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Abstract The evaluation of the Benefit Area (BA) is essential in Environmental
Economics. The Associated Risk, for evaluating BA, is basedon various factors.
The uncertainty in the model fitting can be reduced by choosing the appropriate
approximations for the marginal abatement (MAC) and marginal damage (MD) cost
functions. The target of this paper is to identify analytically and empirically the
optimal pollution level in the case of quadratic MD cost and linear MAC functions,
extending the work of Halkos and Kitsos (2005).

1 Introduction

Rationality in the formulation and applicability of environmental policies depends
on careful consideration of their consequences for nature and society. For this reason
it is important to quantify the costs and benefits in the most accurate way. But the
validity of any cost benefit analysis (hereafter CBA) is ambiguous as the results
may have large uncertainties. Uncertainty is present in allenvironmental problems
and this underscores the need for thoughtful policy design and evaluation. We may
have uncertainty in the underlying physical or ecological processes, as well as in the
economic consequences of the change in environmental quality.

As uncertainty may be due to the lack of appropriate abatement and damage
cost data, we apply here a method of calibrating hypothetical damage cost estimates
relying on individual country abatement cost functions. Inthis way a “calibrated”
Benefit Area (BAc) is estimated.

The intersection of MSC and MD defines the optimal pollution level I with co-
ordinates(z0,k0), I(z0,k0). The value ofz0 describes the optimal damage reduction
while k0 corresponds to the optimal cost to that. The area inR

2 covered by the
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MAC and MD and the axis of cost is defined as the Benefit Area. In Figure 1, where
MAC and MD are linear is the triangle (ABI) and represents themaximum of the
net benefit that is created by the activities that trying to reduce the pollution. Specif-
ically, we try to identify the optimal pollution level underthe assumptions of linear
marginal abatement and quadratic damage cost functions. Asfar as the parameters
are concerned the first two are linear while the third is a non–linear function. That
is, we consider another case of the possible approximationsof the two cost curves
improving the work in [10] extending the number of differentmodel approxima-
tions of abatement and damage cost functions and thus the assumed correct model
eliminates uncertainty about curve fitting. The target of this paper is to develop the
appropriate theory in this specific case.

2 Determining the Optimal Level of Pollution

Economic theory suggests that the optimal pollution level occurs when the marginal
damage cost equals the marginal abatement cost. Graphically the optimal pollution
level is presented in Figure 1 where the marginal abatement(MAC = g(z)) and the
marginal damage(MD = ϕ(z)) are represented as typical mathematical cost func-
tions. The point of intersection of the two curves,I = I(z0,k0), reflects the optimal
level of pollution with k0 corresponding to the optimum cost (benefit) andz0 to
the optimum damage restriction. It is assumed (and we shall investigate the validity
of this assumption subsequently) that the curves have an intersection and the area
created by these curves (region AIB) is what we define as Benefit Area (see [20],
among others).

Consider Figure 1. LetA andB be the points of the intersection of the linear
curves MD= ϕ(z) = α + β z and MAC= β0+ β1z with the “Y–axis”. We are re-
stricted to positive values. For these pointsA = A(0,α) andB = B(0,β0) the values
of a =α andb= β0 are the constant terms of the assumed curves that represent MD
and MAC respectively.

Let us now assume that

MAC(z) = g(z) = β0+β1z, β1 6= 0 and MD(z) = ϕ(z) = αz2+β z+ γ, α > 0.

The intersections of MD and MAC with theY–axis areb = MAC(0) = β0 and
a=MD(0)= γ, see Figures 2, 3 and 4 bellow. To ensure that an intersectionbetween
MAC and MD occurs we need the restriction 0< β0 < γ. yboxAssumingα > 0 three
cases can be distinguished, through the determinant ofϕ(z), sayD, D = β 2−4αγ;
(a) D = 0 (see Figure 2), (b)D > 0 (see Figure 3) while the caseD < 0 is without
economic interest (due to the complex–valued roots). Cases(a) and (b) are discussed
below, while for the dualα < 0 see Case (c). See also for details [19].

