
UNIVERSITY OF THESSALY, GREECE

Replication Management and Cache Aware Routing
in Information-Centric Networking

Doctor of Philosophy

in

Electrical & Computer Engineering

by

Vasilis Sourlas
July 2013

Dissertation Committee:

Prof. Leandros Tassiulas

Prof. George Pavlou

As. Prof. Spyros Lalis

Copyright by

Vasilis Sourlas

2013

The Dissertation of Vasilis Sourlas is approved by:

Committee Chairperson

Electrical & Computer Engineering,

University of Thessaly, Greece

ACKNOWLEDGMENTS

This thesis represents a culmination of research work that has taken place at the Department of

Electrical and Computer Engineering, University of Thessaly, Greece.

I would like to express my gratitude to all those who made this dissertation possible, and first

of all to my supervisor, Professor Leandros Tassiulas for giving me an opportunity to work in such

a joyful and inspiring research unit. Without his guidance and constructive criticism this doctoral

study would not have been possible. He also gave me the chance to participate in many interesting

European Union and National research projects; an experience that broadened my research view and

played a key role in the completion of my PhD. I would also like to thank the other members of the

dissertation committee for their contribution and the examination committee for reading this thesis.

I would like to thank my friends and lab-mates, who provided help and made the long journey a

lot more enjoyable and memorable. Particularly, I would like to thank Dr. Paris Flegkas, Dr. Georgios

Paschos and Lazaros Gkatzikis for their help and fruitful cooperation in many aspects of my research.

All those numerous coffee breaks were really refreshing for the completion of my PhD. I would also

like to thank my friend Dr. Konstantinos Manousakis which was the first person that I talked in my

first day at the university and we still share our problems and agonies for our academic future.

Finally, I would also like to thank my family for their love and support. There are no words that

can express my gratitude and appreciation for all they have done for me. Last but not least I want to

thank Eleni Eliadou for her support all those years and her unlimited patience. The least I can do in

recognition to their love and support is to dedicate this thesis to them.

Finally, I would like to acknowledge the support of the Heracleitus research project co-financed by

the European Union (European Social Fund ESF) and Greek national funds through the Operational

Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF)

Research Funding Program: Heracleitus II - Investing in knowledge society through the European

Social Fund.

v

Dedicated to my family and Eleni Eliadou.

vii

ABSTRACT OF THE DISSERTATION

Replication Management and Cache Aware Routing
in Information-Centric Networking

by

Vasilis Sourlas

Doctor of Philosophy, Post Graduate Program in Electrical and Computer Engineering,

University of Thessaly, Greece.

July 2013

Prof. Leandros Tassiulas, Chairperson

Content distribution in the Internet places content providers in a dominant position, with delivery

happening directly between two end-points, that is, from content providers to consumers. This model

is driven by the underlying Internet routing paradigm, namely that of transferring datagrams from one

routable endpoint to another. This location-centric model limits the ability to fully utilize resources

that are available along the route from the provider to the consumer(s), such as storage (e.g., for

caching) or computing (e.g., for re-encoding). Information-Centrism has been proposed as a paradigm

shift from the host-to-host Internet to a host-to-content one, or in other words from an end-to-end

communication system to a native distribution network. This trend has attracted the attention of the

research community, which has argued that content, instead of end-points, must be at the center stage

of attention. These efforts promise, among other things, more flexibility in adapting to new services,

efficiency improvements on lower layers, and native multicast support.

Given this emergence of information-centric solutions, the relevant management needs in terms

of performance have not been adequately addressed, yet they are absolutely essential for relevant

network operations and crucial for the information-centric approaches to succeed. Performance man-

agement and traffic engineering approaches are also required to control routing, to configure the logic

for replacement policies in cache stores and to control decisions where to cache, for instance. There-

fore, there is an urgent need to manage information-centric resources and in fact to constitute their

missing management and control plane which is essential for their success as clean-slate technologies.

In this thesis we aim to provide solutions to crucial problems that remain, such as the management of

information-centric approaches which has not yet been addressed, focusing on the key aspect of route

and cache management.

Our main goal is to investigate and develop key network management functions for information-

centric approaches related to route and cache management. Particularly, we have developed mecha-

nisms that manage the routing processes by influencing the forwarding of interest/subscription pack-

ix

ets and make caching decisions about where and which item to cache as well as influence the cache

replacement policies. The aim is to improve the operations and overall utility of the network through

extensive and novel usage of caching as an inherent architectural function. Both opportunistic in-

network and service-specific managed caching (CDN-like replication) is of interest in addressing this

challenge. We have also devised a set of caching solutions, evaluated through proper analytical mod-

els, that not only dramatically improve the overall utility but also demonstrate the further potential of

the architectural paradigm of information-centrism.

In more details, we initially describe a three phase framework as a contribution to the problem

of information replication. The objective of the proposed framework is to minimize the total traffic

load in the network subject to installing a predefined number of replication devices, and given that

each device has storage limitations. Particularly, we present and evaluate a new algorithm for the

selection of the location in the network to install replication devices. We also propose two alternative

off-line mechanisms for the assignment of the replicas of each information item among the selected

replications devices. We also propose a distributed cache management architecture that dynamically

(re-)assigns information items to caches in order to minimize the overall network traffic cost imposed

by the user requests. In particular, we derive four distributed on-line intra-domain cache management

algorithms, categorize them according to the level of cooperation needed and compare them in terms

of performance, complexity, message overhead and convergence time. We derive also a lower bound

of the overall network traffic cost for a certain class of network topologies and show that the proposed

cache management algorithms perform closely to the derived lower bound.

We also present and decompose an in-network opportunistic caching framework in a set of basic

policies, present at each set the most known and propose an information-centric policy at each one

of them. We further propose a stochastic model that captures the dynamics of the newly proposed

policies and describe a prototype implementation of the proposed opportunistic caching mechanism

which is also evaluated through Planetlab experiments. Moreover, we present an enhancement of

the opportunistic caching mechanism to enable client mobility. Finally, we propose a new cache

aware intra-domain routing scheme that dynamically computes the routes followed by each interest/

subscription for each item and from each node in the network. Particularly, we present a dynamic

programming (DP) approach for the computation of the minimum transportation cost paths based on

the observed item request patterns in order to minimize the overall transportation cost imposed by the

user requests.

x

xi

�������� 	�
 ����
	���
�
 ���	����

�������	�
��
����	����������	�������
���
���
������������	����������������
�������	���������

����������
������

�� ����������� ��������� !����"��#��$� �%�� ������%$�� %�!�&�%��� %�$�� !��'"�$��
!����"��#��$�������!'(�$�� &#�)*����%)��!��+���)�%�$�!����"��#��$�����$�,����� ��%�-������
%����.���)���/�*��)����*��!'�%�$��!��'"�$��!����"��#��$ �%�$����%����/%#�0��$%'�%�����%#���
��)1��%����!'�%��$!���������!��+���1�� ������'1)�)� %�$�������%��$*��)�����%)����%�2��+��
!��#%/�������#�/���!'�%��#���%����'��)������%��+���0��$%'�%��,�����#�� �%)��!����"� (location-
centric) ���%#���!������(���%)��$��%'%)%������-��!��)&��� !���/� ���!'��� !�$����������&#������
��%+�������%)�������������!'�%���!+��"���%�� ��%����/%�*�'!/��1���!��+���1��) !���/����
�$��%'%)%� �!�&���$�)�� 6caching70� 	�� ���%$� !�$� ��1��.���%�� ��� ,+�) %�� !����"'����
(Information-Centric Networks*� ICN) #"�$� !��%�&��� /�� ���� �������%��� %)�� host-to-host
�!�����/���� �������host-to-content ���2� �!�����/����*������+�����'1�� �!'�%)��+�������+����
���2� �!�����/��������#�����11�������%$���������� !����"��#��$0���%+�)��$%��#"���!�����������
%)��!����"��%)�����$�)%���� ����'%)%�*)��!����$!��%)��(�� '%��%��!����"'����*���%��%/��%����.��
�)���/�*�!�#!�������������%���!����%���%)��!����"��0 ���!���!+&������$%#��$!'�"��%��*���%�-��
+��/�*���1���%��)��$���-���1���%)��!�������1���%����#���$!)������*�,��%�/�)�%)���!'���)���%��
��%.%�����%�.��%� %�$����%��$*������11����$!��%���-)�!����!������������ (multicast)0

8�������#�) %)����2+���)� ICN ����/�*�����"�%��#����+1�������"�����)��'�����2��+�%���
�!��'����� ���� #"�$� �!���.� ����%��*� !��+ %�� 1�1��'� '%�� ������ �!���%/�� �!����%)%�� 1��� %)��
�"�%���� ���%�$�1��� %�$� ���%��$� ���� (/%����� �)������� 1��� %)�� �!�%$"�� %/� ICN !����11���/�0� ��
#������%)������*�1���!��+���1��*���������%��.�����2���%��� �%� ICN ���%$� �����1����)����%��IP
���%$� ����&�����.�)� #��$�� ���������1����*�.�%�����1�/��(�$���!.��"�)����!����%�� %�����%$�0
��� ��+2���� !����11����� 1��� %)�� ���"�����)� %/�� �!��'��/�� ���� %)�� �$���2������ �2����$� 1���
!��+���1�� �����#1-�$��%)�������'1)�)*�����$&����$� %)���1��� %/��!���%��.����%���%+�%��)��
�%��� !���/���#� ���+��� �!�&���$�)� ���� ��� ��#1-�$� !�$� �!�&)����%�� �+&�� �%��"���
!�)��2�����0� 9�� ��� %��%�$*� $!+�"��� �!��1�$��� ��+1�)� 1��� %)� ���"�����)� %/�� !'�/� %/�� ICN
���%�/� �����%)��!��1��%��'%)%������")��%��%�� %���!�!��� ���"�����)����� %���!�!������#1"�$�%�
�!�����������!����%)%)�1���%)���!�%$"���%�$ /�������#� ���2� %�"����1���0�� !���������1�����
�%�"����� ��� �.���� ������� ��� �������� !��,����%�� !�$� !����#��$�*� '!/��)� ���"�����)� %/�� :;<�
���%�/��) �!���� ���� #"��� ��'�)� ��%���%/!��%��*� ��� �!����%��� %�� ,����+ "����%)���%��+ %)��
���"�����)��%)��������'1)�)������%/��%�"���.��!���/�������!�&���$�)�0

�� ������ �%'"��� ���� ������ ��� �����$����$�� ���� ��� ���!%�-�$�� ,����#�� ���%�$�1����
���"�����)��%/��ICN ���%�/� !�$��"�%�(��%������%)�������'1)�) ����%)����"�����)�%)��!���/�����
�!�&���$�)�0�
$1������#��*� #"�$��� ���!%�-��� �)"��������� !�$� ���"����(��%��� %��� ������������
������'1)�)�� �!)��+(��%��� %)� ���,�,��)� %/�� interest/subscription !��#%/�� ���� !�����$�
�!�2+���� 1��� %�� !��� ���� !���� ����+%� !�)��2����� &�� �!�&)��$%�� �%)�� !���/���� ����)�

xii

(cache)*���.��!��)� �!)��+(�$��%���!���%��#����%���%+�%��)������$%�0����%'"������������,��%�/&���
)� ���%�$�1��� ����)� �$������� "�)���'%)%�� %/�� ICN ��"�%��%����.� �#��� �!' %) "���)� %)��
!���/����� �!�&���$�)�� /�� �11���� ��"�%��%������ ���%�$�1��0� 	'��� �$�������#� ���2#�
!���/����� �!�&���$�)� '�� ���� $!)������� ���%��)�)� ��%�1�+2/� (CDN-like replication)
�-�%+(��%�� 1��� %)� ��%���%.!��)� �$%��� %)�� !�'��)�)�0� >"�$��� �!�������� �!��)�� #��� �������
�)"�����.� !���/����� �!�&���$�)�*�%�$���!���$� �-����1�������#�/���%+��)�/������$%��.�
���%#�/�*���������!���� '"� �'���,��%�.��$� �)���%��+�%)��$�������/2#���� %�$����%��$*����+�
���� �!��������$�� %)�� !����%#�/� �$������ %)�� �$1������#�)� ��"�%��%������ !�$� ,���(�%�� �%��
!����"'���� %)��!�)��2�����0

��"��+� !���1�+2�$�� #��� !������� %��.�� 2+��/�� /�� �$�,���� �%�� !�',�)��� %)��
��%�1��2���!�)��2���.���%��ICN (replication) ���%$�0����%'"���%�$�!��%���'����$�!������$�������
��� ���"��%�!��)&��� %�� �$�����' 2��%��� %)�� �$���2������ �%�� ���%$� �#�� �!'� %)�� �1��%+�%��)�
��'� !����&�����#��$� ���&��� �$���$.�� ��%�1��2��*� ���� �����#��$� '%�� �+&�� �$���$�� #"���
!�!�����#�) �$��%'%)%� �!�&���$�)�0�
$1������#��*� !���$��+(�$��� ���� �-����1����� #��� �#��
��1'��&��� 1��� %)�� �!���1�� %/�� &#��/� %�$� ���%��$� 1��� %)�� �1��%+�%��)� %/�� �$���$.��
��%�1��2��0� �!��)�� !��%����$��� ���� �������%����� off-?@AB� �)"��������� 1��� %)�� ��".�)�)� %/��
��%�1��2/�� �+&�� �%��"���$� !�)��2����� ��%�-�� %/�� �!���1�#�/�� �$���$.�� ��%�1��2��0
���%����$��� �!��)�� ���� ��%����)�#�)� ��"�%��%����� ���"�����)� %/�� ��%�1�+2/� %)��
!�)��2����� !�$� �$�����+� ���&#%��E���+(��� %�� �!�&)��$�#�� ��%�1��2�*� !������#��$� ���
���"��%�!��)&���%���$�����'��'�%���%)���$���2������%�$����%��$�!�$�!����!%�� �!'�%����%���%��
%/�� "�)�%.�0�
$1������#��*� !��%����$�� %#������� ��%����)�#��$� on-line ��1���&��$�
���"�����)������)�*� %�$����%)1����!������� ��+��1�� ��� %�� �!�!��� �$���1����� !�$� �!��%���
��%�-� %/�� �'�,/� %�$� ���%��$ ���� %�$�� �$1�����$�� ��� ,+�)� %)�� �!'���)� %�$�* %)��
!��$!���'%)%� %�$�� ��&.� ���� %��� "�'���� ��1����)�0� �!��)� $!���1�(�$��� %�� �+%/ '���� %�$�
�$���������'�%�$��%)���$���2������%�$����%��$�1������������#�)���%)1���� %�!���1�.�����%��$�
���� ���"��$�� '%�� ��� !��%���'������ ��1'��&���� ���"�����)�� %/�� ��%�1�+2/� %)�� !�)��2������
�!�����$��!�������%+�����$%'�%���+%/�'���0

����$��+(�$�� ��� �!��$�&#%�$���#���!������ �$��������� !���/����� �!�&���$�)� ���
#����������,����.� !���%��.�* !���$��+(�$�� ����+&��$!������� %���!���1�/�%#� !���%��#� ����
!��%����$�� ���� ICN !���%��� ��� �+&�� #��� �!'� �$%+� %�� $!�������0� ����$��+(�$�� �!��)�� #���
�%�"��%��'� ���%#��� !�$� �!�%$!.���� %)� �$������� %/�� �#/�� !��%���'���/�� !���%��.�� ����
!���1�+2�$�� ���� $��!��)�) %�$� !��%���'����$� �$��������� �)"������� �!�&���$�)� %���
�!��� �-����1�����!������%��+ �%��!������%��' ���%$� F?GABHJGK0 �!�!�#���!��%����$�� #����#��
�)"�����' ������'1)�)� !�$� ���,+��� $!'L) %��� �$��%'%)%�� %)�� �$��������� !���/�����
�!�&���$�)� %/���'�,/� %�$����%��$0�
$1������#���!���$��+(�$�� #������1'��&�� �$�������
!��1�����%����� (DP) 1��� %��� $!���1���'� %/�� �������.� ��+"��%�$� �'�%�$� ��� ,+�)� %��
!���%)������� ��%�,�� !�$� �����$&��� ��� �!�&$���� %/�� "�)�%.� !������#��$� ���
���"��%�!��)&���%���$�����' �'�%�����%�2��+��%)��!�)��2����� �%�����%$� !�$��!�,+���%�� �!'�
%����%���%��%�$�0

Related Publications

The ideas presented in this thesis appear in the following publications:

Book chapter

[B.01] Vasilis Sourlas, Paris Flegkas, Dimitrios Katsaros and Leandros Tassiulas, “Content Replica-

tion and Delivery in Information-Centric Networks,” to appear in Advanced Content Delivery

and Streaming in the Cloud by Wiley Publishers, USA.

Journal publications

[J.04] Vasilis Sourlas, Paris Flegkas and Leandros Tassiulas, “A Novel Cache Aware Routing Scheme

for Information-Centric Networks,” submitted in Computer Networks Elsevier.

[J.03] Vasilis Sourlas, Lazaros Gkatzikis, Paris Flegkas and Leandros Tassiulas, “Distributed Cache

Management in Information-Centric Networks,” to appear in IEEE Transaction on Network

and Service Management (TNSM), 2013.

[J.02] Mohamed Diallo, Vasilis Sourlas, Paris Flegkas, Serge Fdida, and Leandros Tassiulas, “A

Content-Based Publish/Subscribe framework for Large-scale Content Delivery,” in Computer

Networks Elsevier, Volume 57, Issue 4, pp. 924-943, March 2013.

[J.01] Vasilis Sourlas, Paris Flegkas, Georgios S. Paschos, Dimitrios Katsaros, and Leandros Tas-

siulas, “Storage Planning and Replica Assignment in Content-Centric Publish/Subscribe Net-

works,” in S.I. on Internet-based Content Delivery, Computer Networks Elsevier, Volume 55,

Issue 18, pp. 4021-4032, December 2011.

Conference publications

[C.13] Vasilis Sourlas, Paris Flegkas and Leandros Tassiulas, “Cache-Aware Routing in Information-

Centric Networks,” in IFIP/IEEE International Symposium on Integrated Network Manage-

ment (IM 2013), pp. 582-588, Ghent, Belgium, 2013.

[C.12] Vasilis Sourlas and Leandros Tassiulas, “Effective Cache Management and Performance Limits

in ICN,” in International Conference on Computing, Networking and Communications (ICNC

2013), pp. 955-960, San Diego, USA, 2013.

[C.11] Paris Flegkas, Vasilis Sourlas, George Parisis and Dirk Trossen, “Storage Replication in Information-

Centric Networking,” in International Conference on Computing, Networking and Communi-

cations (ICNC 2013), pp. 850-855, San Diego, USA, 2013.

[C.10] Vasilis Sourlas, Paris Flegkas, Lazaros Gkatzikis and Leandros Tassiulas, “Autonomic Cache

Management in Information-Centric Networks,” in 13th IEEE/IFIP Network Operations and

Management Symposium (NOMS 2012), pp. 121-129, Hawaii, USA, April 2012.

xiii

[C.09] Dirk Trossen, Xenofon Vasilakos, Paris Flegkas, Vasilis Sourlas and George Parisis, “Mobil-

ity Work Re-Visited Not Considered Harmful,” in IEEE WMCNT 2011, pp. 1-8, Budapest,

Hungary, October 2011.

[C.08] Vasilis Sourlas, Lazaros Gkatzikis and Leandros Tassiulas, “On-Line Storage Management

with Distributed Decision Making for Content-Centric Networks,” in 7th Conference on Next

Generation Internet (NGI) 2011, pp. 1-8, Kaiseslautern, Germany, June 2011.

[C.07] Mohamed Diallo, Serge Fdida, Vasilis Sourlas, Paris Flegkas and Leandros Tassiulas, “Lever-

aging caching for Internet-scale content-based publish/subscribe networks,” in IEEE ICC 2011,

pp. 1-5, Kyoto, Japan, June 2011.

[C.06] Vasilis Sourlas, Georgios S. Paschos, Petteri Mannersalo, Paris Flegkas and Leandros Tassiulas,

“Modeling the dynamics of caching in content-based publish/subscribe systems,” in 26th ACM

Symposium On Applied Computing (SAC), Taiwan, March 2011.

[C.05] Vasilis Sourlas, Paris Flegkas, Georgios S. Paschos, Dimitrios Katsaros and Leandros Tassiu-

las, “Storing and Replication in Topic-Based Publish/Subscribe Networks,” in IEEE Globecom

2010 Next-Generation Networking and Internet Symposium,Miami, USA, December 2010.

[C.04] Vasilis Sourlas, Georgios S. Paschos, Paris Flegkas and Leandros Tassiulas, “Mobility support

through caching in content-based publish/subscribe networks,” in 5th International Workshop

on Content Delivery Networks (CDN 2010) in conjuction with 10th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing (CCGrid 2010), pp. 715-720, Melbourne,

Australia, May 2010.

[C.03] Vasilis Sourlas, Georgios S. Paschos, Paris Flegkas and Leandros Tassiulas, “Caching in content-

based publish/subscribe systems,” in IEEE Globecom 2009 Next-Generation Networking and

Internet Symposium, pp. 1-6, Hawaii, USA, December 2009.

[C.02] Vasilis Sourlas, Paris Flegkas, Georgios S. Paschos and Leandros Tassiulas, “Distribute, Store

and Retrieve Management Policies on Wireless Ad-Hoc Networks using the Content Delivery

Publish/Subscribe Paradigm,” in proc. of 3rd IEEE Workshop on Autonomic Communications

and Network Management - IM 2009 / ACNM 2009, pp 169-176, NY, USA, June 2009.

