation 

In order to illustrate this 2 – Stage programming approach easier, initially the first stage decision process of 
the model is presented. Then the process of recourse actions of transshipment is presented. Finaly the 
stochastic program and its deterministic equivalent are discussed.  

4.1 First Stage Decision Process – IRP model  

We consider an IRP where a supplier denoted by node 1 distributes to N-1 retailers over a finite discrete 
time T, using a single vehicle with capacity C. Traditionally, the problem is defined on an undirected graph 
G=(V,A) where {1} is the vertex  representing the supplier  and vertices V’ = {2,3,…,N} represent the set of 
stock keeping venues (they will be called retailers from thereafter as it is common in the literature); 

                     is the set of arcs . Inventory holding cost occurs for both supplier and retailers and 
is denoted as        per period and each vertex has an inventory capacity       . The length of the 

discrete planning horizon is H where            . In the beginning of the planning horizon the 

decision maker knows that: (1) each period the quantities    is made available to the supplier in order to 

fulfil the request of his retailers; (2) the initial inventory levels of both supplier and retailers are known { 

  
    

      }; and (3) the demand of  each retailer and at each period, denoted   
      , are known. A single 

vehicle can perform one route at each period with capacity C, and a routing cost     is associated with arc 

       . Throughout the paper, we assume that since the supplier has the information about the demand of 

his retailers in advance, he can transport the quantities   
  to meet the demand of period t as well as of 

subsequent periods. However, the available quantities    shall be added to the total available quantities at 
period t, as they can be used for deliveries to retailers at the same period t as well as the subsequent 

periods. The binary decision variables     
  is equal to 1, if the vehicle is delivering products at period t and 

the retailer j is served exactly after retailer i. Also, we define the binary variable   
  which is equal to 1 if 

the inventory i is served at period t. Additionally the non negative variable   
  express the quantities to be 

delivered to retailer i at period t, and   
  the quantities that the vehicle carries after delivering to the retailer 

i. The objective function minimizes the total transportation and inventory cost for the whole planning 
horizon, while meeting the demand of each retailer. Thus it is formed by the parts: the total inventory cost 

      
 

       and the total transportation cost           
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             (32) 

     
                        (33) 

   
                 (34) 

 
Constraints (13) and (14) are related to the inventory level at the supplier’s site. The first one expresses 

the fact that the inventory level at the supplier cannot be negative in any period, thus avoiding a stock out 
situation. The second one defines the inventory level of the supplier at the end of period t by the inventory 
level at the end of period t-1, minus the total quantities to be transported at period t, plus the quantities 

  that are made available at time t. Constraint (15) makes sure that no stock out for any of the retailers 
takes place. Constraint (16) forces the inventory level at each retailer at the end of period t to be equal to   
the inventory level at the end of period t-1, plus the quantities that are made available at period t minus the 
demand at period t. Constraint (17) ensures that the inventory level of each retailer cannot exceed its 
capacity. Constraint (18) – (21) define the quantities delivered, aiming to secure the ML policy. More 
specifically, Constraint (18) secures that for each period the quantities to distribute cannot exceed the 
capacity of the vehicle. Constraint (19) ensures that the total quantities to be transported to each retailer are 
equal to the total demand over the whole planning horizon minus the starting inventory level. Constraint 

(20) expresses the fact that the quantities to be transported to each retailer at period t can be less or equal to 
the demand requested at period t and subsequent periods, when the retailer is served at period t. Constraint 
(21) ensures that the transported quantities at period t cannot exceed the supplier’s staring inventory level 
plus the quantity made available since period t. Constraints (22) – (31) serve the routing counterpart of the 
problem. More specifically, constraint (22) ensures that the total number of routes cannot exceed the 
number of periods of the planning horizon; however, it is not necessary to perform a route for each period. 
Constraint (23) ensures that if a route is performed at time t it will start from the supplier and will visit only 
one retailer. Constraints (24) and (25) secure the flow of the route among intermediate retailers. Constraints 

(26) and (27) define the relationship of the two indices and the three indexed variables of the routing 
constraint and it states that when a retailer is served at period t, he will be an origin or a destination of a 
valid path. Constraints (28) – (29) is the well known sub tour elimination constrains based on the Miller-
Tucker-Zemlin (MTZ) constraint formulation as suggested in Anken et al. (2012); this is achieved by 

introducing extra variables   
  that express  the quantities that are in the vehicle until   the inventory of 

retailer i is reached. Constraint (31) secures that if a route is performed at period t , then there will be 
intermediate points in the route. Constraints (32) – (34) enforce integrality and non - negativity conditions. 