Case (a):α > 0, D = β 2−4αγ = 0. In this case there is a double real root for
MD(z), sayρ = ρ1 = ρ2 = − β

2α . We needρ > 0 and henceβ < 0. To identify the
optimal pollution level pointI(z0,k0) the evaluation of pointz0 is the one for which
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Fig. 1 Graphical presentation of the optimal pollution level (general case).

MD(z0) = ϕ(z0)⇔ g(z0) = MAC(z0)⇔ αz2
0+β z0+ γ = β0+β1z0 ⇔

αz2
0+(β −β1)z0+(γ −β0) = 0. (1)

Relation (1) provides the unique (double) solution whenD1 = (β −β1)
2−4α(γ −

β0) = 0 which is equivalent to

z0 =−
β −β1

2α
=

β1−β
2α

. (2)

As z0 is positive andα > 0 we conclude thatβ1 > β . So for the conditions are:
α > 0, β1 > β , 0< β0 < γ we can easily calculate

k0 = MAC(z0) = β0+β1
β1−β

2α
> 0, (3)

and thereforeI(z0,k0) is well defined. The corresponding Benefit Area (BAQL) in
this case is

BAQL =(ABI) =

z0
∫

0

ϕ(z)− g(z)dz =

z0
∫

0

αz2+(β −β1)z+(γ −β0)dz =

[α
3 z3+ 1

2(β −β1)z
2+(γ −β0)z

]z0

z=0 =

α
3 z3

0+
1
2(β −β1)z

2
0+(γ −β0)z0.

(4)

Case (b):α > 0,D= β 2−4αγ > 0. For the two rootsρ1, ρ2, we have|ρ1| 6= |ρ2|,
ϕ(ρ1) = ϕ(ρ2) = 0 and we suppose 0< ρ1 < ρ2, see Figure 3. The fact thatD > 0
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Fig. 2 C =C(− β
2α ,0), α > 0.

is equivalent to 0< aγ < (β/2)2, while the minimum value of the MD function is
ϕ(−β/(2α)) = (4αγ −β 2)/(4α).

Proposition 1. The order 0 < ρ1 < ρ2 for the roots and the value which provides
the minimum is true under the relation

β < 0< αγ < (β
2 )

2. (5)

Proof. The order of the roots 0< ρ1 < ρ2 is equivalent to the set of relations:

D > 0, αϕ(− β
2α )< 0, αϕ(0)> 0, 0<

ρ1+ρ2

2
. (6)

The first is valid, as we have assumedD > 0. For the imposed second relation

from (6) we haveαϕ(− β
2α ) < 0 ⇔ α 4αγ−β 2

4α < 0 ⇔ D > 0, which holds. As both
the roots are positiveρ1,ρ2 > 0, then the productρ1ρ2 > 0 and thereforeγ

α > 0⇔

αγ > 0. The third relationαϕ(0) = αγ > 0, in (6) is true already and 0< ρ1+ρ2
2 ⇒

0<− β
2α equivalent toβ < 0. Therefore we getβ < 0< αγ < (β

2 )
2.

We can then identify the point of intersectionI(z0,k0), z0 : MAC(z0) = MD(z0)
as before. Therefore under (5) andβ1 > β0 we evaluatek0 as in (3) and the Benefit
Area BAQL can be evaluated as in (4).

Case (c):α < 0, D = β 2−4αγ > 0. Let us now consider the caseα < 0. Under
this assumption the restrictionD = 0 is not considered, as the values ofϕ(z) have
to be negative.

Under the assumption of Case (c), the valueϕ(− β
2α ) =

4αγ−β 2

4α corresponds to

the maximum value ofϕ(z). We consider the situation whereρ1 < 0< − β
2α < ρ2

(see Figure 4) while the case 0< ρ1 < − β
2α < ρ2 has no particular interest (it can

be also considered as in Case (b), see Fig. 3).
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Fig. 3 C =C(− β
2α ,0), E = E(0,ϕ(− β

2α )), ϕ(− β
2α ) = minϕ(z), α > 0.