[C.01] Vasilis Sourlas, Paris Flegkas and Leandros Tassiulas, “Policy Distribution using the Publish-

Subscribe Paradigm for Managing MANETs,” in proc. of 11th IFIP/IEEE International Con-

ference on Management of Multimedia and Mobile Networks and Services (MMNS 2008) held

as part of Manweek 2008,pp 14-19, Samos, Greece, August 2008.

xiv

Contents

List of Figures xix

List of Tables xxiii

1 Introduction 1
1.1 Motivation . 1

1.2 Synopsis . 4

2 Replication Management Framework 7
2.1 Information-Centric Networking State of the Art 7

2.2 A Three Phase Framework for the Replication Management 9

2.2.1 Introduction . 9

2.2.2 Related work . 9

2.2.3 Replication Framework . 11

The planning phase . 11

The off-line assignment phase . 11

The on-line replacement phase . 12

3 Storage Planning and Off-Line Replica Assignment 15
3.1 Introduction . 15

3.2 Problem Formulation . 16

3.3 Enabling Replication . 17

3.3.1 Advertisement and Request/Response Mechanism 17

3.4 Placement and Replica Assignment Strategy . 19

3.4.1 Greedy algorithm . 20

3.4.2 Modified Greedy Algorithm . 20

3.4.3 Placement and Replica Assignment Algorithm 21

3.4.4 Cost Model . 22

3.4.5 Alternatives on the Assignment Phase . 23

3.5 Performance Evaluation . 24

3.5.1 Overall Evaluation of the Placement and the Replica Assignment Algorithm . 25

xv

Predefined minimum replication degree . 26

Predefined total number of replication points 28

3.5.2 Evaluation of the Reassignment Phase . 29

3.5.3 Discussion . 30

3.6 Chapter Conclusions . 30

4 Distributed Cache Management and Performance Limits 31
4.1 Introduction . 31

4.2 Autonomic Cache Management System Architecture 32

4.3 Problem Formulation . 33

4.4 Distributed On-Line Cache Management Algorithms 35

4.4.1 Cooperative Cache Management Algorithm 36

4.4.2 Holistic Cache Management Algorithm . 37

4.4.3 Holistic-all Cache Management Algorithm 37

4.4.4 Myopic Cache Management Algorithm . 38

4.5 Complexity Analysis . 39

4.5.1 Communication Complexity . 39

4.5.2 Computational Complexity . 40

4.6 Network Traffic Lower Bound . 41

4.6.1 Distance-regular Network Topology . 43

4.6.2 The n-dimensional Torus Network Topology 44

4.7 Performance Evaluation . 46

4.7.1 Performance Evaluation and Bounds for Scenarios of Uniform Demand Pat-

terns and Regular Topologies . 48

4.7.2 Performance Evaluation for Internet Zoo Topologies and Realistic Synthetic

Workloads . 50

4.8 Chapter Conclusions . 56

5 Opportunistic Caching 57
5.1 Introduction . 57

5.2 Enabling Opportunistic Caching . 59

5.2.1 Caching Mechanism . 61

Caching points . 61

Request/Response scheme . 61

Handling multiple responses . 63

5.3 Strategies/Policies of the Caching Mechanism . 64

5.3.1 Caching Policies . 64

5.3.2 Placement/Replacement Policies . 65

5.3.3 Request Policies . 65

5.3.4 Caching Schemes . 66

xvi

5.4 Stochastic Cache Modeling . 66

5.4.1 The Single-node Case . 68

5.4.2 Reducing the State Space . 71

5.4.3 The Multi-node Case . 73

5.5 Performance Evaluation . 75

5.5.1 Validation of the Single-node Model . 75

5.5.2 Validation of the Multi-node Model . 76

5.5.3 Simulations Varying the Subscribers’ Intensity per Node 77

5.5.4 Simulations Varying the Publication Rate 79

5.5.5 Simulations Varying the Number of Nodes in the Network 80

5.5.6 Simulations Varying the Number of Cache Slots per Node 81

5.5.7 Simulations Varying the Popularity of Items 81

5.6 System Design And experimentation . 82

5.6.1 PlanetLab Experiments Varying the Subscribers’ Intensity per Node 83

5.6.2 PlanetLab Experiments Varying the Publication Rate 84

5.6.3 PlanetLab Experiments Varying the Number of Cache Slots per Node 85

5.7 Mobility Support Through Opportunistic Caching 85

5.7.1 Testbed Demonstration of the Mobility Support Mechanism 87

5.8 Chapter Conclusions . 88

6 Cache Aware Routing 91
6.1 Introduction . 91

6.2 Resource Management System Architecture . 93

6.3 Problem Formulation . 95

6.3.1 Dynamic Programming approach . 97

6.4 Iterative Routing Algorithm . 98

6.4.1 Complexity Analysis . 100

6.4.2 Discussion . 101

6.5 Performance Evaluation . 102

6.6 Chapter Conclusions . 111

7 Conclusions and Future Work 113
7.1 Summary of the Contributions . 113

7.1.1 Replication management . 113

7.1.2 In-network opportunistic caching . 114

7.1.3 Cache aware routing . 115

7.2 Future Work . 115

Bibliography 119

xvii

xviii

List of Figures

1.1 Internet traffic in a minute. 2

2.1 Architectural illustration of the Planning and the Off-line Assignment phases. 12

2.2 Architectural illustration of the On-line Replacement phase. 13

3.1 Advertising and Storing of information. 18

3.2 Retrieval of stored information using the request/response mechanism. 19

3.3 Topology and workload information per each item together with, km = k = 2, L = 2

and R = 3 form the inputs of the placement algorithm. 22

3.4 Performance of the proposed placement algorithm (both assignment alternatives “seq”

and “wrr”) compared to the “grd opt” and the “rnd” vs. the number of the nodes in

the network. 25

3.5 Performance of the proposed placement algorithm (both assignment alternatives “seq”

and “wrr”) compared to the “grd opt” and the “rnd” vs. the storage capacity of the

replication points in the network. 25

3.6 Performance of the proposed placement algorithm (both assignment alternatives “seq”

and “wrr”) compared to the “grd opt” and the “rnd” vs. the minimum replication de-

gree of the items in the network. 26

3.7 Performance of the proposed placement algorithm (both assignment alternatives “seq”

and “wrr”) compared to the “grd opt” and the “rnd” vs. the exponent value sp of the

popularity. 27

3.8 Performance and total number of installed replication points in the network of the pro-

posed placement algorithm (both assignment alternatives “seq” and “wrr”) compared

to the “grd opt” and the “rnd” vs. the exponent value sl of the locality. 27

3.9 Performance of the proposed placement algorithm (both assignment alternatives “seq”

and “wrr”) compared to the “rnd” vs. the number of storage failures. 28

3.10 Performance and % gain of the assignment phase (both alternatives “seq” and “wrr”)

of the placement algorithm after an initial planning compared to the placement algo-

rithm without reassignment vs. the evolution of the value of the popularity exponent. 29

xix

3.11 Performance and % gain of the assignment phase (both alternatives “seq” and “wrr”)

of the placement algorithm after an initial planning compared to the placement algo-

rithm without reassignment vs. the evolution of the value of the locality exponent. . . 29

4.1 A motivation example for two different network and cache configuration scenarios

(left side the holistic algorithm performs better than the holistic-all, whereas on the

right side the holistic-all algorithm performs better than the holistic algorithm). . . . 38

4.2 A 2-dimensional torus with 18 nodes. 44

4.3 The performance of the proposed cache management algorithms vs. the number of

nodes/caches V in the network for two different regular network topologies. The

secondary x-axis in the n-Torus plots is the number of different toruses n of the used

topology. 47

4.4 The performance of the proposed cache management algorithms vs. the fraction (p =

C/M) of the items that can be stored in a cache for two different regular network

topologies. 49

4.5 The performance of the proposed cache management algorithms vs. the number of

nodes/caches V in the network for various network topologies from the Internet Zoo

dataset. 50

4.6 The performance of the proposed cache management algorithms vs. the fraction (p =

C/M) of the items that can be stored in a cache. We used the Interoute network

topology from the Internet Zoo dataset. 51

4.7 The performance of the proposed cache management algorithms vs. the locality ex-

ponent zloc. We used the Interoute network topology from the Internet Zoo dataset. . 52

4.8 The performance of the proposed cache management algorithms vs. the popularity

exponent zpop. We used the Interoute network topology from the Internet Zoo dataset. 53

4.9 Empirical probability density function (pdf) of %-deviation from the average value

for the holistic and the myopic approach. The pdfs were generated from 200 different

random initial cache assignments and 200 experiments with different random order

of execution. 54

4.10 The performance of the holistic cache management algorithm (% of the total requests

found the requested replica at a given distance), for two regular network topologies

and a topology from the Internet Zoo dataset. 55

5.1 Processing of Subscribe and Publish packets. 60

5.2 Request and Response packets. 61

5.3 Used Data Structures. 62

5.4 Processing of Request and Response packets. 63

5.5 CTMC capturing the evolution of the number of alive items in the single node scenario. 71

5.6 Markov chain for the approximated single node scenario. 72

xx

5.7 Single node scenario: (up) The gray area represents the 50% of data–data between

the 1st and 3rd quartile. (down) relative error between analysis and approximation

for several parameter settings. 75

5.8 Multi-node: AT vs C, ρc, λb, and V . 76

5.9 (a) Absorption Time, (b) Minimum Hop Distance, (c) Traffic Overhead per Request

and (d) Satisfaction vs ρc. 77

5.10 (a) Absorption Time, (b) Minimum Hop Distance, (c) Traffic Overhead per Request

and (d) Satisfaction vs λb. 78

5.11 (a) Absorption Time, (b) Minimum Hop Distance, (c) Traffic Overhead per Request

and (d) Satisfaction vs V (nodes in the network). 79

5.12 (a) Absorption Time, (b) Minimum Hop Distance, (c) Traffic Overhead per Request

and (d) Satisfaction vs C (cache slots per node). 80

5.13 Performance evaluation in case of different item popularity. 81

5.14 The used Planetlab nodes, arranged in one of the emulated topologies. 82

5.15 (a) Cache Hit Ratio, (b) Traffic Overhead per Request, (c) Satisfaction and (d) Dupli-

cate Dropping Ratio vs ρc. 84

5.16 (a) Cache Hit Ratio, (b) Traffic Overhead per Request, (c) Satisfaction and (d) Dupli-

cate Dropping Ratio vs λb (publication rate). 85

5.17 (a) Cache Hit Ratio, (b) Traffic Overhead per Request, (c) Satisfaction and (d) Dupli-

cate Dropping Ratio vs C. 86

5.18 Mobility support mechanism. 87

5.19 No mobility support (left-side), mobility support (right side). 88

6.1 ICN resource management in a PURSUIT-like network architecture. 94

6.2 ICN resource management in a NDN-based network architecture. 95

6.3 A motivation example where the longest path (bottom) produces less traffic in the

network than the shortest path (top). 97

6.4 Convergence of the cache aware routing algorithm for various observation periods of

the discrete event simulator. 104

6.5 The performance of the proposed cache aware routing scheme and the traditional

shortest path routing vs. the number V of nodes (caches) in the network, for two

different caching strategies. 105

6.6 The performance of the proposed cache aware routing scheme and the traditional

shortest path routing vs. the fraction of the items that can be stored in a cache, for

two different caching strategies. 106

6.7 The performance of the proposed cache aware routing scheme and the traditional

shortest path routing vs. the locality exponent zloc, for two different caching strategies. 107

6.8 The performance of the proposed cache aware routing scheme and the traditional

shortest path routing vs. the popularity exponent zpop. 108

xxi

6.9 Average path computation time per item vs. the number of caches in the network, the

cache capacity of each node, the locality and the popularity exponent for two different

caching strategies. 109

6.10 The performance of the proposed cache aware routing scheme when the request re-

quest patterns are not stable between the iterations of the DP algorithm. 110

xxii

List of Tables

3.1 Parameters used by the placement algorithm and its assignment alternatives 21

4.1 Communication and Computational complexities of the cache management algorithms 40

5.1 Policies (in bold the new information-centric oriented policies). 66

xxiii

xxiv

List of Abbreviations

AMP Absorbing Markov Process

APID Aggregated Publication Identifiers list

AS Autonomous Systems

AT Advertisement Table

BFS Breadth-First Search

CBPS Content-based Publish/Subscribe

CCN Content-Centric Networking

CDN Content Delivery Networks

CH Cache

CM Cache and Route Manager

CR Content Router

CS Content Store

CTMC Continuous Time Markov Chain

DHT Distributed Hash Table

DP Dynamic Programming

DRG Distributed Replication Group

DSR Distributed Selfish Replication

DTN Delay Tolerant Network

FIB Forwarding Information Base

FIFO First in First Out

ICN Information-Centric Networking

IETF Internet Engineering Task Force

ICP Internet Cache Protocol

IP Internet Protocol

ISP Internet Service Provider

LFU Least Frequently Used

LRU Least Recently Used

MR Mediation Router

NDN Named Data Networking

NRS Name Resolution Service

OSPF Open Shortest Path First

P2P Peer-to-Peer

PBR Potential Based Routing

PIT Pending Interest Table

PRT Pending Request Table

xxv

QoS Quality of Service

RENE Rendezvous Network

RM Resource Manager

RV Rendezvous Node

SLA Service-Level Agreement

SMVDHT Scalable Multi-level Virtual Distributed Hash Table

ST Subscription Table

TM Topology Manager

URL Uniform Resource Locator

VoD Video on Demand

WRR Weighted Round Robin

xxvi

Chapter 1

Introduction

1.1 Motivation

Since mid 90’s network operators are waiting a data tsunami, which fortunately did not come, but

the tides of growth in the demand for data did help the Internet growth. However, today, the fear of

data tsunami is slowly coming back [1]. The Cisco Visual Networking Index [2] reveals that data

and media delivery have become immensely popular on the Internet. Particularly by 2016, global IP

traffic will reach 1.3 zettabytes per year or 110.3 exabytes per month. Also, there will be nearly three

networked devices per capita in 2016, up from over one networked device per capita in 2011. Driven

in part by the increase in devices and the capabilities of those devices, IP traffic per capita will reach

15 gigabytes per capita in 2016, up from 4 gigabytes per capita in 2011. Additionally, global Internet

video traffic will be 55 percent of all consumer Internet traffic in 2016, up from 51 percent in 2011.

This does not include video exchanged through peer-to-peer (P2P) file sharing. Video exceeded half

of global consumer Internet traffic by year 2011. The sum of all forms of video (TV, video on demand

(VoD), Internet, and P2P) will be approximately 86 percent of global consumer traffic by 2016. This

growth in demand is more dramatically depicted in Figure 1.1 which depicts the amount and the type

of data that is transferred in the Internet in a minute [3].

The current Internet architecture focuses on communicating entities, leaving aside the exchanged

information. However, trends, as shown in Figure 1.1, show that what is exchanged is becoming

more important than who are exchanging it. As a result, the Internet is effectively moving from

interconnecting machines to interconnecting information. Moreover, the location-centric model used

by the underlying Internet routing paradigm, transferring of datagrams from one routable endpoint

to another, limits the ability to fully utilize resources that are available along the route from the

provider to the consumer(s), such as storage (e.g., for caching). Information-Centric Networking

(ICN) has been proposed as a paradigm shift from the host-to-host Internet to a host-to-content one,

or in other words from an end-to-end communication system to a native distribution network. This

trend has attracted the attention of the research community, which has argued that content, instead of

end-points, must be at the centre stage of attention.

DONA [4] was one of the first clean-slate information-centric proposals. DONA uses flat, self-

1

Figure 1.1: Internet traffic in a minute.

identifying and unique names for information objects and binds the act of resolving requests for in-

formation to locating and retrieving information. The resolution layer is composed of interconnected

Resource Handlers (RHs), forming a hierarchical name resolution and registration service upon the

existing inter-domain relations. Registrations need to accumulate all the way up to tier-1 providers

in order to guarantee that an existing name will be resolved. For that purpose, tier-1 providers must

share state and have global knowledge. Content-Centric Networking (CCN) [5] has recently caught

the attention of the research community. CCN proposes a name-based routing system for locating

and delivering named data packets. The fundamental entities in CCN are Interest and Data packets.

When a user wishes to receive data, he/she issues an Interest that contains the data name. The network

propagates the Interests to the nearest data source (anycast) and then the requested item is delivered

back to the user in the form of a Data packet. CCN uses names to identify content objects only; there

is no notion of host name, point of attachment or path identifier. Content names follow a hierarchical

form, similar to URLs or file-system paths and by definition, Interest and Data paths are symmetric.

CCN applies an “one-to-one” Interest to Data packet principle in that an Interest can be satisfied by

at most one Data packet. CONET [6] closely follows CCN, being differentiated from CCN in two

ways: 1) it modifies the IPv4 packet header in order to make the architecture backwards compatible

with existing routers and 2) it reduces the state maintained by routers via caching: a routing table has

a finite size and a router stores the most recently used routing entries. When an arriving Interest spec-

ifies a name that is not present in the routing table, the router asks the domain’s centralized naming

system in order retrieve the routing entry.

In PURSUIT [7] and PSIRP [8], the design paradigm involves three separate elements and three

separate functions: publishers, subscribers, and the REndezvous NEtwork (RENE) on one hand, and

the functions of rendezvous, topology management/formation and forwarding on the other hand re-

spectively. While the first three elements exist also in other candidate architectures under different

2

names, the design principle of PURSUIT is to clearly distinguish the latter three functions. In more

detail, publishers in PURSUIT advertise the availability of information by issuing a publication to

the RENE. Similarly, subscribers are entities interested in consuming information who express their

desire by issuing a subscription to the RENE for a specific piece of information. Therefore, the pub-

lish/subscribe paradigm is used here as an indirection to facilitate information resolution and discov-

ery and not for actual data dissemination. Finally NetInf/SAIL [9] proposes a secure naming scheme

composed of two main components: a naming scheme based on URLs and an information object

structure holding information about a piece of content. These efforts promise, among other things,

more flexibility in adapting to new services, efficiency improvements on lower layers, and native mul-

ticast support. However, crucial questions remain, like the management of ICN approaches which has

not yet been addressed, focusing especially in the management of caching and route selection.

Caching performs replication of content to serve identical requests locally, and to prevent them

from overutilizing network resources. A cache stores content on a storage device that is physically

or logically closer to the user. In the area of information-centrism caching has been applied in two

approaches: the CDN-like approach where dedicated storage devices are attached to the network

and the in-network caching approach where all nodes of the network are potential caches. In the

former approach every storage device (specific nodes) is responsible for storing information available

from publishers enabling an asynchronous communication between publishers and subscribers in a

transparent way. In the in-network caching approach each node opportunistically caches information

traversing the node which can later transparently reply to subscriptions heading through it towards

publishers or dedicated caches, potentially preventing saturation of up-stream network resources.

ICN inherently provides the opportunity of caching inside the network, due to its feature of nam-

ing content instead of end-hosts. Caching of chunks instead of whole files, raises issues of fair

resource allocation and efficient content multiplexing, directly affecting packet-level network dy-

namics. In CCN content packets are cached by default in every router that the packet traverses [5].

In-network caching techniques are also being investigated in the IETF for potential standardization

in the DECADE Working Group [10]. Little attention has been paid however, to caching based on

collaboration incentives between different network elements.

Given this emergence of ICN oriented solutions, the relevant management needs in terms of per-

formance have not been adequately addressed, yet they are absolutely essential for relevant network

operation and crucial for those approaches to succeed. Performance management and traffic engi-

neering approaches are also required to control routing. Routing functionality is completely missing

from the current ICN design with only simple flooding or OSPF-like shortest path mechanisms hav-

ing been proposed. This choice has been deliberately left open in order to allow routing solutions

ranging from schemes potentially based on known protocols to innovative solutions best suited to the

specific communication model.

In this thesis we have developed mechanisms that manage the routing processes by influencing the

forwarding of interest/subscription packets and make caching decisions about where and which item

to cache as well as influence the cache replacement policies. The aim is to improve the operations and

3

overall utility of the ICN architectures through extensive and novel usage of caching as an inherent

architectural function. Both CDN-like replication and in-network opportunistic caching is of interest

in addressing this challenge. We have also devised a set of caching solutions, evaluated through

proper analytical models, that not only dramatically improve the overall utility but also demonstrate

the further potential of the architectural paradigm of information-centrism.

1.2 Synopsis

In this thesis we propose efficient caching algorithms deciding on the network location of caches,

what information items to cache and influence the cache replacement policies. Particularly we in-

vestigate both CDN-like replication as well as in-network opportunistic caching. We also propose

mechanisms and algorithms that manage the routing processes by influencing the forwarding of in-

terest/subscription packets optimizing the network performance in terms of network load, congestion

and delay.

In Chapter 2 we initially present a brief, yet self-contained, introduction in Information-Centric

Networking. We also describe a three phase framework as a contribution to the problem of informa-

tion replication. The objective of the proposed framework is to minimize the total traffic load in the

network subject to installing a predefined number of replication devices, and given that each device

has storage limitations.

Next, in Chapter 3 and Chapter 4 we extensively describe and evaluate the three phase frame-

work. Particularly, in Chapter 3 we present and evaluate a new algorithm for the selection of the

location in the network to install replication devices. We also propose two alternative off-line mech-

anisms for the assignment of the replicas of each information item among the selected replications

devices. In Chapter 4 we propose a distributed cache management architecture for ICN approaches

that dynamically (re-)assigns information items to caches in order to minimize the overall network

traffic cost imposed by the user requests. In more details, we derive four distributed on-line intra-

domain cache management algorithms, categorize them according to the level of cooperation needed

and compare them in terms of performance, complexity, message overhead and convergence time.

We derive also a lower bound of the overall network traffic cost for a certain class of network topolo-

gies and show that the proposed cache management algorithms perform closely to the derived lower

bound.

In Chapter 5 we present and decompose an in-network opportunistic caching framework in a

set of basic policies, present at each set the most known and propose an information-centric ori-

ented policy at each one of them. We also propose a stochastic model that captures the dynamics of

the newly proposed policies and describe a prototype implementation of the proposed opportunistic

caching mechanism which is also evaluated through Planetlab experiments. Moreover, we present an

enhancement of the opportunistic caching mechanism to enable subscribers mobility.

In Chapter 6 we propose a new cache aware intra-domain routing scheme that dynamically com-

putes the routes followed by each interest/subscription for each item and from each node in the net-

4

work. Particularly, we present a dynamic programming (DP) approach for the computation of the

minimum transportation cost paths based on the observed item request patterns in order to minimize

the overall transportation cost imposed by the user requests. Finally, in Chapter 7 we conclude our

study and summarize the main findings of our work. Additionally, we discuss possible future di-

rections. The three phase replication framework, the in-network opportunistic caching framework

as well as the cache aware routing scheme are generic so that they can apply in almost every ICN

approach.

5

6

Chapter 2

Replication Management Framework

In this chapter we initially present a brief, yet self-contained, introduction in Information-Centric

Networking that can be used as reference for the rest of the thesis. Then we describe a three phase

framework as a contribution to the problem of information replication in ICN.