4.2 Second Stage Decision Process – Transshipment model  

As mentioned in the introduction of the paper the above presented deterministic IRP model is needed to 
determine the original (first stage) total cost of inventory management and transportation of goods. 
However in the stochastic IRP the aim is to find the distribution plan that minimizes the sum of our first 
stage plan and the expected recourse action costs. Assuming that we face shortage situations, the extra 
needed demand is served by lateral transshipments from either neighbouring retailers or from the supplier. 
Thus the second stage problem can be stated as an transportation problem, where the supply of the lateral 
transshipment is assigned to the supplier or the retailers with extra products in their inventory and 

minimum transportation cost. The cost of the assignment is calculated as a proportion of the initial 

transportation cost from a node      , let it be            .Thansshipment cost are both distance and 

volume – dependent because this is sometimes how outsourced carriers define the terms of their 

contracts.Let    
 be the amount of product delivered directly from     to retailer       at period t using 

outsourced carrier.  The objectivefunction of the second stage model is defined aiming to minimize the 
transshipment cost thus: 

                  
 
                   (35) 

Subject to:   
                     (36) 

   
    

       
    

                  (37) 

   
      

 
                    (38) 

 
Equation (36) secures that the initial values of inventories are the same as the ones at the first stage. 

Eqution (37) ensures that the revealed demand has to be satisfied from the new inventory level. Finaly 
inventory level and transshipments amounts should be non negative secured by the equation (38). 
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4.3 Two stage stochastic IRP with transshipment as a recourses  

Let us assume that ξ represents the random vector that belongs to the     , and also assume that    is 

the family of events of subsets of  ;P is the probability measure defined at  , where     ,    , and 

     are known. The random vector includes all necessary parameters of the problem that are assumed to 

be random parameters thus the demand of each retailer for each time period   
               

   
       

         
     . Therefore the objective function of two stage stochastic programming model 

can be stated as follows: 

         
 

                 
     

   

               
       

    
                                             

(39) 
In order to merge the two deterministic models we have to identify which constraints of the first stage 

are affected by the stochasticity of the demand. This way, we can determine      of the right hand side of 

the second stage model and also   Τ ( ), which are the coefficient of decision variables that are affected by 

the random demand. The equalities that serve these needs are the ones that determine the level of inventory 
amounts for the set of retailers, such as (13) – (16).  

Therefore the above mentioned constrains have to be modified in order to account for the integration of 
the two models. More specifically those constraints can be stated as follows: 

   
      

         
       

   
    
   

                  (40) 

   
    

        
       

   
     

       
   

    
    

                   (41) 

    
     

      
       

   
     

       
   

       
                 (42) 

Constraint (40) ensures that the level of inventory should be positive, which is valid for both first stage 
transported amounts as well as the second stage transshipped amounts either inbound or outbound for each 
inventory item. Constraint (41) includes the transshipped amounts of the second stage, in the close loop 
relationship of the level of inventories within the same time period. Constraint (46) equates the 
transshipment amounts to the total transported quantities. When a finite number of scenarios are 
considered, the objective functions can be transformed and the stochastic model is stated by the 

deterministic equivalent.  Thus the deterministic equivalent problem has the following objective function.  

         
 

                 
     

   

                
          

      
     

               (43) 

4.4 L – Shaped Method 

The L – shaped algorithm we have applied to solve the two - stage SIRP is a modification of Benders 
decomposition algorithm. We split the process to the master problem that constitutes the first stage decision 
process and the sub problem in a way to represent second stage decisions that constitute the transshipment 
recourse actions. Initially the first IRP model is solved and then for each possible scenario it is checked if it 
is feasible; otherwise a feasibility cut is added. Since the process adds to the problem all the feasibility cuts, 
the optimality cuts are next computed and added to the master problem until a lower bound equal to the 
upper bound or a predefined tolerance is reached.  
 