Fig. 4 C =C(− β
2α ,0), E = E(0,ϕ(− β

2α )), ϕ(− β
2α ) = minϕ(z), α < 0.

Proposition 2. For the Case (c) as above we have: ρ1 < 0<− β
2α < ρ2 when αγ <

0.

Proof. The imposed assumption is equivalent toαϕ(0)< 0⇔ αγ < 0 asρ1ρ2 < 0,
αϕ(− β

2α )< 0⇔ αγ < (β
2 )

2. Therefore the imposed restrictions areαγ < 0< (β
2 )

2

(compare with (5)). Actually,αγ < 0.
Case (c) requires thatβ0 < γ andβ1 > 0. To calculatez0 we proceed as in (1)

andz0 is evaluated as in (2). Therefore, withα < 0 we haveβ1−β < 0, i.e.β1 < β .
Thus forβ1 < β , αγ < 0, the BA as in (4) is still valid.
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3 An Empirical Application

In the empirical application regression analysis is adopted to evaluate the estimate
of the involved parameters. The available data for different European countries are
used.

The abatement cost function measures the cost of reducing tonnes of emissions
of a pollutant, like sulphur (S), and differs from country tocountry depending on
the local costs of implementing best practice abatement techniques as well as on the
existing power generation technology. For abating sulphuremissions various control
methods exist with different cost and applicability levels, see [5, 6, 7, 8].

Given the generic engineering capital and operating control cost functions for
each efficient abatement technology, total and marginal costs of different levels of
pollutant’s reduction at each individual source and at the national (country) level
can be constructed. According to [5, 6, 12], the cost of an emission abatement op-
tion is given by its total annualized cost (TAC). For every European country a least
cost curve is derived by finding the technology on each pollution source with the
lowest marginal cost per tonne of pollutant removed in the country and the amount
of pollutant removed by that method on that pollution source.

For analytical purposes, it is important to approximate thecost curves of each
country by adopting a functional form extending the mathematical models described
above to stochastic models, [11].

The calculation of the damage functionϕ(z) is necessary. For the followed pro-
cedure see [18, 10] and [17]. The only information availableis to “calibrate” the
damage function, on the assumption that national authorities act independently (as
Nash partners in a non-cooperative game with the rest of the world) taking as given
deposits originating in the rest of the world, see [17].

The results are presented in Table 1 where Eff, as in [10], is the efficiency of
the benefit area, in comparison with the maximum evaluated from the sample of
countries under investigation and can be estimated using asmeasure of efficiency
the expression:

Eff =

(

BA
maxBA

)

×100.

4 Conclusions and Policy Implications

The typical approach defining the optimal pollution level has been to equate the
marginal damage cost (of an extra unit of pollution) with thecorresponding marginal
abatement cost. An efficient level of emissions maximizes the net benefit, that is, the
difference between abatement and damage costs. Therefore the identification of this
efficient level shows the level of benefits maximization, which is the resulting output
level if external costs (damages) are fully internalized.
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Table 1 Coefficient estimates in the case of quadratic MD and MAC functions.