2.1 Information-Centric Networking State of the Art

There exist different information-oriented networking models which are classified according to the

semantic of the subscription language. Channel-based model allows information consumers to sub-

scribe to publications originating from specific channels or feeds similarly to ATOM and RSS stan-

dards such as CORBA Event Service [11]. Topic-based model enables information consumers to

register to a set of predefined topics such as TIBCO [12], while the Information-Centric Networking

model supports subscriptions based on the actual content of the considered events.

ICN is a flexible communication model that meets the requirements of the content distribution

trends in the Internet. ICN shifts the communication paradigm of the internetworking layer from end-

points to information, where information is addressed by semantic attributes rather than origin and

destination identities. ICN enables information consumers to register their information interests to a

mediation entity that will prospectively retrieve content relevant to those interests. In the ICN there

exist two different architectural designs. The first design contains implementations that are known as

information-centric networks, e.g. PURSUIT [7], NDN/CCN [13] and SAIL [9], where information

is explicitly named so that anybody who has relevant information can potentially participate in the

fulfillment of requests for said information. The second architectural design, is known as Content-

Based Publish/Subscribe (CBPS) and contains several research efforts that develop an overlay event

notification service like IBMs Gryphon [14], Siena [15], Elvin [16], and REDS [17]. Their main dis-

tinguishing characteristic is that in the information-centric networks “subscriptions” act on the name

of the object (that is, content is published and subscribed to by name), while in the CBPS design

subscriptions can have broader request semantics (such as describing content with various tags and

allowing subscriptions to relate to any content described with that tag). Also, the information-centric

networks usually offers both a one-time “fetch” operation (retrieving content previously published

7

under that name) and an ongoing “subscribe” operation (retrieving all future content published under

that name). In contrast, most CBPS systems only support the latter [18] and in particular most of

the CBPS implementations do not assume the presence of content servers (information items are not

permanently stored and only active subscribers receive published items). CBPS supports subscrip-

tions following an attribute/value schema or defined as vectors of keywords and provides efficient

dissemination channels for a wide range of applications such as event notification, news dissemina-

tion or file sharing services. In this thesis we assume both architectural designs and we refer to them

as Information-Centric Networking, but we clearly distinguish at each case which design is under

consideration.

The core function of the ICN is the rendezvous function. The main purpose of the rendezvous

function is to provide reachability from publishers and subscribers to data or service specific ren-

dezvous points. The rendezvous function is required to scale to Internet-like network and data space

sizes, and its operation needs to be efficient, measured in signalling overhead, overall latency and

deployability (incremental deployment and stakeholder incentives). The rendezvous system defined

in [8] is a composition of rendezvous networks that can be interconnected to form globally reachable

rendezvous solution. The rendezvous networks are formed by rendezvous nodes (RNs) that are orga-

nized as a policy controlled inter-domain hierarchy. Large and geographically dispersed autonomous

systems (ASes) may be covered by multiple rendezvous networks, but in the typical case a rendezvous

network would be a collection rendezvous nodes from cooperating ASes.

ICN involves in general three types of entities: subscribers, receivers or information consumers,

publishers or information providers and mediation routers (MRs). Each subscriber submits its in-

terests by sending a subscription to the network where MRs acting as proxies are responsible for

returning the corresponding matching pieces of data. In CCN an interest for an information item is

routed towards the location in the network where that item has been published. At the nodes traversed

on the way towards the source the caches of the nodes are checked for copies of the interested item.

As soon as an instance of the item is found (a cached copy or the source item) it is returned to the

subscriber along the path the interest came from. All the nodes along that path caches a copy of the

item in case they get more requests for it.

In PURSUIT items are published into the network by the sources. Subscribers can then subscribe

to items that have been published. The publications and subscriptions are then matched by the Ren-

dezvous system. The matching procedure results in a Rendezvous Identifier (RI) that can be seen as

an identifier for a communication channel. The RI in turn, can be resolved (within a scope) to a for-

warding identifier that can be used for routing the information item through the forwarding network.

In NetInf/SAIL information items are also published into the network. They are registered with a

Name Resolution Service (NRS). When a subscriber wants to retrieve an item the request for the item

is resolved by the NRS into a set of locators. These locators are then used to retrieve a copy of the

item from the ’best’ available source(s). Information providers can perform a wildcard registration of

their principal in the NRS, so that queries can be directed to them without needing to register specific

items.

8

2.2 A Three Phase Framework for the Replication Management

The main promise of current research efforts in the area of ICN is that of optimizing the dissemination

of information within transient communication relationships of endpoints. Efficient replication of

information is key to delivering on this promise. In this chapter, we look into achieving this promise

from the angle of managed replication of information, where management decisions are made in order

to efficiently place and assign replicas of information in dedicated storage devices attached to nodes

of the network. Particularly, we present a framework for storage placement and replica assignment

following both off-line as well as on-line approaches, whereas in the following two chapters we

extensively describe and evaluate the three phase framework.

2.2.1 Introduction

In ICN information is explicitly labeled so that anybody who has relevant information can potentially

participate in the fulfillment of requests for said information. Given the information-centric nature

of the distribution utilizing information that is replicated across almost ubiquitously available storage

devices is an almost natural thought. Optimized dissemination of information within transient com-

munication relationships of endpoints is the main promise of such efforts and efficient replication of

information, through the synergy of ICN with CDN techniques, is key to delivering on this promise.

While packet-level in-network opportunistic caching is one of the salient characteristics of ICN,

proper cache placement and replica assignment still has an important role to play. CDN-like repli-

cation distributes a sites contents across multiple mirror servers. When a client is interested in a

particular piece of information, his/her request is redirected to one of the existing replication points

rather than requiring retrieval from the original publisher. Replication is used to increase availabil-

ity and fault tolerance, while it has as side effect load-balancing and enhanced publisher subscriber

proximity. Particularly, CDN providers strategically place surrogate servers and connect them to ISP

network edges so that content can be closer to clients. Given the significant impact that content deliv-

ery has on the utilization of an ISP network, some work has recently started to investigate new models

and frameworks to support the interaction between ISPs and CDNs.

In this chapter we present a three phase framework as a contribution to the problem of information

replication in an ICN environment. The objective of the proposed framework is to minimize the total

traffic load in the network subject to installing a predefined number of replication devices, and given

that each device has storage limitations. The proposed framework is composed by three phases which

manage the content and the location of each replication device in the network.

2.2.2 Related work

In the traditional context of CDNs, the placement problem is a thoroughly investigated problem.

Particularly in [19] and [20] authors approached the placement problem with the assumption that

the underlying network topologies are trees. This simple approach allows the authors to develop

optimal algorithms, but they consider the problem of placing replicas for only one origin server. The

9

placement problem is in fact an NP-hard problem [21] when striving for optimality, but there are a

number of studies [22]-[27] where an approximate solution is pursued. Their work is also known as

network location or partitioning and involves the optimal placement of k service facilities in a network

of V nodes targeting the minimization of a given objective. In some cases, it can be shown that this

problem reduces to the well known k-median problem.

The authors of [28] model replica assignment as a distributed selfish replication (DSR) game

in the context of distributed replication groups (DRG). Under the DRG abstraction, nodes utilize

their storage to replicate information items and make them available to local and remote users. The

pairwise distance of the nodes is assumed to be equal, while our framework considers the generic

case of arbitrary distances. In the context of DRG and under the same distance assumption a 2-

approximation cache management algorithm is presented in [29]. Finally, in [30] authors develop

a cache management algorithm aimed at maximizing the traffic volume served from the caches and

minimizing the bandwidth cost. They focus on a cluster of distributed storages, either connected

directly or via a parent node, and formulate the content placement problem as a linear program in

order to benchmark the globally optimal performance.

More placement algorithms have been proposed in [21]. Particularly, authors formulate the prob-

lem as a combinatorial optimization problem and show that the best results are obtained with heuris-

tics that have all the stores cooperating in making the replication decisions. Moreover, in [31] authors

introduce a framework for evaluating placement algorithms. They classify and qualitatively compare

placement algorithms using a generic set of primitives that capture several objectives and near opti-

mal solutions. In most of the above approaches a similar cost function (optimize bandwidth and/or

storage usage costs for a given demand pattern) is considered. Less attention has been given though to

network constraints (limited storage capacity) and the possibility of reassigning items between caches

as popularity and locality of users demand change.

In the area of replication in ICN in [32] a historic data retrieval publish/subscribe system is pro-

posed, where databases are connected to various network nodes, each associated with a set of items

to store. In [32] every information item is stored only once and no placement strategies have been

examined. Finally, in the research area of investigating new models and frameworks to support the

interaction between ISPs and CDNs, in [33] authors highlight that CDN providers and ISPs can indi-

rectly influence each other, by performing server selection and traffic engineering operations respec-

tively, and they investigate different models of co-operation between the two entities. In [34], authors

propose a framework to support joint decisions between a CDN and an ISP with respect to the server

selection process. This framework allows the ISP and the CDN to collaborate by exchanging some

local information (network utilization from the ISP side and server conditions from the CDN side), so

that it can result in better control of the resources. An ISP-supported CDN service has been proposed

in [35] and [36], whereby content is stored and served from within ISP domains. This solution how-

ever can incur high operational costs, given that ISPs will have to maintain large storage capacities,

and may thus be economically unviable.

10

2.2.3 Replication Framework

The proposed replication framework is composed by three phases namely the Planning, the Off-line

Assignment and the On-line Replacement phase which manage the content and the location of each

replication device (the term cache is also used) in the network with objectives such as minimizing

the content access latency from clients, maximizing the traffic volume served by the replicas and thus

minimizing bandwidth cost and network congestion. In the Planning phase, the proposed framework

selects those nodes of the network to place the replication devices while in the Off-line Assignment

phase each information item is assigned, based on its popularity, at a subset of the selected replication

devices so that the targeted objective is satisfied. Finally, the On-line Replacement phase dynamically

reassigns information items in the replication devices based on the observed items changing request

patterns. In order to support the proposed replication framework the three phases should be provided

by relevant functional components. Regarding the Planning and the Assignment phase these compo-

nents reside outside the network and run off-line algorithms at two different but long-medium time

scales, while the Replacement phase is residing in components installed at each node of the network

and run in real time scale.

The planning phase

The Planning phase takes as input the number of available replication devices an operator wishes

to install, the network topology and a long term prediction of subscriptions in the network. It can

run periodically deciding the optimal placement of the replication points at a long term time scale

(e.g. once a year) or whenever the current location of them leads to an inefficient deployment due to

significant subscriptions changes not successfully predicted. Performing and enforcing the decision

of the planning component usually involves high-level business decisions since there is a high cost

associated with moving a replication device to a different physical location or extending their number.

In Chapter 3 an ICN oriented planning algorithm is presented for the selection of the replication points

in the network based on the local demand for each item and the storage limitations of each replication

device.

The off-line assignment phase

The component of the Off-line Assignment phase runs also periodically but at a medium/long term

scale. It takes as input the outcome of the Planning phase regarding the locations of the replication

devices installed in the network, the physical network topology and the medium/long term forecast.

Replicas relocation can be enforced by instructing the replication devices to subscribe to a different

set of information items. The instruction itself is realized as a publication of an information item

to which replication devices are subscribed. In general, the replication points act both as publish-

ers and subscribers for the information items they are instructed to store. They subscribe in order

to receive new versions of the items, while they act as publishers for the same items to interested

subscribers. That way, when a client subscribes to a specific piece of information one or more pub-

11

Storage
Planning

Replica
Assignment

Subscription
Forecast

Network
Topology

Long-term
forecast

Medium-
long term
forecast

Configure (subscribe item t1, publish item t1)Configure (subscribe item t2, publish item t2)

Monitor subscriptions
patterns from the
network

Replication
device Replication

device

Subscribers Subscribers

Forwarding
Nodes

Forwarding
Nodes

Figure 2.1: Architectural illustration of the Planning and the Off-line Assignment phases.

lishers/replication points are enabled, based on the operators policy, to publish the relevant data. The

Assignment phase is also known as the Generalized assignment problem which even in its simplest

form is reduced to the NP-complete multiple knapsack problem. In Chapter 3 we propose two al-

ternative off-line mechanisms for the assignment of the replicas of each information item among the

selected replications devices. Figure 2.1 illustrates the basic modules of the Planning and the Off-line

Assignment phases.

The on-line replacement phase

As the provisioning periods of the Planning and the Off-line assignment phases can be quite long,

the subscriptions pattern may significantly vary during that period. For that reason we introduce the

On-line Replacement/Reassignment phase which enables the replacement of information items to

the replication points to take place in real-time, based on the changing demand patterns of the users.

Distributed components of that phase decide the items every replication point stores by forming a sub-

strate that can be organized either in a hierarchical manner for scalability reasons or in a peer-to-peer

organizational structure. Communication of information related to request rates, popularity/locality

of information items and current replication points configuration, takes place between the distributed

replacement components through an intelligent substrate.

Every replacement component, as depicted in Figure 2.2, should decide in a coordinated manner

with other components whether to store an item. This may require the replacement of an already

stored item, depending on the available space. The decision of this replacement of stored items is per-

formed towards maximizing an overall network-wide utility function (e.g. the gain in network traffic),

which means every node should calculate the gain the replacement of an item would incur. This ap-

proach assumes that every component has a holistic network-wide view of all the replication points

12

Replace item j
with item i?

client request rates,
topology, replica configs

coordinate
decisions

Clients
requesting
for items

Replication
device

Replacement Substrate

Replacement
Components

Figure 2.2: Architectural illustration of the On-line Replacement phase.

configuration and relevant request patterns and this information should be exchanged periodically or

in an event-based manner when a component changes the configuration of its attached replication

device.

Other approaches can also be realized in which the components base their decisions on a local

view of the users demand for specific items but coordinate to maximize the overall network gain, as

well as solutions where components act selfishly aiming at maximizing their own local utility. Since

all the above decisions are made in a distributed manner, uncoordinated decisions could lead to sub-

optimal and inconsistent configurations. Coordinated decision making of a distributed solution can be

achieved through the substrate mechanisms, by ensuring that components change the configuration of

each replication device in an iterative manner i.e. one at a time and not autonomously in a potentially

conflicting manner.

Any distributed on-line mechanism that applies in this third phase should capture the volatile

environment under consideration. All of them should be adaptive to popularity and locality changes

by fetching new items at a replication device and replacing existing ones. We envision three classes

of algorithms that could be applied in the On-line Replacement phase that differ in the amount of

information that needs to be communicated through the substrate, the required level of coordination

among the components, and the performance objective. We briefly present them in order of decreasing

complexity, in terms of the induced computational/communication overhead, while in Chapter 4 we

extensively present and evaluate specific algorithms for each one of the classes.

The first class, henceforth called cooperative, aims at minimizing the overall network traffic. This

requires that every component needs a holistic network-wide view of the request patterns and the cur-

rent replication points configuration. In addition, since each replacement decision affects the whole

network, some cooperation in the decision making is required. A cooperative algorithm in the context

13

of distributed replication groups (DRG) is presented in [29]. Under the DRG abstraction, where the

pairwise distance of the nodes is assumed to be equal, nodes utilize their caches to replicate informa-

tion items and make them available to local and remote users. The algorithms of the cooperative class

requires at each iteration each component of the network to compute the relative gain of every pos-

sible replacement and through appropriate message exchange to cooperate for the final replacements.

In other words every component participates at each iteration in the execution of the algorithm but

only one every time (the one with the maximum relative gain) performs valid replacements.

The second class, henceforth called holistic also aims at minimizing the overall network traffic

and hence requires the same amount of information. On the other hand, in the holistic class there is

no need for coordination of the actions of the components and the required decisions are made in an

autonomous manner by each one individually. The holistic class is of similar nature as the coopera-

tive and towards the same objective. Its distinguishing characteristic though is that each component

operates in its own performing replacements on the respective replication point. Particularly, only one

component at each iteration performs valid and beneficial replacements towards a specific objective.

In [28] a holistic algorithm in the context of DRG is also presented. Additionally in [30] authors

develop a replication management algorithm for a cluster of distributed replicas (CDNs) aimed at

maximizing the traffic volume served from the replication devices and minimizing the bandwidth

cost.

In both the cooperative and the holistic class it can be shown that since any change performed

in the replication points configuration decreases the overall network traffic, the proposed algorithms

finally converges to an equilibrium point where no further improvement is possible. The algorithms

do not necessarily converge to the optimal assignment, but to a local minimum of the objective given

the initial configuration. In both the holistic and the cooperative classes every node needs to acquire

global knowledge regarding the demand pattern for the decision making. However, in highly dy-

namic environments the amount of information that needs to be circulated among the components

becomes significant, causing thus non-negligible communication overhead. Even worse the required

information may not be available on time, making hence such an approach inapplicable. For such

scenarios we present an alternative class of algorithms called myopic, where each component needs

global knowledge of the items stored in the network, but only local knowledge regarding demand.

Also, in the myopic class each component acts autonomously and has the objective of minimizing

the traffic related to its own demand. In the proposed algorithmic classes the replacements are based

on the real time observed items request patterns such as their popularity and locality and not in static

off-line predictions. It is evident that the network wide knowledge and cooperation give significant

performance benefits and reduce significantly the time to convergence, but at the cost of additional

message exchanges and computational effort.

14

Chapter 3

Storage Planning and Off-Line Replica
Assignment

In various implementations of the CBPS architectural design (e.g. REDS, Siena), information items

are not permanently stored and only active subscribers receive published items. However, in a dy-

namic scenario, where users join the network at various instances, a user may be interested in content

published before its subscription time. In this chapter, we introduce a mechanism that enables storing

in such systems. Furthermore, we propose a new storage placement and replica assignment algorithm

which differentiates the information items based on their popularity and minimizes the subscribers re-

sponse latency and the overall traffic of the network. We also present and compare two off-line replica

assignment alternatives and examine their performance when both the locality and the popularity of

users request change. The performance of our proposed placement and replica assignment algorithm

and the proposed storing mechanism is evaluated via simulations. The proposed mechanism is com-

pared with mechanisms from the CDN context and performs as close as 1%-15% (depending on the

conducted experiment) to a greedy (near optimal) approach installing up to 3 times less replication

devices in the network and providing the necessary differentiation among the classes of the content.

3.1 Introduction

In the CBPS architectural design, any information item is guaranteed to reach all interested sub-

scribers as long as their subscriptions are known to the network at publish time, assuming stable

topology and no queuing overflows. However, in a dynamic distributed environment, subscribers join

and leave the network over time, and it is possible that a subscriber joins the network after the publi-

cation of an interesting items, so it is not possible for a new subscriber to retrieve already published

items that match his/her subscription. Therefore, enabling the retrieval of past published information

items by means of replication is one of the most challenging problems.

Content delivery servers (“surrogate servers” in CDNs or simply “replicas” in this work) replicate

the whole content of a given server and target to speeding up the delivery of content by reducing the

15

load on the origin servers and the network itself. When a client is interested in a piece of information

of a given server, his/her request is redirected to one of the existing replicas (e.g., the closest one or

the one satisfying other criteria such as the load of the candidate replication point). Since replicas

serve only a portion of the total requests and are placed closer to the client, clients are served faster.

A client’s request is redirected to a replica only if that replica replicates the targeted server, otherwise

the request is directed and served by the server itself.

In this chapter we:

• Enhance the CBPS communication paradigm with an advertisement and a request/response

mechanism so that replicas can advertise what they have stored and subscribers can retrieve it.

• Propose a new algorithm for the selection of R replication points among the V nodes of the

network (R <V) based on: a) the locality and the popularity of the interests for each informa-

tion item, b) the targeted replication degree of each item (as replication degree we name the

number of replicas km (1≤ km ≤ R) of item m ∈M among the stores, which is analogous to its

popularity) and c) the storage capacity (limitation) L of each replication device.

• Propose two alternative mechanisms for the assignment of the replicas of each item among the

selected replication points.

• Evaluate through simulations our design of the storing mechanism and the new placement and

replica assignment algorithm.

The objective of our scheme is to minimize the total traffic load in the network subject to installing

the minimum number of replication devices and given that each replica has storage limitations. Of

course, the proposed storing scheme is generic and can be applied in every information-centric ap-

proach, but in this chapter the whole analysis and the proposed mechanisms were designed assuming

the CBPS architectural design.

The rest of the chapter is organized as follows. In Section 3.2 we describe the problem under in-

vestigation, while in Section 3.3, we shortly describe the CBPS architecture and present the proposed

advertisement and request/response mechanism. The new algorithm for the selection of the replicas’

location and the replica assignment of the items is presented in Section 3.4. Section 3.5 is devoted to

performance evaluation via simulations. Finally, we conclude the chapter in Section 3.6.

3.2 Problem Formulation

In this chapter, we assume an network with arbitrary topology of V nodes. M different information

items should be stored at R replication points, where each replication point has the capability to store L

different items. Each item m ∈M should be replicated km times. Requests for the items are generated

at various nodes and they trigger the transfer of the requested item from a store to the node where the

request was generated. The proposed mechanism is composed by two phases, typical in any network

management task, namely the Planning and the Off-line Assignment phase. In the Planning phase, the

16

proposed mechanism selects R points out of the V nodes of the network to place the replicas, while

in the Assignment phase, each item m ∈M is assigned at exactly km different replicas with the target

to minimize the total traffic load in the network.

Generally, in a real implementation the Planning of stores changes rarely, since it requires the

reallocation of the stores among the network nodes. On the other hand, the Assignment of the items

is more flexible and the storage provider (e.g. a CDN provider) is able to reassign the items among

the replication points when the locality and the popularity patterns change is such a way that the

performance of the network is degraded with the existing configuration. Of course, a reassignment

requires the calculation of the new places for each item and the transfer of items to those locations,

but as shown later in the performance analysis, it is an efficient way to maintain the performance of

the system at high levels without re-planning the whole network.

The storage capacity of each replication point usually refers to TBytes but for simplicity we

assume here that items are of the same size. The L parameter is a limitation introduced by the storage

providers and refers to the maximum storing capability of each store in the network. On the other

hand, the km parameter (replication degree of each item) is a limitation introduced by the content

provider and refers to the number of replicas that the content provider is willing to pay for. Finally,

the R parameter refers to the number of stores that a storage provider should install in the network to

serve the storage demands of the content provider.