Algorithm: The L – shaped algorithm for stochastic inventory with transshipment  

1: for t=0  

2:      compute the IRP plan by solving the first stage decision process (Obj. Function: (12) s.t. (13) - (34))  

3:     for each scenario     do indentify if feasibility cuts are required  

4:      compute the dual multiplier and produce the feasibility cut   

5:     add feasibility cut to the master problem     

6:     endfor 

7:    for each scenario     solve the sub problem (Obj. Function: (35) st. (36) – (38)  

8:  compute optimal value and optimal dual value 

9:    endfor  

10:  compute UB and execute convergence test 

11: If   
     

      
       then  

12: Stop required accuracy achieved  

13: Return     

14: Endif 
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15: solve the master problem Objective function (43) 

16 : add Optimality cuts  

17: Compute optimal values and LB  

18: return to 11 

19: endfor 

5 Computational Results 

The algorithm described above was coded in C++ using IBM Concert Technology and CPEX 
12.4 with 2 threads. All computations were executed in an Intel Atom 1.83 GHz with a 2 GB RAM, a 
typical laptop, in less than 2 hours CPU time. Validation of the performance of the proposed alternative 
valid inequalities can be found in Chrysochoou & Ziliaskopoulos (2015). The computational results 
demonstrate that the decision of taking into account the forthcoming time period demand to estimate the 
quantities to be delivered improves the optimal value by an average 15%. In order to validate the results of 
the stochastic model, we assume that the recourse action   in each period is independent and varies in the 
range                      where     is the demand of the initial instances. The value of e is set to be 0, 

2 which represent the maximum demand variation. We also assume that the distribution of the probability 
of the demand is discrete and produces a finite number of scenarios, where the initial demand represents 

the scenario with the greater probability. The number of scenarios is set to be 3 and 5 and the maximum 
computing time is set to 2 hours of CPU time. 

Table 1.  Computational results of the L - Shaped approach. 

 
  High Inventory cost  Low Inventory cost  

Scenario Customers CPU (s) #Optim Gap 

Bender 

Cuts 

CPU 

(s) #Optim Gap 

Bender 

Cuts 

p=3 5 213 10  //  10 0.0 15 219 10  //  10 0.0 18 

 
10 257 10  //  10 0.0 58 264 10  //  10 0.0 68 

 
15 468 8  //  10 0.0 136 479 9  //  10 0.0 154 

 
20 1235 9  //  10 0.2 686 1277 7  //  10 0.6 755 

p=5 5 276 10  //  10 0.0 45 282 10  //  10 0.0 54 

 
10 318 10  //  10 0.0 254 330 10  //  10 0.0 279 

 
15 674 8  //  10 5.6 508 690 8  //  10 7.4 589 

 
  20 5076 9  //  10 9.78 1749 5223 8  //  10 13.0 1959 

 
In Table 1 appear the results of certain indicative experiments; the number of instances solved, the 
optimality gap as well as the computational time are shown.  These initial results demonstrate the potential 

of the approach to efficiently evaluate more complex scenarios as well as the possibility of incorporating 
brunch and cut schema in the first stage problem.   

6 Conclusions  

In this paper, we considered the vendor – managed inventory problem, where a supplier manages the 
inventory level of the retailers using transshipment as a recourse action when demand uncertainty leads to 
shortages.   The problem is motivated by the need of a major electronics multinational with production both 

in Asia and Europe and various warehouses throughout their global supply chain. We proposed an L –
shaped algorithm that efficiently solves the stochastic inventory routing problem using transshipment as a 
recourse action, which seems to be a realistic strategy for the electronics and automotive industry that 
stretch their production line from China to Europe.  Finally, though the L shaped method was not 
exhaustively tested computationally, it was demonstrated that presents the potential to be applied for more 
complex real life problems.  
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