Countries c0 c1 c2 b0 b1 b2

Albania 0.7071 0.01888 0.0001397 -3.3818 0.015 0.0048
Austria 8.57143 0.055012 0.0001145 3.274 -0.221 0.004
Belgium 2.2424 0.03869 0.0001688 0.497 -0.124 0.003
Former Czech. 37.794 0.100323 0.000059 11.241 0.2358 0.00018
Denmark 10. 0.1923 0.0060811 -2.49 0.099 0.0053
Finland 4.021 0.0781 0.0001459 2.343 -0.098 0.0046
France 33.158 0.277352 0.000197 42.374 -0.053 0.0018
Greece 3.7373 0.034133 0.0000491 -1.614 0.342 0.0006
Hungary 5.101 0.031488 0.0000417 2.506 0.216 0.0004
Italy 21.01 0.030036 0.0000191 12.5 0.36 0.0003
Luxembourg 0.421 0.3161 0.0272381 -0.7272 0.01 0.09234
Netherlands 8.353 0.19513 0.0035144 -6.18 0.41 0.0009
Norway 1.421 0.07852 0.0001701 0.94 -0.244 0.0164
Poland 6.212 0.023153 0.000071 -8.023 0.324 0.00009
Romania 9.091 0.011364 0.00006237 5.502 0.19 0.0001
Spain 11.7 0.007288 0.0049741910.21 -0.021 0.00014
Sweden 2.4 0.06423 0.0000932 4.074 -0.252 0.004
Switzerland 2.4 0.56027 0.002803 5.7543 -1.6289 0.11203
Turkey 14.9 0.01781 0.00001223 8.0622 0.011 0.00036
UK 19.1 0.06879 0.0000467 15.54 0.0264 0.0003

Table 2 Calculated “calibrated” Benefit Areas (BAc).

Linear–Quadratic

Countries D z0 g(z0) G(z0) BA Eff

Albania 0.0785 29.594 -3.38 -52.05 81.24 3.5872
Austria 0.1609 84.649 3.3 294.1 628.6 27.756
Belgium 0.0474 63.406 0.5 37.2 182.8 8.0715
Former Czech. 0.0378 160.988 11.24 5119.8 2264.6 100
Denmark 0.2735 58.138 -2.5 369.72 536.7 23.698
Finland 0.0619 46.182 2.4 154.72 114.3 5.0453
France 0.0428 149.22 42.4 7726.3 309.2 13.65
Greece 0.1076 16.83 -1.62 22.23 45.5 2.0095
Hungary 0.0381 13.66 2.51 54.72 17.9 0.7901
Italy 0.1191 25.22 12.5 431.19 108.1 4.7726
Luxembourg 0.5178 5.56 -0.73 1.4 5.8 0.2572
Netherlands 0.0985 54.98 -6.18 329.7 424.4 18.741
Norway 0.1356 21.056 0.94 16.75 30.6 1.3508
Poland 0.0956 46.67 -8.03 -18.57 333.7 14.734
Romania 0.0333 19.87 5.5 147.1 35.8 1.5803
Spain 0.0016 245.43 10.2 2563.2 527.8 23.305
Sweden 0.0732 73.35 4.1 147.1 201.7 8.9075
Switzerland 3.2893 17.87 5.56 55.8 76.5 3.378
Turkey 0.0099 147.82 8.1 1698.5 698.65 30.851
UK 0.0061 200.5 15.6 4452.1 759.9 33.551
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In this paper the corresponding optimal cost and benefit points were evaluated
analytically. We shown that the optimal pollution level canbe evaluated only un-
der certain conditions. From the empirical findings is clearthat the evaluation of
the “calibrated” Benefit Area, as it was developed, providesan index to compare
the different policies adopted from different countries Inthis way a comparison of
different policies can be performed. Certainly the policy with the maximum Benefit
Area is the best, and the one with the minimum is the worst. Clearly the index BAc

provides a new measure for comparing the adopted policies.
It is clear that due to the model selection, the regression fitof the model, the

undergoing errors and the propagation create a Risk associated with the value of the
Benefit Area. This Associated Risk is that we try to reduce, choosing the best model,
and collecting the appropriately data (more than 10set of the observation when two
variables are involved and more than 15 when three variablesare involved or the
model is non-linear).

Policy makers may have multiple objectives with efficiency and sustainability
being high priorities. Environmental policies should consider that economic devel-
opment is not uniform across regions and may differ significantly, [14]. At the same
time reforming economic policies to cope with EU enlargement may face problems
and this may in turn affect their economic efficiencies, [13].
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