3.3 Enabling Replication

In this chapter, we consider a network which uses the subscription forwarding routing strategy [15],

where the routing paths for the published items are set by the subscriptions, which are propagated

throughout the network so as to form a tree that connects the subscribers to all the nodes in the

network. In that scheme, publishers join the network when they have something to publish, therefore

in our approach the entity of the origin server does not exist.

When a subscriber issues a subscription, a packet containing the subscription filter is sent to the

node the subscriber is attached to. The filter is inserted in a Subscription Table (ST), together with

the identifier of the subscriber. Then, the subscription is propagated by the node, which now behaves

as a subscriber with respect to the rest of the dispatching network, to all of its neighboring nodes.

In turn, the neighbors record the subscription and re-propagate it towards all further neighboring

nodes, except for the one that sent it. Finally, each node in the network has a ST, in which for every

neighboring node there is an associated set of filters containing the subscriptions issued by them.

3.3.1 Advertisement and Request/Response Mechanism

In this section, we present the advertisement and the request/response mechanism, which provides

a CBPS implementation with the ability to store and retrieve information published in the past and

make it available for future clients. Particularly, we will present the new mechanisms through the

example of Figures 3.1 and 3.2.

17

ST

2: itma

2: itmb

1

2

64

53

ST

str2: itma

str2: itmb

3: itma

3: itmb

ST

2: itma

2: itmb

5: itma

5: itmb

ST

3: itma

3: itmb

6: itma

6: itmb

ST

5: itma

5: itmb

str1: itma

str1: itmb

ST

3: itma

3: itmb

itma

Adv(itma,itmb,2)
Sub(itma,itmb)

AT

3: itma,2

3: itmb,2

AT

2: itma,1

2: itmb,1

AT

str2: itma,0

str2: itmb,0

AT

2: itma,1

2: itmb,1

AT

3: itma,2

3: itmb,2

6: itma,1

6: itmb,1

AT

5: itma,3

5:itmb ,3

str1: itma,0

str1: itmb,0

str1

Publisher

itma

str2
Sub(itma,itmb)

Figure 3.1: Advertising and Storing of information.

In order to retrieve stored information, we enhance the CBPS architectural model with three addi-

tional types of packets (besides the already existing Publish() and Subscribe()), Advertise(),

Request() and Response(). We also add to the system a new feature called Advertisement

Table (AT), similar to ST, which is used to store advertisements. When a new replication point

“str1” is installed at node 6 (Figure 3.1), it issues a set of Subscribe() packets with the items

that is willing to store (itma and itmb in the given example). In that way, it acts as a subscriber to

future publications matching the subscribed items and, each time a relevant publication occurs (i.e.

publisher attached to node 1 publishes item itma), it stores the item (the item is also stored to “str2”).

The “str1” also issues a set of Advertise() packets, which contains the items that stores and

the distance in hops from the store (the distance attribute is built hop by hop). Advertisements are

treated similarly to subscriptions and form a tree that connects the “str1” to all the nodes in the net-

work. Advertisements are inserted in the (AT). Coverage also occurs with advertisements, as with

subscriptions, but in a slightly different way. Particularly, when a node receives an advertisement,

checks in the distance field and if the distance is equal to another entry (for the same item), it adds

the advertisement to the AT and stops forwarding the advertisement. Keeping more than one entry for

the same item in an AT, enables load balancing capabilities to requests passing from that particular

node. On the other hand, when a node receives an advertisement for a replication node which is closer

compared to the other replicas already in the AT, it adds the advertisement to the AT, removes the

previous entries and forwards it further (nodes 5 and 6 in Figure 3.1). Finally, when a node receives

an advertisement for a replica which is further compared to the other replicas already in the AT, it

simply stops the forwarding of the advertisement without changing the entries of the AT (node 3 in

Figure 3.1).

18

ST

2: itma

2: itmb

2: itma

1

2

64

53

ST

str2: itma

str2: itmb

3: itma

3: itmb

ST

2: itma

2: itmb

5: itma

5: itmb

ST

3: itma

3: itmb

6: itma

6: itmb

ST

5: itma

5: itmb

str1: itma

str1: itmb

ST

3: itma

3: itmb

A: itma

itma

AT

3: itma,2

3: itmb,2

AT

2: itma,1

2: itmb,1

AT

str2: itma,0

str2: itmb,0

AT

2: itma,1

2: itmb,1

AT

6: itma,1

6: itmb,1

AT

str1: itma,0

str1: itmb,0

str1

itma

str2

5: itma

3: itma4: itma3: itma

A

Req(itma, A)
Sub(itma)

Resp (itma)

Sub(itma)Req(itma, A�4�3)
Sub(itma)

R
eq

(it
m

a,
A�

4)
S

ub
(it

m
a)

Resp (itma, A�4)

R
es

p
(it

m
a,

A)

Figure 3.2: Retrieval of stored information using the request/response mechanism.

When a subscriber (subscriber A in Figure 3.2), is interested in retrieving stored content apart from

subscribing (if he/she is also interested for future publications) he/she issues a request by sending a

Request() packet. Source routing is used for the forwarding of the Request() (the path is being

built hop by hop and is included in the Request() header). Node 4 upon receiving the Request()

checks in its AT for entries matching the requested item (itma in this case). The node forwards the

Request() to the neighbor who had advertised the matching item and is closer to the subscriber

(in this example node 3 and finally node 2). Finally, “str2” receives the Request(), and initiates a

Response() including the requested item.

A Response() packet carries the information item as well as the sequence of nodes carried by

the initiating Request() (source routing). When a node receives a Response() message it pops

off its identifier from that sequence and forwards it to the first node of the remaining sequence. In the

end, subscriber A will receive the requested item.

3.4 Placement and Replica Assignment Strategy

We use as the base of our placement and replica assignment scheme, algorithms presented in the con-

text of CDN networks. Particularly in [21] and [22], authors developed several placement algorithms

that use workload information, such as latency (distance from the storage points) and request rates,

to make the placement decision. Their main conclusion is that the so called “greedy” algorithm that

places replicas based upon both a distance metric and request load, performs the best and is very close

to the optimal solution.

19

3.4.1 Greedy algorithm

Here, we briefly present the greedy algorithm assuming that there exists only one item in the network.

We let ri be the demand (in reqs/sec) from subscribers attached to node i. We also let pi j be the per-

centage of the overall request demand accessing the target server j (traditional placement algorithms

replicate a specific origin server) that passes through node i. Also we denote the propagation delay

(hops) from node i to the target server j as di j. If a store is placed at node i we define the Gain to

be gi j = pi j ·di j. This means that pi j percentage of the traffic would not need to traverse the distance

from node i to server j decreasing the overall network traffic by:

di j ·
N

∑
l=1

rl

where

rl =

{
rl if i is on the path from l to j

0 otherwise.

The greedy algorithm chooses one replication point at a time (we need k replicas out of the V

nodes of the network). In the first round, it evaluates each of the V nodes to determine its suitability

to become a replica of server j. It computes the Gain associated with each node and selects the

one that maximizes the Gain. In the second round, searches for a second replication point which, in

conjunction with the replica already picked, yields the highest Gain. The greedy algorithm iterates

until k replicas have been chosen to replicate server j.

3.4.2 Modified Greedy Algorithm

In the architectural design that we assume here, the notion of an origin server - which is vital for the

greedy algorithm - does not exist. Publishers join the network, publish their content and disappear.

So in order to obtain the location of the replicas we modify the greedy algorithm. Particularly, we

repeat the above procedure V times assuming each time that the targeted server j is a different node

of the network. We get in that way V vectors of k possible stores. Precisely, each vector has V

elements with k ones in the index of the selected stores and V − k zeros in every other place. For

example, vector [0 0 0 1 0 1] means that of the 6 nodes of the network the selected k = 2 possible

stores are nodes 4 and 6. Finally, we select as our replication points those k nodes that appeared

more times in the per element summation of the V vectors, and install at each one a replica following

the mechanism described in Section 3.3.1. The modified greedy algorithm presented here assumes

uniform distribution of the probability among the V nodes of the network that publications could

occur. Of course, other forms of probability distributions could be used, and each vector should be

first weighted with its probability before the per element summation of the V vectors.

20

V : number of nodes in the network

R : (R <V) number of replication points in the network

M : number of information items in the network

L : storage capacity of each replication point in the network

rm
i : request rate for item m ∈M in node i ∈V

km : (km ≤ R) replication degree of item m ∈M
wm : weight of item m
w′m : relative weight of item m
S : vector of replication points

sm : possible replication points vector for item m

Table 3.1: Parameters used by the placement algorithm and its assignment alternatives

3.4.3 Placement and Replica Assignment Algorithm

Here, we use the modified greedy algorithm described above for the case where in our network exist

M different items. Next, we present the Steps of the proposed algorithm side by side with the example

of Figure 3.3 (Table 3.1 contains all the useful parameters required by the proposed algorithm):

Step 1: For each item m ∈ M we execute the modified greedy algorithm presented in Section 3.4.2

and we get M vectors of possible replication points sm. Regarding the example we get: sa =

[0 3 5 0 2 2], sb = [0 2 5 0 5 0], sc = [0 2 5 0 5 0] for the three items accordingly. The [0 3 5 0 2 2]

means that out of the V = 6 executions of the modified greedy algorithm, node 2 appeared 3

times, node 3 appeared 5 times and so on.

Step 2: Each vector (sm) is weighted by wm = ∑V
i=1 rm

i

∑V
i=1 ∑M

m=1 rm
i

. wm shows the significance (popularity)

regarding the traffic demand of each item in the network. The weights for the given example

are: wa = 17/50 = 0.34, wb = 27/50 = 0.54, wc = 6/50 = 0.12.

We obtain the following weighted vectors:

wa · sa = [0 1.02 1.7 0 0.68 0.68], wb · sb = [0 1.08 2.7 0 2.7 0], wc · sc = [0 0.24 0.6 0 0.6 0].

Step 3: We select as our replication points those R nodes that appeared more times in the per ele-

ment weighted summation of the M vectors. We call that vector the vector of replication

points S . The per element summation of the above three vectors into a single vector gives

[0 2.34 5 0 3.98 0.68] meaning that the final R = 3 replication points in S are nodes 3, 5 and 2.

Step 4: For each item m, starting from the most significant (based on the weight), we assign km replicas

following the procedure below:

• For each entry in the sm of item m calculated in Step 1 assign a replica if that entry

also appears in the S , calculated in Step 3, and only if in that replication point has been

assigned less than L (storage capacity) items until we get km replicas (replication degree

of item m).

In the example starting from item b then item a and finally item c (based on their weights) we

assign them to k = 2 replication points. Item b is assigned to nodes 3 and 5 which were the

21

item a: 1 req/sec

item b: 3 req/sec

item c: 1 req/sec

item a: 5 req/sec

item b: 6 req/sec

item c: 1 req/sec

item a: 2 req/sec

item b: 3 req/sec

item c: 0 req/sec

item a: 1 req/sec

item b: 1 req/sec

item c: 2 req/sec

item a: 6 req/sec

item b: 7 req/sec

item c: 1 req/sec

item a: 2 req/sec

item b: 7 req/sec

item c: 1 req/sec

Figure 3.3: Topology and workload information per each item together with, km = k = 2, L = 2 and

R = 3 form the inputs of the placement algorithm.

nodes for item b appeared more times in Step 1. Item a is also assigned to nodes that were

produced by Step 1, nodes 2 and 3, while item c is assigned to nodes 2 and 5. Node 5 was

among the most popular selections produced by Step 1 while node 2 was the only store in S
with less than L = 2 assignments.

Step 4 of our algorithm is also known as the Generalized Assignment Problem which even in

its simplest form is reduced to the NP-complete multiple knapsack problem. In this chapter, for the

solution of the assignment problem we use the heuristic approaches described above and in Section

3.4.5, while more approaches could be found in literature [37].

3.4.4 Cost Model

Steps 1-3 of the proposed algorithm described above comprise the Planning phase of the algorithm

while Step 4 is the Assignment phase. In this section, we present the cost model of the Assignment

phase, which as mentioned above is an NP-complete problem. The access of an information item

stored in replication point x by a subscriber attached at node y generates a traffic load equal to the

length (number of hops) of the path from x to y. Given that we wish to optimize the total traffic load,

the access scheme is that we always access the closest store (shortest path) among those holding the

specific item. Thus given the access mechanism, we seek to decide the replica assignment of each

item.

Let T be the traffic load corresponding to any storage configuration. For that storage configuration

we can write:

T =
M

∑
m=1

Tm (3.1)

where Tm is the traffic load corresponding to configuration of item m only.

22

We then have,

Tm =
km

∑
n=1

∑
l∈Nm

n

rm
l ·dln (3.2)

where Nm
n is the collection of nodes accessing item m from its replication point at node n, rm

l is the

request rate for item m from node l and dln is the distance (in hops) from node l to node n.

And for the overall network traffic from Equations 3.1 and 3.2, we get:

T =
M

∑
m=1

Tm =
M

∑
m=1

km

∑
n=1

∑
l∈Nm

n

rm
l ·dln (3.3)

The minimization of the overall traffic cost is given by the minimization of the following con-

strained nonlinear multivariable function.

min(T (k1,k2, . . . ,km)) such that

⎧⎪⎨
⎪⎩

M

∑
m=1

km ≤ L ·R

1≤ km ≤ R, ∀m ∈M

(3.4)

3.4.5 Alternatives on the Assignment Phase

In this section we describe an alternative assignment mechanism which is similar to the Weighted

Round Robin (WRR) scheduling discipline. In Section 3.4.3 items were assigned sequentially based

on their weights. Particularly, the item with the largest weight was assigned first, then the item with

the second largest weight and so on. In the WRR alternative the sequence of the assignment does

not change but the number of storing points that each item is assigned to is based on its relative

weight. The relative weight w′m of item m is w′m =

⌈
∑V

i=1 rm
i

min{m∈M}{∑V
i=1 rm

i }
⌉

. This means that the w′ of

the less weighted item is equal to one. The w′ of all items generate an integer vector of the form

[w′1,w
′
2, ...,w

′
M] where w′1 is the relative weight of item 1 and so on (e.g. [3 1 2 2] means that out of

the four items, item 2 is the the one with the smallest weight while items 3 and 4 are twice as large as

item 2 and item 1 is the largest and its weight is three times larger than item 2). The WRR alternative

of the assignment procedure assigns at each round ξ

kξ
m = min

{
w′m · km, km−

ξ−1

∑
ξ ′=0

kξ ′
m

}

where

k0
m = 0, ∀m ∈M

replicas of each item until all items are assigned to km different replication points.

In the example of Figure 3.3, the vector of the relative weight of the items is [3 5 1]. Of course the

assignment procedure of WRR alternative in that example is the same to the assignment procedure

described in Section 3.4.3 since km = k = 2 but in the case that k = 6 then the assignment of WRR

would have been:

23

Round 1: [3 5 1] replicas for each item.

Round 2: [3 1 1] (item 2 has already been assigned to 5 replication points).

Round 3: [0 0 4] (items 1 and 2 have been assigned to k = 6 replication points).

The WRR alternative is fairer to the less weighted items and as shown in the performance evaluation

this lead to better performance regarding the clients’ perceived delay and the overall network traffic.

3.5 Performance Evaluation

In this section, we evaluate the proposed replication mechanism using a discrete event simulator. The

simulator is written in MATLAB based on the event-driven technique for continuous-time modeling.

Before implementing the modified greedy algorithm and the two alternative assignment algorithms

we made sure that the implemented greedy algorithm is inline with the algorithms presented in [21]

and [22] (the performance of our greedy implementation is inline with the plots of those two greedy

implementations). V nodes are organized in a tree topology and subscribers dynamically request on

each node i for stored items with rate rm
i different for each item m. We assume that in our network

exist M items and based on the set of experiments each item should be either replicated at least minkm

times or a predefined number of R replication points should be placed and appropriately assigned to

the items. Also, each replication point has a capacity of L different items. Finally, the assignment of

replicas to the items is based on their actual weight wm with the constraint that at least minkm replicas

should be assigned to each item m.

It is widely acknowledged that information-centric research lacks public data sets for meaningful

evaluation. Thus, synthetic workload generation is widely accepted in the field, under the assumption

that the workload generated meets a set of realistic assumptions. Each item is characterized by two

parameters: popularity and locality. Popularity refers to the request rate related to an item and locality

to the region of the topology likely to originate requests. pm (respectively lm) denotes the popularity

(respectively the locality) associated to an item m. Popularity and locality values are computed using

a Zipf law of different exponents sp and sl respectively. Requests are issued from a set of nodes

computed using lm. Particularly �lm ·V� nodes are potential issuers of requests related to item m. This

set of nodes is computed by choosing a random central node and �lm ·V�−1 additional nodes among

the closest nodes to the central node (executing a Breadth First Search algorithm).

Having selected the R replication points and assigned to them the M information items using our

two assignment alternatives (“p/s seq” for the sequential assignment mechanism and “p/s wrr” for

the weighted round robin-like assignment mechanism) we let the system operate under the dynamic

client environment. We compare it firstly to the case where each item is assigned to the km replication

points produced by the first step of the placement algorithm (“grd opt”) described in Section 3.4.3

disregarding of the storage capacity and the total number R of used replicas, and secondly to the case

where there is no differentiation among items during the selection of the R replication points and the

final assignment of the items to km replicas is random (“rnd”). The metrics we are interested in are:

• The Network Traffic (in resps · hops/sec) after the completion of the placement/replication

24

40 60 80 100 120 140 160 180 200

0,9

1,2

1,5

1,8

2,1

2,4

2,7

 p/s_seq mink=2
 p/s_wrr mink=2
 grd_opt mink=2
 rnd mink=2
 p/s_seq mink=3
 p/s_wrr mink=3
 grd_opt mink=3
 rnd mink=3

M
ea

n
H

op
 D

is
ta

nc
e

V (number of nodes)

L=M/2

40 60 80 100 120 140 160 180 200

2000

4000

6000

8000

10000

 p/s_seq mink=2
 p/s_wrr mink=2
 grd_opt mink=2
 rnd mink=2
 p/s_seq mink=3
 p/s_wrr mink=3
 grd_opt mink=3
 rnd mink=3

N
et

w
or

k
Tr

af
fic

 (r
es

ps
*h

op
s/

se
c)

V (number of nodes)

L=M/2

Figure 3.4: Performance of the proposed placement algorithm (both assignment alternatives “seq”

and “wrr”) compared to the “grd opt” and the “rnd” vs. the number of the nodes in the network.

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 1,1

1,8

2,1

2,4

2,7

3,0
 p/s_seq V=100
 p/s_wrr V=100
 grd_opt V=100
 rnd V=100
 p/s_seq V=150
 p/s_wrr V=150
 grd_opt V=150
 rnd V=150

M
ea

n
H

op
 D

is
ta

nc
e

L/M

 min
k
=2

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 1,1
3000

4000

5000

6000

7000

8000

9000

 p/s_seq V=100
 p/s_wrr V=100
 grd_opt V=100
 rnd V=100
 p/s_seq V=150
 p/s_wrr V=150
 grd_opt V=150
 rnd V=150

N
et

w
or

k
Tr

af
fic

 (r
es

ps
*h

op
s/

se
c)

L/M

min
k
=2

Figure 3.5: Performance of the proposed placement algorithm (both assignment alternatives “seq”

and “wrr”) compared to the “grd opt” and the “rnd” vs. the storage capacity of the replication points

in the network.

algorithm.

• The Mean Hop Distance which corresponds to the mean number of hops between a responding

replication point and the subscriber issuing the request. This metric is indicative of the response

latency as a function of hops in the network.

The above metrics are random variables and we estimate their mean by simulating thousands of

observations. We run two sets of experiments; one evaluating both the planning and the assignment

phases of the proposed framework and one evaluating only the reassignment of items after an initial

planning.

3.5.1 Overall Evaluation of the Placement and the Replica Assignment Algorithm

In the first set of experiments we conducted two subsets of experiments one assuming a predefined

minimum replication degree for each item and one assuming a predefined number of replication

devices that should be installed in the network.

25

1 2 3 4 5 6

1,0

1,5

2,0

2,5

3,0
 p/s_seq V=100
 p/s_wrr V=100
 grd_opt V=100
 rnd V=100
 p/s_seq V=150
 p/s_wrr V=150
 grd_opt V=150
 rnd V=150

M
ea

n
H

op
 D

is
ta

nc
e

min
k

L=M/2

1 2 3 4 5 6
2000

3000

4000

5000

6000

7000

8000

9000 p/s_seq V=100
 p/s_wrr V=100
 grd_opt V=100
 rnd V=100
 p/s_seq V=150
 p/s_wrr V=150
 grd_opt V=150
 rnd V=150

N
et

w
or

k
Tr

af
fic

 (r
es

ps
*h

op
s/

se
c)

min
k

L=M/2

Figure 3.6: Performance of the proposed placement algorithm (both assignment alternatives “seq”

and “wrr”) compared to the “grd opt” and the “rnd” vs. the minimum replication degree of the items

in the network.

Predefined minimum replication degree

In this subset of experiments, we assumed that the Zipf’s exponent value of the popularity is sp = 1

while we assumed uniform locality among the items. Uniform locality implies that requests are

generated from every node in the network for every item or else, the neighborhood of interest for each

item is the whole network. We also assumed that minkm = mink = 2 (minimum replication degree).

We mentioned above that the assignment is weighted based on the wm of each item, meaning that the

number of replicas of each item is given by km =
⌈

wm
wm′
·mink

⌉
where m′ ∈M is the less weighted item.

Also in our network exist M = 1000 different items and the clients’ request rate per item m is 25 · pm

requests/second from each node of the network. Particularly, we run three different experiments,

one varying the number of nodes in the network, one varying the storage capacity of each potential

replication point and one varying the minimum replication degree mink of the items in the network.

Figures 3.4 - 3.6 show the mean hop distance and the network traffic for each one of the three

different experiments. The proposed algorithm behaves better than the “rnd” algorithm (5%− 25%

better performance) and close to the “grd opt” (less than 10% worse), which does not have any con-

straints regarding the storage capacity and the total number of installed replicas. This performance is

achieved regardless of the size of the network, the capacity of the replication points or the minimum

number of replicas installed for each item. The mean hop distance and the network traffic increase

sublinearly with the size of the network (Figure 3.4) while increasing the L of every replica the two

proposed alternatives and the “rnd” algorithms install more items in “privileged” nodes leading to

smaller response delays (and loading with less traffic the network) for every request (Figure 3.5).

Moreover, both the mean hop distance and the network traffic decrease as the minimum replication

degree (mink) for each item increases, since now requests reach closer replicas (Figure 3.6).

The “wrr” assignment alternative behaves better than the “seq”, (4%− 17% better performance

in every conducted experiment), since as explained in Section 3.4.5 this alternative results in a fairer

assignment of the items. This means that less popular items still have the chance to be replicated

in replication points that match the outcome of Step 1 of the proposed algorithm, leading to better

performance for the whole network. As observed by Figures 3.5-3.6, the mean hop distance and the

26

0,0 0,2 0,4 0,6 0,8 1,0
1,5

2,0

2,5

3,0

 p/s_seq R=20
 p/s_wrr R=20
 grd_opt R=20
 rnd R=20
 p/s_seq R=10
 p/s_wrr R=10
 grd_opt R=10
 rnd R=10

M
ea

n
H

op
 D

is
ta

nc
e

s
p

L=M/2

0,0 0,2 0,4 0,6 0,8 1,0

4000

4500

5000

5500

6000

6500

7000

7500 p/s_seq R=20
 p/s_wrr R=20
 grd_opt R=20
 rnd R=20
 p/s_seq R=10
 p/s_wrr R=10
 grd_opt R=10
 rnd R=10

N
et

w
or

k
Tr

af
fic

 (r
es

ps
*h

op
s/

se
c)

s
p

L=M/2

Figure 3.7: Performance of the proposed placement algorithm (both assignment alternatives “seq”

and “wrr”) compared to the “grd opt” and the “rnd” vs. the exponent value sp of the popularity.

0,0 0,2 0,4 0,6 0,8 1,0
0,0

0,5

1,0

1,5

2,0

2,5

 p/s_seq R=20
 p/s_wrr R=20
 grd_opt R=20
 rnd R=20
 p/s_seq R=10
 p/s_wrr R=10
 grd_opt R=10
 rnd R=10

M
ea

n
H

op
 D

is
ta

nc
e

s
l

L=M/2

0,0 0,2 0,4 0,6 0,8 1,0
0

120

240

360

480

600

 p/s_seq R=20
 p/s_wrr R=20
 grd_opt R=20
 rnd R=20
 p/s_seq R=10
 p/s_wrr R=10
 grd_opt R=10
 rnd R=10N

et
w

or
k

Tr
af

fic
 (r

es
ps

*h
op

s/
se

c)

s
l

L=M/2

0,0 0,2 0,4 0,6 0,8 1,0
10

20

30

40

50

60

 p/s R=20
 grd_opt R=20
 p/s R=10
 grd_opt R=10

In
st

al
le

d
R

ep
lic

at
io

n
po

in
ts

s
l

L=M/2

Figure 3.8: Performance and total number of installed replication points in the network of the pro-

posed placement algorithm (both assignment alternatives “seq” and “wrr”) compared to the “grd opt”

and the “rnd” vs. the exponent value sl of the locality.

network traffic graphs have the same form since the storage capacity of each replica and the minimum

replication degree of each item does not alter the overall amount of traffic (resps/sec) generated in the

network, and the network traffic is the product of the distance (from a client to the closest replica)

and the amount of requests generated by the subscribers of the network. Of course, the addition of

new nodes (and new subscribers attached to them) increases the amount of traffic in the network and

the mean distance between subscribers and replication points; that’s why the network traffib graph in

Figure 3.4 behaves differently from the mean hop distance graph.

27

1 2 3 4 5

1,6

1,8

2,0

2,2

2,4

 p/s_seq
 p/s_wrr
 rnd

M
ea

n
H

op
 D

is
ta

nc
e

replica failures

L=M/2, R=20, s
p
=0.8

Figure 3.9: Performance of the proposed placement algorithm (both assignment alternatives “seq”

and “wrr”) compared to the “rnd” vs. the number of storage failures.

Predefined total number of replication points

In this subset, we set two different experiments, one assuming uniform locality and vary the exponent

sp of the popularity and one assuming uniform popularity (sp = 0; uniform popularity means same

request rate for each item) and vary the exponent sl of the locality. Moreover, we assumed that there

are R= 20 and R= 10 available stores (L= 0.5 ·M for each replica) that should be placed and assigned

(based on the weights) to the items when the network is composed by V = 100 nodes.

Figures 3.7 - 3.8 show the mean hop distance and the network traffic for each one of the two ex-

periments. As previously, the proposed algorithm behaves better than the “rnd” algorithm and close

to the “grd opt” when the popularity exponent changes. Particularly the proposed algorithm performs

10%−25% better than the random algorithm and less than 9% worse than the greedy optimal algo-

rithm, which has no limitations in the number of installed replicas and their storage constraints. On

the other hand, in the experiment where we change the locality exponent, the proposed algorithm

performs four times worse than the “grd opt” but requires three times less replication devices. So,

when the offered replication devices are predefined, and the “grd opt” cannot be used, the proposed

algorithm (both the assignment alternatives) performs significantly well.

As previously, the mean hop distance and the network traffic graphs have the same form, since

both the popularity and the locality exponent do not alter the overall amount of traffic generated in

the network, but only the way that this amount of traffic is allocated among the items and the nodes of

the network. For that reason the network traffic metric is not depicted in the following experiments.

We have also conducted an experiment (Figure 3.9; each point is the average of twenty different

runs/different combinations of storage failures) assuming storage failures when locality is uniform

and the the exponent sp of the popularity is sp = 0.8. Despite the fact that the proposed planning al-

gorithm and the two assignment alternatives are not designed to take into consideration the possibility

of failure of each replication point during their selection, we observe a linear increase in the mean hop

distance when storage failures occur. Particularly, we observe up to 11% increase in the mean hop

distance when 25% of the replicas fail (fail to serve requests). In the case of a failure, a request will

be served from the next closest replication point, so the observed increase in the mean hop distance

is the distance between the new replication point and the one that failed.

28

-0,8 -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6 0,8 1,0
1,5

2,0

2,5

3,0

3,5

4,0

 p/s_seq no-reassign
 p/s_wrr no-reassign
 p/s_seq reassign
 p/s_wrr reassign

M
ea

n
H

op
 D

is
ta

nc
e

s
p

L=M/2, s
p-initial

=-1

-0,8 -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6 0,8 1,0
0

10

20

30

40

50

 p/s_seq
 p/s_wrr

%
 G

ai
n

s
p

 L=M/2, s
p-initial

=-1

Figure 3.10: Performance and % gain of the assignment phase (both alternatives “seq” and “wrr”)

of the placement algorithm after an initial planning compared to the placement algorithm without

reassignment vs. the evolution of the value of the popularity exponent.

-0,8 -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6 0,8 1,0

1,0

1,5

2,0

2,5

3,0

 p/s_seq no-reassign
 p/s_wrr no-reassign
 p/s_seq reassign
 p/s_wrr reassign

M
ea

n
H

op
 D

is
ta

nc
e

s
l

 L=M/2, s
l-initial

=-1

-0,8 -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6 0,8 1,0
0

10

20

30

40

50

60

 p/s_seq
 p/s_wrr

%
 G

ai
n

s
l

 L=M/2, s
l-initial

=-1

Figure 3.11: Performance and % gain of the assignment phase (both alternatives “seq” and “wrr”)

of the placement algorithm after an initial planning compared to the placement algorithm without

reassignment vs. the evolution of the value of the locality exponent.

3.5.2 Evaluation of the Reassignment Phase

In this set of experiments, we evaluate only the reassignment phase of the proposed algorithm (Step

4 in Section 3.4.3) after an initial planning and assignment of the replicas. Particularly, we run two

different experiments. In the first one, we assumed uniform locality and vary the popularity when

the initial planning was done assuming sp = −1 (the last item is the most popular). In the second

experiment we assumed uniform popularity and vary the locality when the initial planning was done

assuming sl =−1 (the last item was requested from the largest neighborhood). Also there are R = 20

available replication points (L = 0.5 ·M for each replica) that should be placed and assigned (based

on the weights) to the items, while the network is composed by V = 100 nodes.

Figures 3.10 and 3.11 present the mean hop distance and the relative gain of the reassignment

process for the two proposed assignment alternatives. It is obvious that the reassignment of items

manages to retain the good performance of the network even if the popularity or the locality pattern

changes radically. Particularly, when the patterns of the popularity and the locality are inverted the

re-assignment phase by itself delivers up to a 55% decrease in the mean hop distance compared

29

to the case where the assignment of the topics among the replicas do not change after the initial

planning. Moreover, the performance of the reassignment phase is less than 8% worse compared

to the performance of executing both the planning and the assignment steps after the change of the

popularity and the locality pattern (Figures 3.7 and 3.8).

The relative gain graphs of Figures 3.10 and 3.11 could also be used as a benchmark for the storage

provider in the decision to reassign or not the items in the replication points of the network upon the

detection of a change in the popularity or the locality pattern. Particularly, when the popularity pattern

(the exponent value sp) changes up to 50% from its initial value the reassignment of the topics has less

than 10% impact in the decrease of the mean hop distance and the network traffic. This means that

a storage provider could skip the reassignment of the items since the initial planning and assignment

still performs quite well. On the other hand, when the locality pattern changes more than 25% from

its initial value the reassignment phase is necessary since it can decrease both the mean hop distance

and the network traffic at least 15%.

3.5.3 Discussion

From the above performance analysis we observe that the performance of the proposed algorithms

(planning and the two assignment algorithms) is at any case up to 25% better than the “rnd” even

in the cases where the mean hop distance is less than 3 hops. Of course the proposed algorithms

behave worse than the “grd opt” which has no limitations in the number of the installed replicas in the

network. Particularly, the proposed algorithms perform very close to the “grd opt” in the majority of

the conducted experiments (1%-15% worse). Only in the case where we change the locality exponent

the proposed algorithms behave up to four times worse than the greedy installing on the other hand

three times less replicas. This implies that in the real world where a storage provider has limitations

in the number of replicas that can install the proposed algorithms is an appropriate solution in almost

any scenario.

3.6 Chapter Conclusions

In this chapter, we put forward a new mechanism for replication management in information-centric

approaches. The proposed concept equips the CBPS model with the ability to store and retrieve stored

information. Moreover, we presented a new placement and replica assignment algorithm that differ-

entiates the information items. Evaluation via simulations of the performance of the system regarding

the clients’ response latency and the network traffic shows that our placement and replica assignment

algorithm is a promising solution in almost any scenario. Finally, the two proposed assignment alter-

natives could also be used regardless of the initial planning of the replicas to retain good performance

of the network when both the popularity and the locality of the requests change. The proposed place-

ment and replica assignment algorithms are generic and can be applied in every information-centric

approach.

30

Chapter 4

Distributed Cache Management and
Performance Limits

In this chapter we describe and evaluate the On-line Replacement/Reassignment phase which enables

the replacement of information items to the replication points to take place in real-time, based on

the changing demand patterns of the users. In contrast to the traditional off-line external manage-

ment system presented in the previous chapter, here we adopt a distributed autonomic management

architecture where management intelligence is placed inside the network.

4.1 Introduction

The proliferation of services deployed over the Internet such as interactive applications, telecommu-

nication services, safety and mission critical systems and also its use for business and social interac-

tions, introduce an increasing need for better quality, dependability, resilience and protection. Current

management approaches based on off-line external management systems are inadequate to meet these

requirements. As a result, self-management intelligence has to be introduced, within the network in

order to make the latter more flexible and adaptive to changing conditions through feedback closed-

loop control solutions.

In this chapter, we propose an autonomic cache management architecture for ICN that dynami-

cally assigns information items to caches. Distributed managers make information item (re-)placement

decisions, based on the observed item request patterns, such as their popularity and locality, in order

to minimize the overall network traffic cost imposed by the user requests. We derive four distributed

on-line intra-domain cache management algorithms, categorize them according to the level of co-

operation needed and compare them in terms of performance, complexity, message overhead and

convergence time. We derive also, a lower bound of the overall network traffic cost for a certain class

of network topologies and show that the proposed cache management algorithms perform closely to

the derived lower bound.

The rest of the chapter is organized as follows. Section 4.2 presents the functionality of the man-

31

agement substrate that coordinates the caches, while in Section 4.3, we formulate the cache manage-

ment problem. In Section 4.4, we present the four distributed on-line intra-domain cache management

algorithms, while in Section 4.5 the communication and computational complexity of the proposed

algorithms is analyzed. In Section 4.6 we derive a lower bound of network traffic cost for various

regular network topologies, while in Section 4.7 we evaluate through simulations the performance of

the proposed algorithms and we compare their outcome with that of completely selfish techniques.

Finally, in Section 4.8 we conclude the chapter.

4.2 Autonomic Cache Management System Architecture

Autonomic self-management envisages systems that can manage themselves given high-level objec-

tives by administrators. Extending autonomic management from individual devices to the collective

self-management of networks of such devices results in autonomic networking. In this section, we

briefly present a cache management architecture, which given a high-level optimization objective de-

cides in real-time the placement of the items in the caches of the network so as to minimize/maximize

the given objective.

Current approaches applied to Content Distribution Networks (CDNs) follow static off-line ap-

proaches with algorithms that decide the optimal location of caches and the assignment of information

items and their replicas to those caches based on predictions of content requests by users. In contrast,

we propose the deployment of an intelligent substrate architecture that enables the assignment of

information items to caches to take place in real-time, adapting to the ever-changing user demand

patterns. Distributed Cache Managers (CMs) decide the items every cache stores by forming a sub-

strate that can be organized either in a hierarchical manner for scalability reasons or in a peer-to-peer

organizational structure. The required information such as request rates, popularity/locality of infor-

mation items and current cache configurations, is exchanged between the distributed cache managers

through the intelligent substrate functionality.

Every cache manager (Replacement Component in Figure 2.2), decides in a coordinated manner

with other managers whether to cache an item. This may require the replacement of an already

stored item (depending on the available space at the cache). The replacements are performed towards

maximizing a network-wide utility function (e.g. the gain in network traffic). Thus, every node

should calculate the gain the replacement of an item would incur. This approach assumes that every

cache manager has a holistic network-wide view of all the cache configurations and relevant request

patterns. Such information could be exchanged periodically or in an event-based manner, e.g. when

a manager changes the configuration of its cache.

In an alternative approach, managers could base their decisions on a local view of the user demand

for specific items but coordinate to maximize the overall network gain, or could even act selfishly to-

wards maximizing their own local utility. Since all the above decisions are made in a distributed

manner, uncoordinated decisions could lead to suboptimal and inconsistent configurations. Coor-

dinated decision making of a distributed cache management solution can be achieved through the

32

substrate mechanisms, by ensuring that managers change the configuration of each cache in an itera-

tive manner. In this chapter, we propose and compare several distributed on-line cache management

algorithms and evaluate their performance with respect to their autonomicity.

Such an autonomic cache management system can be deployed on top of a PURSUIT-like network

architecture following a centralized approach, as well as a distributed approach applied on a NDN-

based network. In PURSUIT the entity that decides the caching strategy of the network is the Cache

Manager (CM) and resides either in a separate management server or it could be co-located with

the Rendezvous Node (RV). The CM may either take long term cache assignment decisions based on

predictions of the item demands or may dynamically control the cache resources based on real-time

network information by monitoring the status of the network. The CM would extract the demand

patterns by monitoring the RV node, which gathers the subscriptions of every user in the network in

order to bind the publishers to the subscribers, and passes the successful bindings to the Topology

Manager (TM) to compute the paths based on its optimization objectives from the subscribers to

the publisher(s) or to one of the replication points. The TM then encodes the path in a Bloom filter

and sends it to the selected publisher to start sending the requested information item towards the

subscriber. Note also that the functionality of the CM in the PURSUIT architecture can also be

realized in a distributed manner as depicted in Figure 2.2 where CMs exist on top of the pre-decided

replication points and exchange message through the publish/subscribe model in order to coordinate

their item assignment decisions.

In NDN [13] a Cache Manager could be installed in every cache-capable node of the network.

Each CM would decide the cache allocation and replacement policy of its node and would monitor the

Pending Interest Table (PIT) to keep track of the forwarded Interests and to estimate the item demands.

Every CM can also configure the cache in the nodes with the appropriate allocation, partitioning and

replacement directives and exchanges Interest and Data packets with other CMs to inform them of a

new configuration or changes in the demand pattern.

4.3 Problem Formulation

We consider a network of arbitrary topology, represented by a graph G = (V,E). V denotes the set of

caches and E the communication links interconnecting them. We use the calligraphic letters to denote

sets and the corresponding capitals for cardinality; for example |V|=V .

We denote with M the set of the M information items available at the network and with sm the

size (in bits) of item m. The information items reside at the caches and requests for content access

are generated by the users of the network, with each user being directly connected to a cache node,

say its closest one. Cache v ∈ V has a storage capacity of Cv bits and serves requests generated with

rate rv = {r1
v , . . . ,r

M
v }, where rm

v denotes the aggregate incoming request rate (in requests per second)

at cache v for information item m. The rv vector is an estimation of the actual request pattern based

on observed, historical data (within a given time window) and this estimation is used as a forecast for

the future behavior of the clients attached at each cache. The optimal way to perform this estimation

33

is out of the scope of this work, but in an ICN implementation this information could be extracted by

the cache managers using the method described in Section 4.2. Access requests trigger the transfer

of the requested item from a cache hosting the item to the node where the request was generated. A

request by node u for an item m cached at node v has a cost equal to the product of the communication

cost dvu (e.g. in number of hops, delay, etc) of the path from v to u and the size sm of the transferred

item.

We also denote by H the set of all possible cache configurations. A configuration H ∈ H (hv ∈
{0,1}M, ∀v ∈ V) can be represented by a binary matrix of size V ×M and specifies the content of

each cache in the network. Actually, hm
v indicates whether information item m is cached at v.

hm
v =

{
1 if item m is cached at node v,

0 otherwise.

The following constraints define the set of feasible cache configurations:

V

∑
v=1

hm
v ≥ 1 ∀m ∈M (4.1)

M

∑
m=1

smhm
v ≤Cv ∀v ∈ V (4.2)

In particular, the first constraint indicates that each information item has to be stored in at least one

cache. Otherwise, the total traffic would become unbounded. The second one captures the fact that

each cache has a limited capacity that cannot be exceeded. In a centralized system the objective of the

network manager would be to find the system wide configuration H that minimizes the total network

traffic cost, T (H).

T (H) =
M

∑
m=1

∑
v∈V :
hm
v =1

∑
u∈Nm

v

rm
u dvu (4.3)

whereNm
v is the set of nodes accessing item m through its replica at cache node v, rm

u the request rate

for information item m generated at node u and dvu is the communication cost (e.g. number of hops,

delay, etc) from node v to node u.

Our objective here is to minimize the total traffic cost in the network under the constraints of Eq.

(4.1) and (4.2). However, as mentioned in the previous chapter, finding the optimal assignment of

the items in the caches, even for a static environment, can be mapped to the Generalized Assignment

Problem, which in its simplest form is equivalent to the NP-complete multiple knapsack problem.

An intelligent substrate architecture enables the assignment of information items to caches to take

place in real-time, based on the ever-changing user demand patterns. In this study, we assume that

the substrate is organized in a peer-to-peer fashion where distributed managers, one responsible for

each cache, decide the items that should be stored in each cache according to specific performance

criteria. Since there is a one-to-one mapping between cache managers and network caching nodes,

34

we use the same notation V to denote both. Communication of information related to request rates,

popularity/locality of information items and current cache configurations takes place between the

distributed cache managers through the intelligent substrate functionality.

4.4 Distributed On-Line Cache Management Algorithms

In this section we present four distributed intra-domain, gradient descent type, on-line cache manage-

ment algorithms that adapt to popularity and locality changes of the user demands. In this direction,

each cache manager may update the contents of its corresponding cache, by fetching new items and

replacing existing ones. We call this process item replacement. Nevertheless, the proposed mech-

anisms differ in the amount of information that needs to be communicated through the substrate,

the required level of coordination among the cache managers, and the performance objective. We

present them in order of decreasing complexity, regarding the induced computational/communication

overhead.

The first one, henceforth called cooperative, aims at minimizing the overall network traffic cost

and hence each cache manager needs a network-wide view of the request patterns and the current

cache configuration. In addition, since each replacement decision affects the whole network, some

cooperation in the decision making is required.

The second algorithm, henceforth called holistic also aims at minimizing the overall network

traffic cost and hence requires the same amount of information. On the other hand, the holistic

algorithm requires no coordination of the actions of the cache manager and the required decisions are

made autonomously by each manager under the assumption of infinite cost for not retrieving an item

(Eq. (4.1)). A variation of this algorithm, that we call holistic-all, is also proposed, where all the

possible beneficial replacements are performed.

Finally, in the last algorithm, henceforth called myopic, each manager needs global knowledge of

the items cached in the network, but only local knowledge of demand patterns. Besides, the myopic

algorithm assumes that each manager acts autonomously and towards minimizing the traffic related

to its own demand.

Throughout the chapter we assume that the underlying content delivery mechanism always directs

the requests to the closest cache out of those holding the requested item. Given such an access

mechanism in order to minimize the total network traffic, the cache managers have to coordinate their

actions towards finding the replication degree and the location where each item should be cached.

We also assume that each information item is of unit size (sm = s = 1, ∀m ∈M), which is a typical

assumption in the literature (e.g. [29], [28]). The proposed algorithms are also applicable in the case

of different item sizes as well. However, special care needs to be given, since several items may need

to be removed from the cache in order to fit the new item. In this case, the manager could select the

items to replace by sorting the already cached items in increasing order of traffic loss per unit of size,

similarly to the greedy approximation algorithm of [38].

35

4.4.1 Cooperative Cache Management Algorithm

In order to deal with the challenging problem of optimal item replication, we propose the following

adaptive mechanism. In particular, at each iteration all the cache managers v ∈ V execute the fol-

lowing steps in parallel given the current cache configuration H and the corresponding total traffic

cost T (H). The proposed algorithm is based on cooperative decision making. At each iteration the

cache managers cooperate through appropriate message exchange towards identifying the maximum

relative gain. Thus, since any change performed in the cache configuration decreases the overall

network traffic cost, the proposed algorithm finally converges to a stationary point where no further

improvement is possible. Note that the proposed mechanism does not necessarily converge to the

optimal cache assignment, but to a local minimum of the objective function for a given initial cache

configuration.

Step 1: Let Sv denote the set of items that are cached at node v and in at least one more cache in the

network. For each item m∈Sv compute the overall performance loss, lm
v = T (Hm

v)−T (H)≥ 0,

that will be caused if item m is removed from v, leading to a valid new configuration Hm
v . In

this case all the requests for item m at v will be served by another cache, which is at least that

far.

Step 2: Let Pv denote the set of items that are not cached at v. For each item m ∈ Pv compute the

overall performance gain gm
v = T (H)−T (Hm

v) ≥ 0 achieved if item m is inserted at cache v,

leading hence to a new configuration Hm
v . In this case a certain amount of requests for item m

will be served by node v, as the closest replica.

Step 3: Each manager v considers as candidate for insertion the item i ∈ Pv of maximum performance

gain (i.e i = argmaxgv) and as candidate for replacement the item k ∈ Sv of minimum perfor-

mance loss (i.e. k = argmin lv).

Step 4: Each manager v calculates the local maximum relative gain bv = gi− lk and informs the rest of

the cache managers through a report message Rep(b, v, i, k).

Step 5: After receiving the Rep messages, each manager calculates the network-wide most benefi-

cial replacement, say Rep∗(b∗, v∗, i∗, k∗), the one of maximum relative gain, and updates its

configuration matrix H correspondingly, setting hk∗
v∗ = 0 and hi∗

v∗ = 1. At this point only the con-

figuration matrices of the managers are updated. Once the algorithm has converged, managers

fetch and cache new information items and replace cached ones (e.g. fetch item i∗ and replace

item k∗).

Step 6: Repeat steps 1-5 until no further replacements are beneficial for the network, i.e. no positive

relative gain exists.

36

4.4.2 Holistic Cache Management Algorithm

The holistic algorithm is of similar nature and towards the same objective. Its distinguishing charac-

teristic though is that each manager operates on its own by performing replacements on the respective

cache. At each iteration a single cache manager, say v ∈ V , autonomously decides and executes the

following steps. Steps 1-3 are identical to the cooperative algorithm and are omitted:

Step 4: The replacement of maximum relative gain b = gi− lk is performed by manager v. The rest of

the cache managers are notified through the report message Rep(b, v, i, k).

Step 5: After receiving the Rep message every manager updates its configuration matrix H correspond-

ingly, setting hk
v = 0 and hi

v = 1.

The essence behind the holistic algorithm is that each node performs only valid and beneficial

replacements, i.e replacements that lead to feasible cache configurations and improve the overall

objective respectively. This process is repeated until a stationary point is reached, where no more

beneficial replacements are possible.

Although the cache updates may be applied asynchronously among the nodes, we assume that

only a single node may modify the cache configuration at a given time. This is due to the requirement

that each manager should know the current cache configuration of the network, in order to calculate

the gain and loss metrics. Thus, each modification is advertised to the rest cache managers. Re-

laxing this assumption would lead to a setting where the nodes make decisions based on outdated

information, causing thus some performance degradation and making convergence questionable.

4.4.3 Holistic-all Cache Management Algorithm

In the previously described approaches, a manager performs only the most beneficial replacement at

each iteration. However, more than one replacements may be beneficial for the system. Thus, we

propose a mechanism where each cache manager performs all the beneficial replacements. In the

holistic-all algorithm at each iteration a cache manager v ∈ V autonomously decides to update its

caching strategy. Due to constraint (Eq. (4.1)) a set of items Iv that are currently stored only at node

v cannot be replaced. Thus, the cache manager has to select, out of the set of candidate itemsM\Iv,

those ones that minimize the total traffic cost T . Since the selection of an item does not affect the

traffic reduction caused by the other items, the best K =Cv−|Iv| (where Cv the capacity of cache v)

can be derived in one shot. The holistic-all algorithm can be thought of as a sequence of Gauss-Seidel

iterations [39].

Next we provide an example that motivates the validity of the holistic-all algorithm. Consider the

example of Figure 4.1 for two different demand patterns and two different initial cache assignments.

In the left scenario the holistic algorithm at the stationary point performs 16% better regarding the

overall network traffic cost than the holistic-all algorithm even for a very small network topology

of two nodes. On the other hand, in the right part (Scenario 2) for the same network topology, but

for different demand pattern and different initial cache assignment the holistic-all algorithm performs

37

item1
item3

r2
1=2,22 req/sec

r2
2=2,71 req/sec

r2
3=6,46 req/sec

r1
1=8,13 req/sec

r1
2=2,00 req/sec

r1
3=8,23 req/sec

item1
item2

item2
item3

r2
1=3,34 req/sec

r2
2=5,95 req/sec

r2
3=2,44 req/sec

r1
1=1,01 req/sec

r1
2=8,27 req/sec

r1
3=7,99 req/sec

item1
item3

Holistic algorithm (stationary point)

item2
item3

item1
item3

item1
item3

item2
item3

Holistic-all algorithm (stationary point)

Network Traffic Cost= 34,03 resps*hops/sec

Holistic algorithm (stationary point)

item1
item2

item2
item3

item2
item3

item1
item2

Holistic-all algorithm (stationary point)

Initialization Initialization

Network Traffic Cost= 40,63 resps*hops/sec

Scenario 1

Network Traffic Cost= 40,34 resps*hops/sec

Network Traffic Cost= 32,47 resps*hops/sec

Scenario 2

Figure 4.1: A motivation example for two different network and cache configuration scenarios (left

side the holistic algorithm performs better than the holistic-all, whereas on the right side the holistic-

all algorithm performs better than the holistic algorithm).

20% better than the holistic algorithm. From this simple example is obvious that there are network

and cache configurations at which the one algorithm performs better than the other and vice versa,

something that motivates the further exploration of both algorithms.

4.4.4 Myopic Cache Management Algorithm

All the previously described algorithms require that cache managers can acquire global knowledge

regarding the demand pattern for the decision making. However, in highly dynamic environments

the amount of information that needs to be circulated among the managers becomes significant, caus-

ing thus non-negligible communication overhead. Even worse the required information may not be

available on time, making hence such an approach inapplicable.

For such scenarios we derive an alternative approach. We assume that each manager has no

information about the demand patterns at the other caches, and thus makes decisions based only on

local information. That is each node v has to select its own cache configuration hm
v for m = 1 . . .M, so

as to minimize the traffic cost for the demand it serves. Thus, its objective function now becomes:

Tv(H) =
M

∑
m=1

rm
v dumv, (4.4)

where um is the nearest cache hosting a replica of item m. Although the performance gain and loss

expressions used in Steps 1 and 2 of the holistic algorithm have to change according to Eq. (4.4), the

main steps of myopic algorithm remains the same with the holistic one. Here, each cache manager

tries to minimize the traffic cost of the local demand. Thus, given that the managers do not share a

38

common objective, there might be cases that a replacement at one cache might degrade the objective

of another cache. Due to this “competition”, i.e. the counteracting objectives of the individual caches,

the myopic algorithm generally requires more iterations and replacements to reach a stationary point.

4.5 Complexity Analysis

In this section we present the communication and computational complexity of the proposed algo-

rithms. This complexity analysis provides insight regarding the incurred computational burden for

each cache manager and the communication requirements regarding the substrate, and captures both

the initialization and the per iteration complexity. An important parameter that affects total com-

munication and computational complexity of each approach is the number of iterations required for

convergence to a stationary point. Since this is difficult to be calculated analytically we perform a

characterization through simulations in Section 4.7.

4.5.1 Communication Complexity

We assume that each cache manager is aware of the initial cache configuration of the remote caches.

Such information is available at contemporary CDNs [21] and Web caches (digest [40] or summary

[41]) and could be easily provided by the ICN implementation, through the Cache Managers.

One of the inherent characteristics of the ICN is the multicast nature of the information dissemina-

tion. When a cache manager wishes to disseminate a management message to the rest of the managers

in the network this is done through a single transmission over a spanning tree of the network topol-

ogy (a tree that connects al the nodes/CMs). Such a tree has V − 1 links, where V is the number

of nodes in the network, hence a message from a cache manager to every other manager produces a

communication overhead of V −1 messages. At the initialization phase of the cooperative, the holis-

tic and the holistic-all algorithm each cache manager needs to have a network-wide knowledge of

the demand patterns. This requires each manager to forward its local demand vector to all the other

cache managers. For this purpose a message rv (the demand vector at node v) of size M needs to

be forwarded to any other cache manager, leading thus to a total of V (V −1) management messages

for the initialization phase. As a result, the communication complexity of the initialization phase is

O(V 2M) (assuming that M different messages have to be sent; each message contains the relative

information of only one information item). On the other hand, the communication complexity of the

myopic algorithm is zero, since decisions are made based only on local demand pattern, information

that is available at manager level. Finally, if we assume that the CMs are not always aware of the

initial cache configuration of the remote caches, the communication complexity for each one of the

proposed algorithms in order to acquire this information is O(V 2C) messages, where C the storage

capacity of each node (assuming equal capacity among the caches, Cv = C, ∀v ∈ V). For the rest of

the chapter, we assume equal capacity among the caches for ease of presentation.

Regarding the amount of communication overhead induced per iteration per node, in the cooper-

ative, the holistic and the myopic algorithm each manager, in order to calculate the maximum relative

39

Table 4.1: Communication and Computational complexities of the cache management algorithms

Complexity
Algorithm Commun. for initialization Commun. per iter. per node Comput. per iter. per node

Cooperative O(V 2M) O(V) O(V M)
Holistic O(V 2M) O(V) O(V M)
Holistic-all O(V 2M) O(VC) O(V M)
Myopic 0 O(V) O(M)

gain, requires a total of O(V) messages. In particular, each manager needs to send its Rep message

of length 4 in words to every other manager in the network. Of course, in the cooperative algorithm

every manager in the network should send such a message, whereas in the holistic and the myopic

only one manager at each time send its Rep message. Thus, the total communication overhead per it-

eration (total number of management messages in the network) is O(V 2) in the cooperative algorithm

and O(V) in the holistic and the myopic algorithms. On the other hand, in the holistic-all algorithm

the Rep message that needs to be sent has length of C+2, since in the corresponding algorithm each

node updates the whole cache every time. This leads to a communication complexity per iteration per

node of O(VC) messages.

In order to use an ICN approach for the dissemination of the management messages each cache

manager should act both as a subscriber and as a publisher. Particularly, each cache manager should

subscribe to the relative management information of every other cache manager (e.g. a given scope in

the PURSUIT architecture) and should publish its own management information (e.g. under the same

scope in PURSUIT) over the network, so that it could reach the rest of the managers in the network.

In other words, the relative management information that is used by the proposed cache management

algorithms is treated as another information item by the network.

4.5.2 Computational Complexity

In order to calculate the computational complexity of each algorithm, we define the calculation of the

traffic cost for node u to access item m stored at node v (i.e. a single multiplication, rm
u dvu) as a basic

operation. Thus, the complexity of each algorithm is calculated as the number of basic operations

required.

The cooperative algorithm requires each manager at each iteration to perform V ·M basic opera-

tions for the calculation of the g and the l vectors. In order to get the g∗ and the l∗ one max and one

min operations are executed by each manager. The max operation has a computational complexity

of O(M−C), where C the storage capacity of each node. Similarly, the min operation has a compu-

tational complexity of O(C). So the computational complexity of the cooperative algorithm for each

iteration per node is O(V M). The holistic algorithm is of the same computational complexity per

node. However, here only a single manager computes the relative gain within an iteration and not all

40

of them.

The holistic-all algorithm also requires V ·M basic operations per manager for the calculation of

the gain of each item. In order to get the K items it requires on average C max operations, where C

is the storage capacity of each node. Deriving the C max values out of M items can be performed in

O(M), using partial sorting algorithms. So the computational complexity per iteration per node of the

holistic-all algorithm is also O(V M).

The myopic algorithm requires for the calculation of the g and the l vectors only M constant time

operations per node, since only the local demand pattern is known to each manager. So the com-

putational complexity of the myopic algorithm for each iteration is O(M). Table 4.1 summarizes the

communication and computational complexity of the proposed distributed on-line cache management

algorithms.

From the above analysis we observe that the complexity of the proposed algorithms, and as a con-

sequence their future applicability, depends on the number of information items M and the number of

the nodes V in the network. In this work we assume that the proposed cache management scheme is

deployed not at full Internet scale but in a domain scale (like all the current ICN implementations),

where the number of items and nodes are significantly smaller and hence our algorithms are appli-

cable. Moreover, the communication and computational complexity could be further reduced using

the appropriate aggregation schemes regarding the naming of items, i.e. scopes in PURSUIT and

hierarchical names in NDN.

4.6 Network Traffic Lower Bound

As we mentioned earlier, finding the optimal cache assignment is an NP-hard problem. In this section,

we focus on the special case of regular network topologies, where all the nodes have the same number

of neighbors. The special structure of these networks enables us to derive a lower bound of the overall

network traffic cost. Typical examples of such network graphs are the distance-regular graphs and

the n-dimensional torus graphs.

Here, we consider the case where the communication cost between any two nodes is captured by

their hop distance and consequently the total cost is expressed in responses ·hops/sec. In our setting,

in order to maintain the topological equivalency, the demand (request rate) generated from each node

v of the network for item m should be the same for all network nodes, i.e. (rm
v = rm, ∀v ∈ V).

Since all nodes are topologically equivalent, the cache assignment problem reduces to finding the

optimal replication degree f m = ∑V
v=1 hm

v of each item m. For a given replication degree, the best

replica assignment is to place the replicas of the same item at equal distance from each other. The

exact position of the replicas on the graph does not affect optimality. Thus, such topologies can be

“divided” in f m equal partitions. Each one hosts a replica of item m and serves the same number of

neighboring nodes. The above characteristic allows us to characterize the performance limits of those

topologies.

For equal demand rates (rm
v = rm, ∀v ∈ V), the traffic generated for accessing item m through its

41

replica cached in node v (T m
v), is given by:

T m
v = rm ∑

y∈Nm
v

dyv (4.5)

Let �(x) be the function that calculates the sum of the distances of the x nearest neighbors of a

cache, according to a Breadth-First Search (BFS). Note that for regular network topologies, the same

function holds for every node. The distance from a cache is at least equal to this quantity, i.e.

∑
y∈Nm

v

dyv ≥ �(|Nm
v |) (4.6)

since the sum of the distances of the nodes (|Nm
v |) accessing item m through its replica at node v

cannot be smaller than the sum of the distances of the same number (|Nm
v |) of the closest neighbors

of v.

Consequently, for any cache configuration H ∈ H, using Eq. (4.5) and (4.6) we derive for the

overall network traffic cost:

T (H) =
M

∑
m=1

∑
v∈V :
hm
v =1

T m
v ≥

M

∑
m=1

rm ∑
v∈V :
hm
v =1

�(|Nm
v |) (4.7)

For the considered network graphs holds:

∑
v∈V :
hm
v =1

�(|Nm
v |)≥ f m min

v∈V :
hm
v =1

�(|Nm
v |) = f m�

(
V
f m

)
, (4.8)

since f m equal partitions of V/ f m nodes are created; the inequality holds due to the convexity of the

�(x) function. Function �(x) is convex since the difference �(x)− �(x−1) is non decreasing. �(x) is

derived by �(x−1) by the addition of the length of the path from the x-th node to the root (root is the

BFS starting point i.e. the cache node under consideration), which is at least equal to the length of the

paths of the rest x−1 nodes to the root. Hence, node x is at greater or equal distance from the root.

By replacing Eq. (4.8) into Eq. (4.7), we derive:

T (H)≥
M

∑
m=1

rm f m�

(
V
f m

)
(4.9)

In this setting the optimal replication degree can be derived in polynomial time, as the solution to

the following convex optimization problem:

B = min
f 1,..., f m

(
M

∑
m=1

rm f m�

(
V
f m

))
(4.10)

s.t.
M

∑
m=1

f m =V ·C (4.11)

42

From Eq. (4.5)-(4.11) we derive the following theorem:

Theorem 4.6.1. For network topologies that can be represented as regular graphs and all caches are

characterized by equal storage capacity (Cv =C, ∀v ∈ V), the solution to Eq. (4.10) is a lower bound

of the overall network traffic cost, i.e.

T (H)≥ B, ∀H ∈H

The following paragraphs are devoted to the calculation of the function �(·) for the distance-

regular graphs and the n-dimensional torus graphs.

4.6.1 Distance-regular Network Topology

A distance-regular graph is a graph that has no loops or multiple edges, and each vertex has the same

number of neighbors. Ek(x) ⊆ E denote the set of vertices v with dxv = k. For each distance-regular

graph there exist integers bi, ci, i = 0, ...,ξ such that for any two vertices x,y ∈ E of distance i = dxy,

there are exactly ci neighbors of y in Ei−1(x) and bi neighbors of y in Ei+1(x) [42]. A distance-regular

graph is characterized by its intersection array:

I =
{

b0,b1, . . . ,bξ−1;c1, . . . ,cξ
}

The number of neighbors within a distance of i hops in a distance-regular graph is given by the

following recursive formula:

h(i) = h(i−1)(bi−1/ci) , 1≤ i≤ ξ , (4.12)

Note that h(0) = 1 since each node is a neighbor of itself within zero hops.

From the intersection array of a distance-regular graph and using Eq. (4.12) we derive:

�(j) = L(i)− (f (i)− j)(i+1) (4.13)

where f (i) is the sum of nodes to a given distance i away from a replica, and L(i) is the sum of the

distances of those nodes from the same replica and are given respectively by:

f (i) =
i

∑
p=0

h(p)

L(i) =
i

∑
p=0

(h(p)(p+1)) .

(4.14)

Note that the +1 term corresponds to the additional hop to the client.

In order to get i we solve the following inequalities:

f (i−1)< j ≤ f (i) (4.15)

43

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

Figure 4.2: A 2-dimensional torus with 18 nodes.

which translates into
i−1

∑
p=0

h(p)< j ≤
i

∑
p=0

h(p) (4.16)

When j = 1 (i = 0) each node has a replica of the given item.

A well known distance-regular topology is the Ring topology. A Ring of length V is a distance

regular graph of diameter �V/2�. The intersection array of a Ring is I = {2,1,1, . . . ,1,1;1,1,1 . . . ,2}.
In Ring topologies, where nodes are topologically equivalent, the replicas should be assigned on aver-

age every �V/ f m� nodes. Distance-regular graphs along with their intersection arrays, are presented

in [43].

4.6.2 The n-dimensional Torus Network Topology

An n-dimensional torus is an extended torus grid, composed by n different toruses where each node

of every separate torus is connected with one node from the other n− 1 toruses. Thus, the degree

of each node is 4+(n− 1) (4 the neighbors inside the separate torus and n− 1 the neighbors of the

rest individual toruses), and hence all nodes are topologically equivalent. While in distance regular

topologies, the intersection array enables us to calculate the �(j), no such array exists for the n-

dimensional torus. Here, each node has:

h(i) =

{
4+n−1, i = 1

4i+4(n−1)(i−1), i > 1
(4.17)

44

neighbors within a distance of i hops (h(0) = 1, denotes that each node is a neighbor of itself). For

the calculation of �(j) we execute the following algorithm:

Require: j: number of nodes accessing the specific replica of the specific item.

Require: n: dimension of the torus (number of different toruses)

Require: V : number of nodes in the network topology

�(j)← 1

rm← j−1

i← 1 {i: number of hops away from the specific replication point}
in← 1 {in: number of nodes counted from the torus where the replication point belongs to}
while rm > 0 do

if i = 1 then
inc← min(4,V/n− in)

v←min((inc+(n−1)), m)

in← in+ inc

else
inc←min

(
4i, V

n − in
)

v←min((inc+4(i−1)(n−1)), m)

in← in+ inc

end if
�(j)← �(j)+(i+1) · v {+1 the extra hop towards the clients}
i← i+1

rm← rm− v

end while

Since, no analytic expression for �(j) exists for an n-dimensinal torus, special care has to be given

when counting the number of nodes within the same torus (i.e. the torus where the replica is located).

For example, we depict in Figure 4.2 a 2-dimensional torus of 18 nodes. Assuming that j = 18 (only

one replica for the given item placed at node 5) the above algorithms gives 5 nodes in 1 hop away

(red), 8 nodes in 2 hops away (yellow), 4 nodes in 3 hops away (green), while using equations similar

to Eq. 4.13-4.14 we would have got 5 nodes in 1 hop away, 12 nodes in 2 hops away, 1 node in 3 hops

away, which is not true, since the second alternative counts wrongly the nodes within the same torus

of the replica point (node 5).

Using an algorithm like the one presented above for those topologies such that no intersection

array exists and the analysis of Section 4.6, one could derive a lower bound of the total network

traffic cost for any graph consisting of topologically equivalent nodes. Note that the derivation of a

lower bound for general topologies may require a completely different methodology and hence it will

be considered as future work.

45

4.7 Performance Evaluation

In this section, we evaluate through simulations the performance of the proposed cache management

algorithms. We consider a scenario of M = |M| = 1000 different items, where the request rate for

each item at each node is determined by its popularity. Here we approximate the popularity of the

items by a Zipf law of exponents zpop. Literature provides ample evidence that the file popularity

in the Internet follows such a distribution [44]-[47]. We denote by ϑ v = {ϑ m
v : m ∈M,v ∈ V} the

popularity of each item m at node v.

In particular, we consider seven typical values for zpop (popularity exponents of the Zipf distribu-

tion) ranging from −1 to 1, i.e. zpop ∈ Z = {−1,−0.7,−0.5,0,0.5,0.7,1}). A Zipf distribution of

negative exponent (e.g. zpop =−1) means that out of the M items the most popular item is the M-th,

the second most popular is the (M−1)-th and so on, with the first item being the least popular. On the

other hand a Zipf distribution of positive exponent (e.g. zpop = 1) means that the first item is the most

popular and the M-th is the least popular. A zero value of zpop = 0 corresponds to equally popular

items. We assume that in each node a total of 200 requests per second is generated. Thus, the request

rate of each item at each node varies from 0 - 200 req/sec according to its popularity.

Generally, the popularity of each item may differ from place to place, a phenomenon that is

referred to as locality of interest. In our experiments, the workload is tuned from a localized subscrip-

tion model, i.e. similar subscriptions originating from the same region, up to a uniform model. In

fact, the locality of similar subscriptions has a significant impact on performance (e.g the efficiency

of multicast schemes [48]). Thus, we assume that the network is partitioned in |Z| neighborhoods.

Within each neighborhood the popularity of each item m is constant. We assume that the size of

each neighborhood follows a Zipf distribution of exponent zloc, i.e. λk : k = 1, . . . , |Z| is the size of

partition k, where the popularity of items is given by the corresponding popularity exponent zpop.

The impact of locality patterns on the communication-efficiency of several clustering algorithms for

content-based routing has also been examined in [49].

In particular, the first partition k = 1 consists of �λ1 ·V� nodes, where the popularity of each item

follows a Zipf law of popularity exponent −1. This set of nodes is computed by choosing randomly

a central node and its �λϑ ·V�−1 closest neighbors, by executing a Breadth First Search (as long as

a node has not been already assigned to another neighborhood). Note that zloc = 0 means that the

items are of uniform locality and hence the |Z| neighborhoods are of equal size (V
|Z| nodes each).

The assumption that locality follows a Zipf distribution is inline with existing literature (e.g. [49]

and [48]). However, we show later (Figure 4.7) that the findings of this work are independent of the

locality distribution.

The numerical evaluation part consists of two sets of experiments. Initially, we assume uniform

locality and popularity (i.e. zpop = zloc = 0) for all the information items. Next, we consider scenar-

ios that arise from the synthetic workload generator presented above. In the first set of experiments,

we use regular topologies (ring and n-torus) in order to compare the performance of the proposed

algorithms to the derived performance bounds. The second set is devoted to the generic case of Inter-

net Topologies from the Zoo dataset [50] and different locality and popularity for each information

46

50 100 150 200 250
0

25k

50k

75k

100k

125k

150k

 holistic
 holistic-all
 cooperative
 myopic
 bound

Ring, C/M=0.2

N

et
w

or
k

Tr
af

fic
 (r

es
ps

*h
op

s/
se

c)

V
50 100 150 200 250

30

35

40

45

50

55

60

65

70
 holistic
 holistic-all
 cooperative
 myopic

Ring, C/M=0.2

%
 C

ac
he

 R
ep

la
ce

m
en

t/n
od

e

V

50 100 150 200 250
6

8

10

200

400

600

800

 holistic
 holistic-all
 cooperative
 myopic

Ring, C/M=0.2

Ite
ra

tio
ns

/n
od

e

V

50 100 150 200 250
0

25k

50k

75k

100k

125k
2 4 6 8 10

 holistic
 holistic-all
 cooperative
 myopic
 bound

n-Torus, C/M=0.2

N
et

w
or

k
Tr

af
fic

 (r
es

ps
*h

op
s/

se
c)

V
50 100 150 200 250

40

45

50

55

60

65

70

75

80
2 4 6 8 10

 holistic
 holistic-all
 cooperative
 myopic

n-Torus, C/M=0.2

%
 C

ac
he

 R
ep

la
ce

m
en

t/n
od

e

V

50 100 150 200 250
4

6

8

10

300

600

900

1200
2 4 6 8 10

 holistic
 holistic-all
 cooperative
 myopic

n-Torus, C/M=0.2

Ite
ra

tio
ns

/n
od

e

V

Figure 4.3: The performance of the proposed cache management algorithms vs. the number of nodes/-

caches V in the network for two different regular network topologies. The secondary x-axis in the

n-Torus plots is the number of different toruses n of the used topology.

item. Indicatively, ring topologies appear in the Zoo dataset, e.g. Hibernia Atlantic (UK), SpiraLight

(USA), TelecomSerbia (SRB), Sanren (RSA), etc. Also, regular topologies has also been used exten-

sively in literature, e.g. [51]. In general, we assume that each node of the network hosts a cache and

47

a set of clients is attached to each node and requests items from the network.

Our figures depict for each cache management algorithm the following performance metrics:

• The overall network traffic cost, NT (in resps ·hops/sec) at the stationary point.

• The replacements, as a percentage of the cache capacity, RE that have to be performed once

the cache management algorithms have converged, i.e. how many items have to be replaced in

the cache compared to the initial cache assignment. This is indicative of the communication

overhead imposed for fetching the items at the caches.

• The number of iterations per node, IT required for convergence, which is indicative of the

running time of each algorithm. IT multiplied by the communication complexity derived at

Section 4.5.1 provides the communication cost of each algorithm per iteration, while multiplied

by the computational complexity calculated in Section 4.5.2 reveals the computational cost of

each algorithm per iteration.

Since the actual performance of the proposed algorithms depends on the initial cache assignment,

the depicted values are averages out of fifty executions, where we start from a random initial cache

assignment at each instance.

4.7.1 Performance Evaluation and Bounds for Scenarios of Uniform Demand Pat-
terns and Regular Topologies

Uniform locality and popularity implies that the aggregate request rate generated at each node v of the

network for item m is rm
v and is the same for each node in the network (rm

v = rm, ∀v∈ V). Figures 4.3 -

4.4 depict the performance of the proposed cache management algorithms for rings and n-dimensional

torus network topologies.

Figures 4.3 - 4.4 indicates that the three algorithms that use network-wide information regarding

the demand patterns of the users are near optimal in terms of Network Traffic, since the corresponding

difference from the lower bound varies between 0.5% and 3.6% regardless of the topology, the size

of the network and the storing capacity of each cache. Note that part of this performance gap is due

to the continuous relaxation that we use to calculate lower bound B in Eq. (4.10), leading to fractional

values in f m, while in reality only integer values are valid. The three algorithms are on average 3%-

15% (depending on the conducted experiment) better than the myopic algorithm. Obviously, as we

relax the storage capacity constraint and allow more items to fit in each cache the algorithms present

almost identical performance. Moreover, the overall Network Traffic cost increases linearly with the

number of nodes in the network V , along with the increase of generated traffic in the network. This

implies that the proposed algorithms are not affected by the size of the network.

Regarding complexity, starting from the initial cache assignment the cooperative algorithm re-

quires significantly less replacements to be made, in order to reach the selected cache assignment,

than the two holistic approaches as shown by the RE metric. On the other hand in the two holistic

approaches each node needs to perform 95% less iterations, as shown by the IT metric. This is the

48

0,0 0,2 0,4 0,6 0,8

25k

50k

75k

100k

125k

150k

 holistic
 holistic-all
 cooperative
 myopic
 bound

Ring, V=100

N

et
w

or
k

Tr
af

fic
 (r

es
ps

*h
op

s/
se

c)

C/M
0,0 0,2 0,4 0,6 0,8

10

20

30

40

50

60

70

80

 holistic
 holistic-all
 cooperative
 myopic

Ring, V=100

%
 C

ac
he

 R
ep

la
ce

m
en

t/n
od

e

C/M

0,0 0,2 0,4 0,6 0,8
3

6

9

12

200

400

600

800

 holistic
 holistic-all
 cooperative
 myopic

Ring, V=100

Ite
ra

tio
ns

/n
od

e

C/M

0,0 0,2 0,4 0,6 0,8
20k

30k

40k

50k

60k

70k

 holistic
 holistic-all
 cooperative
 myopic
 bound

4-Torus, V=100

N
et

w
or

k
Tr

af
fic

 (r
es

ps
*h

op
s/

se
c)

C/M
0,0 0,2 0,4 0,6 0,8

10

20

30

40

50

60

70

80

 holistic
 holistic-all
 cooperative
 myopic

4-Torus, V=100

%
 C

ac
he

 R
ep

la
ce

m
en

t/n
od

e

C/M

0,0 0,2 0,4 0,6 0,8
0
3
6
9

12
15

200
400
600
800

1000

 holistic
 holistic-all
 cooperative
 myopic

4-Torus, V=100

Ite
ra

tio
ns

/n
od

e

C/M

Figure 4.4: The performance of the proposed cache management algorithms vs. the fraction (p =
C/M) of the items that can be stored in a cache for two different regular network topologies.

cost of coordination, since in the cooperative algorithm at each time all the caches compute a cache

update, although in the end only one of them is performed. This also explains the linear behavior of

the IT metric of the cooperative algorithm as we increase the number of nodes in the network. On the

49

0 50 100 150 200

25k

50k

75k

100k

125k

150k

175k

200k

 holistic
 holistic-all
 cooperative
 myopic
 local

C/M=0.2

N
et

w
or

k
Tr

af
fic

 (r
es

ps
*h

op
s/

se
c)

V
0 50 100 150 200

40

45

50

55

60

65

70

 holistic
 holistic-all
 cooperative
 myopic

C/M=0.2

%
 C

ac
he

 R
ep

la
ce

m
en

t/n
od

e

V

0 50 100 150 200

4

8

12

200

400

600

800

 holistic
 holistic-all
 cooperative
 myopic

C/M=0.2

Ite
ra

tio
ns

/n
od

e

V

Figure 4.5: The performance of the proposed cache management algorithms vs. the number of nodes/-

caches V in the network for various network topologies from the Internet Zoo dataset.

contrary, we observe that the increase of the nodes in the network does not affect the performance of

the RE and the IT metric of the two holistic approaches and the myopic algorithm, implying the scal-

ability of uncoordinated decision making, regarding the size of the network. Finally, we observe that

the two holistic approaches require 15%− 20% less iterations per node than the myopic algorithm

and this arises from the fact that in the holistic algorithms all the actions are implicitly coordinated

through the common objective, while the myopic algorithm suffers from the counteracting objectives

of the individuals.

4.7.2 Performance Evaluation for Internet Zoo Topologies and Realistic Synthetic
Workloads

The Internet Topology Zoo dataset contains real network topologies from all over the world. Since

for a given network size more than one topologies may exist in the dataset, we used all of them for

averaging purposes. For comparison purposes, we consider also the local selfish approach of [28],

in which each manager has no information regarding the remote request patterns and the assignment

of the other caches, and thus makes decisions based only on local information. Actually, in such an

approach, each cache stores the C locally most popular items. This local selfish algorithm emulates a

local LFU replacement scheme, where each cache stores locally the most popular items regardless of

the caching decisions of the neighboring caches.

50

0,0 0,2 0,4 0,6 0,8

25k

50k

75k

100k

125k

150k

 holistic
 holistic-all
 cooperative
 myopic
 local

V=110

N

et
w

or
k

Tr
af

fic
 (r

es
ps

*h
op

s/
se

c)

C/M
0,0 0,2 0,4 0,6 0,8

20

40

60

80

100

 holistic
 holistic-all
 cooperative
 myopic

V=110

%
 C

ac
he

 R
ep

la
ce

m
en

t/n
od

e

C/M

0,0 0,2 0,4 0,6 0,8

4
8

12
16

200
400
600
800

1000

 holistic
 holistic-all
 cooperative
 myopic

V=110

Ite
ra

tio
ns

/n
od

e

C/M

Figure 4.6: The performance of the proposed cache management algorithms vs. the fraction (p =
C/M) of the items that can be stored in a cache. We used the Interoute network topology from the

Internet Zoo dataset.

In this setting, we depict in Figure 4.5 the impact of the number of cache locations V in the

network. We notice that the Network Traffic cost metric exhibits linear behavior of slope V similarly

to the experiment with the uniform popularity and locality. In addition, the network wide approaches

outperform significantly the local one, while they perform 10% better than the myopic algorithm. The

cooperative algorithm requires up to 80 times more iterations per node than the other three algorithms

but on the other hand requires 5%− 20% less replacements at the stationary point. Finally, the two

holistic algorithms and the myopic are scalable regarding the size of the network since the IT metric

is not affected by the number of the nodes in the network.

In Figure 4.6 we depict the impact of the cache capacity on the performance of the proposed

algorithms. Regarding the NT metric we notice similar behavior with the uniform case, with our

network-wide approaches performing better than the local and the myopic algorithm, but as expected

with the benefit diminishing as we relax the storage capacity constraint and allowing more items to fit

in each cache. However, the complexity related metrics exhibit different behavior. In particular, the

RE metric decreases almost linearly as the capacity of the caches increase, since the availability of

more cache slots enables more items to be stored and hence less replacements are required to reach

the selected assignment. Interestingly, the IT performance of the holistic-all algorithm is not affected

at all by the increase of the cache capacity, while a small increase is observed for the myopic and

the holistic one. In contrast the cooperative approach is characterized by an increasing number of

51

-0,8 -0,4 0,0 0,4 0,8
40k

45k

50k
100k

120k

140k holistic
 holistic-all
 cooperative
 myopic
 local

V=110, C/M=0.2

N
et

w
or

k
Tr

af
fic

 (r
es

ps
*h

op
s/

se
c)

z
loc

-0,8 -0,4 0,0 0,4 0,8
40

45

50

55

60

65

70

 holistic
 holistic-all
 cooperative
 myopic

V=110, C/M=0.2

%
 C

ac
he

 R
ep

la
ce

m
en

t/n
od

e

z
loc

-0,8 -0,4 0,0 0,4 0,8

6

9

12

440

460

480
 holistic
 holistic-all
 cooperative
 myopic

V=110, C/M=0.2

Ite
ra

tio
ns

/n
od

e

z
loc

Figure 4.7: The performance of the proposed cache management algorithms vs. the locality exponent

zloc. We used the Interoute network topology from the Internet Zoo dataset.

iterations up to p =C/M = 0.5 and exhibits a slight decreasing behavior afterwards.

In Figure 4.7 we examine the impact of locality variations on performance. We notice that changes

of the locality exponent cause a domino effect requiring significant reorganization of the cache con-

tents, since they alter the topology of the demands of the network under consideration. Of course at

the stationary point of operation the algorithms perform identical regarding the traffic regardless of

the value of the locality exponents, implying that the sizes of the neighborhoods, where the popu-

larities are assigned, has limited impact on the performance of the proposed algorithms. The minor

variations that are observed among different experiments are due to the random selection of the nodes

that constitute each neighborhood.

In Figure 4.8 we investigate the adaptability of our algorithms as the popularity of the demand

patterns change. Using as initial cache assignment the outcome of an off-line centralized greedy

algorithm for given locality and popularity values, we depict the performance of each algorithm

as it adapts to the new environmental parameters. The greedy algorithm, reported in [52], is an

iterative but off-line centralized algorithm which requires V ·M iterations per node. It gives so-

lutions of high quality, since its median performance is within a factor of 1.1 - 1.5 of the opti-

mal and around a factor of 4 for the maximum cases. Particularly, we initially assume that the

popularities assigned to the nodes of the network, using a given locality, are given by the vector

Z = (−1,−0.7,−0.5,0,0.5,0.7,1) and at each different experiment (different points in Figure 4.8)

this vector changes by a given factor. This factor ranges from 10% to 200%. A change of 10% means

52

0 25 50 75 100 125 150 175 200
43k

45k

48k

50k

100k

150k

200k

250k
 holistic holistic-all
 cooperative myopic
 local init_assign

V=110, C/M=0.2

N

et
w

or
k

Tr
af

fic
 (r

es
ps

*h
op

s/
se

c)

% dif z
pop

0 25 50 75 100 125 150 175 200
10

20

30

40

50

60

70

 holistic
 holistic-all
 cooperative
 myopic

V=110, C/M=0.2

%
 C

ac
he

m
 R

ep
la

ce
m

en
t/n

od
e

% dif z
pop

0 25 50 75 100 125 150 175 200

4

8

12

100

200

300

400

 holistic
 holistic-all
 cooperative
 myopic

V=110, C/M=0.2

Ite
ra

tio
ns

/n
od

e

% dif z
pop

Figure 4.8: The performance of the proposed cache management algorithms vs. the popularity expo-

nent zpop. We used the Interoute network topology from the Internet Zoo dataset.

that the new vector of popularities is Z = (−0.9,−0.63,−0.45,0,0.45,0.63,0.9), whereas a change

of 100% transforms the vector of popularities to Z = (0,0,0,0,0,0,0) and a change of 200% inverts

the vector Z = (1,0.7,0.5,0,−0.5,−0.7,−1). We also depict the performance of the initial cache

assignment init assign resulting from the greedy algorithm with the new demand pattern.

In Figure 4.8 we observe that as the item popularities become more uniform (near zero exponent)

less replacements are required since all the assignments are of almost equal performance. This is

also evident from the network traffic plot, where the performance gap of the proposed approaches

diminishes. An interesting finding comes from the comparison of the proposed cache management

algorithms with the performance of the initial cache assignment. We observe that when the changing

factor of the initial popularities is smaller that 100% the algorithms with the network-wide knowledge

performs only 1%−3% better than the initial assignment and only when the changing factor is larger

than 100% and the popularity vector reverts its sign we observe a difference is the performance up to

15% regarding the network traffic cost metric. This means that as long as the ranking of the items,

regarding their popularity, does not change and despite the fact that items’ popularity becomes more

uniform, the initial cache assignment of the off-line greedy algorithm is still good enough and even

better than the myopic or the local algorithm.

Note that Figures 4.7 and 4.8 may also serve as a benchmark for the cache managers in their

decision to reassign or not the cached items upon the detection of a change in the popularity or the

locality pattern. Particularly, the difference between the network traffic cost of the initial cache as-

53

-1,2 -0,8 -0,4 0,0 0,4 0,8 1,2
0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

 rnd initial assign-holistic
 rnd order of exec-holistic
 rnd initial assign-myopic
 rnd order of exec-myopic

Ring, V=100, C/M=0.2

%
 o

f t
he

 to
ta

l e
xp

er
im

en
ts

% deviation from average NT
-1,0 -0,5 0,0 0,5 1,0

0

1

2

3

4

5

6

 rnd initial assign-holistic
 rnd order of exec-holistic
 rnd initial assign-myopic
 rnd order of exec-myopic

4-Torus, V=100, C/M=0.2

%
 o

f t
he

 to
ta

l e
xp

er
im

en
ts

% deviation from average NT

-0,8 -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6 0,8
0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

 rnd initial assign-holistic
 rnd order of exec-holistic
 rnd initial assign-myopic
 rnd order of exec-myopic

Interoute network, V=110, C/M=0.2

%
 o

f t
he

 to
ta

l e
xp

er
im

en
ts

% deviation from average NT

Figure 4.9: Empirical probability density function (pdf) of %-deviation from the average value for the

holistic and the myopic approach. The pdfs were generated from 200 different random initial cache

assignments and 200 experiments with different random order of execution.

signment and the traffic cost after the completion of the algorithms combined with the communication

and computational complexity enables the cache managers to perform or skip the cache reassignment.

For example when the observed popularities change up to 75% we observe only a 1%−3% decrease

on the performance, whereas when the observed popularities revert the decrease in the performance is

in the area of 15%, meaning that in the first case the managers could skip the reassignment, whereas

in the second case such a reassignment is crucial at almost the same cost with the first case, as shown

by the RE and the IT metrics.

Although the performance of the proposed cache management algorithms depends on the initial

cache assignment, our extensive simulations indicate that the stationary points are of similar perfor-

mance. Indicatively, we depict in Figure 4.9 (solid line) the empirical probability density function

(pdf) of the %-deviation from the average value for the case of the holistic and the myopic algorithms

at the stationary point for a ring, a 4-dimension torus and a topology from the Internet Zoo Topology

dataset out of 200 random initial cache assignments. We observe a deviation of up to 0.4% (1.2% in

the case of the myopic algorithm) from the average value regardless of the topology. Similar behavior

regarding the initial cache assignment has been observed for the rest of the proposed algorithms.

In order to examine the sensitivity of the proposed algorithms to the order according to which

the nodes execute the algorithm at each iteration, we also depict in Figure 4.9 (dotted line) the per-

formance (empirical pdf of the %-deviation from the average value) of the holistic and the myopic

54

1 2 3 4 5 6 7 8 9 10 15 20 25
0
5

10
15
20
25
30
35
40
45

 random initial assignment
 final holistic assignment

Ring, V=100, C/M=0.2

%

 o
f t

he
 to

ta
l r

eq
ue

st
s

distance (hops) of the closest replica
1 2 3 4

0

10

20

30

40

50

60

70

 random initial assignment
 final holistic assignment

4-Torus, V=100, C/M=0.2

%
 o

f t
he

 to
ta

l r
eq

ue
st

s

distance (hops) of the closest replica

1 2 3 4 5 6 7 8 9 10 11
0
5

10
15
20
25
30
35
40
45
50

 random initial assignment
 final holistic assignment

Interoute network, V=110, C/M=0.2

%
 o

f t
he

 to
ta

l r
eq

ue
st

s

distance (hops) of closest replica

Figure 4.10: The performance of the holistic cache management algorithm (% of the total requests

found the requested replica at a given distance), for two regular network topologies and a topology

from the Internet Zoo dataset.

algorithms at the stationary point out of 200 different random node order execution experiments, as-

suming the same initial cache assignment. We observe that the performance of the holistic algorithm

deviates only up to 0.3% (1.1% in the case of the myopic algorithm) from the average value regard-

less of the topology. Interestingly, we observed that the order of execution affects the convergence

rate though. In particular, the larger the distance of nodes that execute the algorithm sequentially, the

faster the convergence, since a change in a cache affects significantly its neighbors.

In Figure 4.10, we depict the distance (hops) that requests travel in the network until the requested

item is found at a cache. The depicted value is the average percentage of requests (out of 200 random

initial cache assignments) for a ring, a 4-dimension torus and a topology from the Internet Zoo Topol-

ogy dataset for the case of the holistic algorithm. We observe that the items are found closer to the

requesting node. Particularly, more than 90% of the items are found in less than three hops, whereas

before the execution of the algorithm requests should travel at least 50% further. The effectiveness

of the algorithm is more impressive in the case of the Ring topology where initially requests should

travel up to twenty six hops in order to find the item, whereas the solution of our approach guarantees

that 85% of the requests travel no more than three hops and no request travels more than six hops.

Finally, the proposed algorithms are also suitable for the population of new items in the network

as well as the replacement of obsolete ones, since new or obsolete items are captured by the evolving

popularity (new items will be populated in the caches and old ones will be finally replaced).

55

4.8 Chapter Conclusions

In this chapter, we proposed an autonomic cache management architecture that dynamically reassigns

information items to the caches of an ICN approach. The reassignment decisions are based on real-

time information, such as the observed popularity and locality of requests, and not on static off-

line predictions. Particularly, we proposed four distributed on-line cache management algorithms

requiring different levels of cooperation among the autonomic managers and we compare them in

terms of their performance, complexity, message overhead and convergence time. We provided also

a method to calculate a lower bound of overall network traffic cost, for distance-regular network

topologies. Our numerical results provide evidence that network wide knowledge and cooperation

give significant performance benefits and reduce the time to convergence at the cost of additional

message exchanges and computational effort.

In particular, the cooperative algorithm provides the best performance regarding overall network

traffic, but requires a high level of cooperation among the managers and hence is of very high com-

putational and communication complexity. On the other hand, the two holistic algorithms perform

close to the cooperative, but converge in a fraction of the iterations required by the cooperative. In

more details, our new holistic-all approach requires significantly less iterations to converge, at a minor

performance loss (< 1%) and with slightly more communication overhead than the holistic. Thus,

holistic-all fits ideally to highly dynamic environments, where changes in the request rate pattern are

very frequent. Finally, the myopic algorithm requires the least cooperation and hence is appropriate

for larger network setups, but its performance is significantly worse that the rest. Thus, the analysis of

this chapter may serve as a valuable tool for the network manager so as to select the most appropriate

algorithm for his needs, depending on specific network parameters (e.g. network size, number of

information items, volatility of the request pattern).

56

Chapter 5

Opportunistic Caching

In an peer-to-peer deployment of an CBPS system, where servers do not exist, information deliv-

ery is guaranteed for all active users/subscribers at publish time. However, in a dynamic scenario

where users join and leave the network, a user may be interested in information published before the

subscription time. In this chapter, we describe and evaluate through simulations and PlanetLab exper-

imentation our design and implementation of an opportunistic caching mechanism. We also propose

a stochastic model that captures the dynamics of the proposed mechanism. Each node of the network

has a limited cache and we enhance the CBPS architecture with a request/response scheme so that

subscribers can retrieve already published information items. Additionally, we present two duplicate

preventing mechanisms to deal with the possible production of multiple identical responses. The

proposed caching mechanism is compared with traditional opportunistic caching mechanisms with

regards to network overhead, delay and mainly information’s life-time in the network.

5.1 Introduction

Opportunistic caching on the Web is a thoroughly investigated issue. Particularly in the context of

Web caching, NLANR designed the Internet Cache Protocol (ICP) [53] and the HTCP [54] proto-

col, to support discovery, retrieval and management of documents from neighboring caches as well as

parent caches, while in [55] authors discuss and compare the performance of different caching mecha-

nisms, and derive analytical models to study important performance parameters of Web caching, such

as clients perceived latency, bandwidth usage, etc. In the area of Delay Tolerant Networks (DTN) in

[56] authors studies the performance of caching by the nodes. Generally DTN can provide ad-hoc

communication services within (sparse) mobile user communities when end-to-end IP communica-

tion is not available. This implies that the nodes cache the data for some time, as DTN operates as

a store-carry-and-forward network. The data that is being carried can also be used to serve requests

from other nodes before its lifetime has expired.

Recent work on packet caches in routers [57] explores the benefits of deploying packet-level re-

dundant content elimination as a universal primitive on all Internet routers. Moreover, CacheCast [58]

is a mechanism to cache data in normal data streams by allowing senders to identify the packet con-

57

tent by a payload ID. Additionally, in [59] authors present CONIC, a network architecture designed

for efficient data dissemination using storage and bandwidth resources in end systems. CONIC ex-

ploits available storage located in end hosts and uses it as caches. Cached content is then advertised

to Content Routers (CR) which maintain a distributed index of cached items based on topological

information. CRs track the location of cached objects and if the topological distance to a cache is

smaller than the distance to the objects originator the CR sends to the requesting host instructions to

explicitly request the object from the caching point.

In the overlay-based caching area, where the data is stored in entities that are specially created

for caching purposes, one popular form is web proxy caching [60] - [62] (and the corresponding

single-cache system replacement policies [63], [64]), where the ISP places web proxies at strategic

locations in the network to cache popular web pages. Hierarchical and cooperative caching, e.g., [65],

[66], [67], which has looked into content replication in a string of caches, has assumed some form of

cooperation between caches of different levels and hierarchical assignment of caching responsibilities

between (a maximum of three) caching levels. Instead, in the case of in-network caching assumed

here, the scene is flatter and all caches share equal caching responsibilities.

In general, ICN enables in-network opportunistic caching of information items [68], [5] in every

cache-equipped node [69] and replacement of cached items at line-speed [70]. Information items

are cached by default in every router that the item traverses and items are replaced using the least

recently used (LRU) policy. The cache-everything-everywhere scheme presented in [5] has already

raised doubts and some authors have already questioned this aggressive strategy [18]. In that direction

in [71] authors instead of caching the same item at every node along the delivery path investigate if

caching only in a subset of node(s) along the delivery path can achieve better performance in terms

of cache and server hit rates by exploiting the concept of betweenness centrality. Moreover, in [72]

authors formulate the caching problem into a Linear Programming problem and propose a novel

caching policy named as Least Benefit, which takes into account the benefit of a cache hit instead of

simply counting the hit number as the Least Frequently Used (LFU) policy does.

In [73] authors propose a new cooperative caching strategy for the CCN architecture that has been

designed for the treatment of large video streams with-on demand access. Their aim is to minimize

the amount of queries for time-shifted TV that are treated by servers outside the ISP network and the

proposed caching strategy manages to halve the cross-domain traffic. In a similar scenario authors in

[74] evaluated the performance of a two-layer cache hierarchy under a demand model that reflects a

realistic traffic mix. Their results demonstrate that caching Video on Demand in access routers offers a

highly favorable bandwidth memory tradeoff but the other types of content that they considered (web,

file sharing and user generated content) would likely be more efficiently handled in very large capacity

storage devices in the core. Nevertheless, every research attempt regarding in-network caching in

ICN, takes as granted the presence of a hosting server for each information item and uses caches in

order to improve the delivery of popular content. This implies, that there is a gap in the literature

for an efficient opportunistic caching mechanism aiming also at preserving the information over time

instead of only making information available in nearer space as in traditional caching schemes.

58

Such a caching mechanism is useful in peer-to-peer networks wherein each node in the network

may act as an independent router and the usage of a permanent storage, or the existence of a server

is either not allowed or not profitable to be hosted by a node in the network. A future application

among others, that can adopt the information-centric communication scheme and can benefit from

such a caching mechanism is a decentralized social network, where users can improve the publication

and retrieval of notifications on posted items, such as photos, status updates, message threads, etc. In

such a deployment no user is obliged to serve such requests (permanent store or server), but a user

can take advantage of similar interests issued by neighboring users and their cached content (buffer)

in order to retrieve the required information/data.

In this chapter we:

• Enhance the CBPS architecture with a request/response scheme so that subscribers can retrieve

cached information/data from other nodes in the network, assuming that each network node has

a limited cache and there are no servers in the network.

• Propose two duplicate preventing mechanisms, that will handle the possible production of mul-

tiple identical responses to a request, due to the multiple caching of information/data at different

nodes.

• Decompose the caching mechanism in a set of basic policies/strategies, present at each set the

most known and traditional policies and propose an information-centric oriented policy at each

one of them.

• Propose a stochastic model that captures the dynamics of the newly proposed policies.

• Describe a prototype implementation of the proposed opportunistic caching mechanism, eval-

uate it through simulations and Planetlab experimentation and compare it against traditional

caching mechanisms and mechanisms produced by combinations of the new policies with al-

ready known.

The rest of the chapter is organized as follows. In Section 5.2 we present the functionality of

the CBPS architecture followed by the description of the proposed request/response scheme. The

different policies/strategies are described in Section 5.3 while, in Section 5.4 we propose a stochastic

model that captures the dynamics of the proposed caching mechanism. Section 5.5 is devoted to

performance evaluation via simulations and in Section 5.6 we describe the implemented prototype

and evaluate our system by performing experiments in PlanetLab. Finally in Section 5.7 we propose

a modification to the caching mechanism to enable mobility of subscribers while, we conclude the

chapter in Section 5.8.

5.2 Enabling Opportunistic Caching

In this section we give a short description of the CBPS architecture and the forwarding mechanism

adopted in our work, that is also supported by many popular publicly available implementations

59

1

4

32

ST
 fa : A : 01-1
fb : 2 : 02-1

A

Sub(fb, 1, 02-1)

PRT

ST
 fa : 3 : 01-1
fb : 1 : 02-1

PRT
ST

 fa : 2 : 01-1
fb : B : 02-1

PRT

ST
 fa : 2 : 01-1

PRT

B

CH CH CH

CH

Sub(fb, 2, 02-1)

fa covers fb

Pub
Pub (mtd, 03-1,m)

Pub (mtd, 03-1,m)Pub (mtd, 03-1,m)

m
m

P
ub

 (m
td

, 0
3-

1,
m

)

Meta data: 03-1: Item m

Figure 5.1: Processing of Subscribe and Publish packets.

(e.g. REDS, Siena). We assume an architecture which uses the subscription forwarding routing

strategy [15]; the routing paths for the publications are set by the subscriptions, which are propagated

throughout the network so as to form a tree that connects the subscribers to all the nodes in the

network.

A Subscribe() packet contains the corresponding subscription “filter” (a list of predicates

which define constraints, usually in the form of name-value pairs of properties and basic comparison

operators), the “id/name of the subscriber” that issued the subscription and a unique “identifier (sub-

id)” [5] useful to prevent looping the subscriptions. A Publish() packet contains an associated

“meta-data field” describing the published content, also a unique “identifier (pub-id)” value and the

“content” itself. A publication Pub matches a subscription Sub, whenever the meta-data describing

Pub matches the Sub’s filter.

A subscriber s subscribes by issuing a subscription packet to network node v∈V (V in the number

of nodes in the network), that is attached to, (Subscribe(f,s,sub-ids)) using filter f with a

subscription id sub-ids. Node v inserts the filter, the id of the subscriber and the id of the subscription

packet in the Subscription Table (STv). Then the subscription is broadcasted by v, which now behaves

as a subscriber with respect to the rest of the network, to all of its neighboring nodes, with the

syntax Subscribe(f,v,sub-ids). In turn, the neighbors record the subscription and re-propagate

it towards all neighboring nodes, except for the one that sent it. Finally, each node u ∈ V has a STu,

in which for every neighboring node v there is an associated set of filters F (v) (and subscription

identifiers) containing the subscriptions sent by v to u.

Whenever a node receives a subscription packet (from another node) whose id (sub-id) and the

corresponding filter are already in its ST, it stops forwarding the subscription without adding an

entry in the ST. This procedure is useful to prevent looping subscription packets [5]. Moreover, the

subscription scheme is optimized by avoiding subscription forwarding of the same event pattern in

60

Request filter
Subscriber’s id/name
Request id (req-id)

Aggregated Pub Id’s (APID)

Request’s id (req-id)
Item’s id (pub-id)
Information Item

Request packet Response packet

Figure 5.2: Request and Response packets.

the same direction exploiting “coverage” relations among filters. That is, a subscription is forwarded

to a neighboring node only if it is not being covered by a subscription already forwarded to the same

neighbor. We say that a subscription subi covers another subscription sub j, denoted by subi ≥ sub j,

iff any event matching sub j also matches subi [75]. Requests to unsubscribe from an event pattern

are handled and propagated analogously to subscriptions, although at each hop entries in the ST are

removed rather than inserted.

The processing of publication packets is relatively simple. Particularly the node v, attached to

the publisher, matches the meta-data of the packet to the filters stored in the STv and forwards the

packet towards the nodes/subscribers with a matching filter. Finally, all subscribers interested in

the published data will receive it. Figure 5.1 depicts the processing of subscription and publication

packets.

5.2.1 Caching Mechanism

In this section, we describe the key points of the proposed caching mechanism. We assume that each

node is equipped with a limited size cache (equivalent to buffers) and we introduce a request/response

scheme in order to provide the network with the ability to make information published in the past

available to future clients/subscribers.

Caching points

Each node is selected as a candidate caching point for an item as long as it has in its ST at least one

client subscribed in this item. A published information item is transferred to all nodes with client

subscribers. Also, a node with a client subscriber is easily reachable by a request packet (the same

way it is reachable by a publish packet) through the paths set by the subscriptions. We should clear

that only the nodes with attached subscribed clients are candidate caching points and not nodes who

have in their ST s subscriptions forwarded by other nodes. In that way only a subset of the nodes

can be chosen as caching points. Alternative ways to select caching points for a published item are

described in Section 5.3.

Request/Response scheme

In order to retrieve cached information, we add to the system two additional types of packets, Request()

and Response() (Figure 5.2). The new packets will allow the traditional CBPS model to acquire

61

Pending Request Table PRT

Subscription Table ST

FILTER SUBSCRIBER’S ID/NAME SUB ID (sub-id)

artist: Artist Name type: mp3 s1 01-001
b2 02-033

FILTER REQUESTOR’S ID/NAME REQ ID (req-id)

artist: Artist Name type: mp3 s2 02-103

META-DATA PUB ID (pub-id) DATA/CONTENT

Cache CH (buffer)

artist: Artist Name song: song title

album: album title type: mp3 03-222 song.mp3

Figure 5.3: Used Data Structures.

the one-time fetch operation (retrieve content previously published), whereas the publish/subcribe

procedure, described above, allows the retrieval of the future content matching a subscription. A

Request() packet contains the corresponding requesting “filter”, the “id of the subscriber” that

issued the request, a unique request “identifier (req-id)” and an “Aggregated Publication Ids (APID)”

variable-length list (APID is used to prevent duplicate responses of the same information item). A

Response() packet contains the id (or a list as described below) of the responded request “(req-

id)”, the id value of the responded content “(pub-id)” and the cached “content” itself.

Before describing the request/response scheme, we describe two data structures that we add to

the system (at each node): the PRT (Pending Request Table) and the CH (Cache) (limited buffer

memory) (Figure 5.3). The Cache is used to cache published items. The PRT keeps track of requests

that have been forwarded towards potential matching caching points so that returned response packets

can be sent to its requestor(s).

When a client r, interested in previously published content, appears in the network issues a re-

quest by sending a Request(f,r,req-idr,null) packet to the node that is attached to (say v; we

assume that clients, both publishers and subscribers/requestors are attached only at one node). Node v

upon receiving the request packet checks in its Cache for cached items matching filter f (by matching

filter f to the cached content meta-data). If a matching item is found, a response packet is initiated

and is forwarded back to r. Moreover, node v checks in its STv for subscriptions matching filter f .

The subscription can be either from another node or from a client. For every existing subscribed

node (e.g. u) v forwards the Request(f,v,req-idr,{pub-id1,pub-id2,. . ., pub-idM}) (M is

the number of matching cached items found in v) packet and inserts an entry in the PRTv, similar

to the one shown in Figure 5.3. If no further node subscriptions exist the request packet is dis-

carded. At a distant node j the syntax of the arriving request, sent by node j′, would look like

Request(f, j′,req-idr,{pub-id1,pub-id2,. . .,pub -idX}). Each node recipient of a request

packet searches in its Cache for information items matching the initial filter f . If a matching item

62

1

4

32

ST
fa : A : 01-1
fb : 2 : 02-1

A

PRT
fa: C: 04-1: 10

ST
fa : 3 : 01-1
fb : 1 : 02-1

ST
fa : 2 : 01-1
fb : B : 02-1

ST
fa : 2 : 01-1

PRT
B

CH
CH CH

CH

R
eq

 (f
a,

C
, 0

4-
1,

nu
ll)

m1
m1

Meta data: 03-1: Item m1
Meta data: 03-2: Item m2

C

m2

PRT
fa: 3: 04-1: 10

PRT

R
es

p(
04

-0
1,

 0
3-

1,
 m

1)

R
es

p(
04

-0
1,

 0
3-

2,
 m

2)

Req (fa, 3, 04-1,03-1)Req (fa, 3, 04-1,03-1)

Resp(04-01, 03-2, m2) Resp(04-01, 03-2, m2)

m2

Figure 5.4: Processing of Request and Response packets.

(e.g. ml) is found and its pub-idl is not in the APID list (pub-id1,pub-id2,. . .,pub-idX), a response

packet is initiated.

The processing of a response packet is relatively simple, since (as in [5] with Data packets)

response packets are not routed, they simply follow the chain of PRT entries back to the original re-

questor(s). Particularly, when a node u receives a response packet, (e.g. Response(req-idr,pub-idm,

Data-m)) checks in its Cache if the responded item is already cached (using the pub-idm) and in case

this is true, discards the response packet. Otherwise, checks in the PRT table (in the req-id field) for

the req-idr. If such an entry does not exist the response packet is discarded, otherwise if the entry’s

req-id refers to a node (e.g. v) the response packet is forwarded towards that node. If the entry’s req-id

refers to a client (e.g. s) node u forwards the response packet to the client and caches (or not, depend-

ing on the caching policy) the responded item. It is up to the requesting client to sent a message to

the network (similar to unsubscribe) to remove its request from the PRTs, otherwise every matching

cached information item in the network matching the requesting filter will be sent back to the client.

Handling multiple responses

Multiple caching at different nodes has as side effect the possible production of multiple identical

responses on a single request. To deal with this effect, we provide our system with two (one reactive

and one proactive) duplicate preventing mechanisms.

In the reactive mechanism, every node, upon the arrival of each response packet, checks whether

the responded information item already appears in its Cache and if this is true, it discards the response

packet. Otherwise, it forwards the packet according to the technique described above. Responses fol-

low the reverse of the route that the requests follow. This means that the request for initiating the

response has also been processed by the node under question which may have responded to that re-

63

quest with the same item(s). Note also, that the requests cannot be dropped in a similar manner, since

we consider the CBPS model, and finding a matching item in a proximity node does not guarantee

that there are no other (different) items in the network matching the same request.

In the proactive counterpart, every node with a cached matching item, apart from responding to

the Request() packet appends to the Request’s APID list the pub-id of the responded item. The

nodes –recipients of that request packet– will only respond with items matching the requested filter

and their pub-id are not in the APID of the request packet, since those information items have already

been sent to the client issued that request.

The procedure of responding involves a certain amount of overhead that is unavoidable. Note that

the cache of each node is limited and we do not know a priori if the cached items survive the same

amount of time at each cache. This means that even if two nodes’ STs have clients subscribed for the

same filter and have cached in the past the same items (matching that filter) there is no certainty that

requesting only one of them will be enough to get those items, since the time that each item “lives”

at a cache is not the same and depends on the local workload of each node. Figure 5.4 illustrates

the whole request/response scheme and how the mechanisms described here prevent the duplicate

response of item m1.

5.3 Strategies/Policies of the Caching Mechanism

In this section, we present the family of the policies/strategies that are useful to enable the retrieval of

cached content in ICN approaches that use the CBPS architectural model.

5.3.1 Caching Policies

A caching policy dictates where a published or a responded item will be cached. In principle, all

nodes have a cache, nevertheless we may restrict our interest to those nodes having clients interested

to the particular item. Requests for content cannot reach a node with no interested clients (unless

flooding request is used) since the lack of subscriptions make it invisible to the request/response

scheme. Also, it could be possible that every node along the path/route from the publisher/responding

node towards the subscriber/requesting client could cache the passing item (similarly to the cache-

everything-everywhere scheme used in [5]). We will therefore investigate the following policies:

• Save in all interested nodes – selective caching policy, SEL.

• Save in all nodes along the path/route –en-route caching policy, NRT.

Selective caching is the newly introduced information-centric oriented policy while the en-route

caching is a typical policy found in literature. In the case of a responded item, the selective caching

policy caches the item only in the node who hosts the client issuing the request. In the literature

more caching policies have been proposed, especially in the ICN area (e.g. in [71] authors investi-

gate caching only in a subset of node(s) exploiting the concept of betweenness centrality) but their

application would require additional functionality by the nodes and are not considered in this work.

64

5.3.2 Placement/Replacement Policies

The placement/replacement policy decides a position in the cache where the item will be inserted

and which item will be discarded in case of an overflow. We always put a new item (publication

or response) at the top of the cache and discard the last in case of an overflow. Then, each newly

arrived request may or may not reposition the item to the top of the cache depending on the policy

selected. Moreover, the given node may or may not reposition the node at the end of the cache

(degradation) when the item under question has lost all the interested clients (all the interested clients

have unsubscribed from the node). Finally the traditional LFU (Least-Frequently Used) and LRU

(Least-Recently Used) replacement policies will also be examined. Particularly, we will investigate

the following policies:

• Put at the top of the cache with regeneration for successive requests and drop the last – LRU

policy.

• Remove from the cache the item that is used the least and replace it with the new one – LFU

policy.

• Put at the top of the cache with regeneration for successive requests and degradation when the

nodes looses all the interested clients and drop the last – priority policy, PRT.

The PRT policy is the newly introduced information-centric oriented placement policy and is a

way to differentiate the items in a cache based on their usability, as well as to provide better perfor-

mance for the whole system. The most popular information items, those with multiple requests are at

the top of the cache, while the items with no clients interested in them are at the bottom of the cache,

closer to be dropped (since they are not reachable by the requests). We are particularly interested in

studying whether this new distributed and intuitive policy can help solve the prioritization issue for

items’ popularity. The only difference between the PRT and the LRU policies is the degradation of

an item when the node looses all the interested clients. In the literature more placement/replacement

policies have been proposed [76]-[78] (most of them are variations of the LRU and LFU policies) but

their application would require additional functionality by the caches, which might not be applica-

ble for buffer size caches that are assumed here. Finally, analytical models for the efficiency of the

traditional LRU and LFU policies have been proposed is various research works [79]-[82] especially

for the case of hierarchical caches, but not in the context assumed in this work where the notion of a

server is missing.

5.3.3 Request Policies

The request policy dictates how the request packet is propagated in the network. According to Section

5.2.1, the request packet is propagated along the subscription tree created by entries in the subscription

table that match the requested filter. On the other hand, it is possible to flood the network with requests

in order to make sure that any cached item is retrieved at the cost of higher overhead. Particularly, we

will investigate the following policies:

65

• Request based on subscription – subscription-based request policy, SUB.

• Request propagated to the whole network – flooding request policy, FLD.

The flooding request policy ensures the retrieval of an item (even if it is degraded) but requires

the request to visit the whole network, while the newly introduced information-centric oriented

subscription-based request policy retains the principles of the used architectural design. Table 5.1

depicts the whole spectrum of the proposed policies, the combination of which result the different

opportunistic caching mechanisms.

Table 5.1: Policies (in bold the new information-centric oriented policies).

Policies

Caching Plac./Repl. Request

1. SEL 1. PRT 1. SUB
2. NRT 2. LFU 2. FLD

3. LRU

5.3.4 Caching Schemes

From Table 5.1, it is obvious that there exist twelve different combinations of opportunistic caching

mechanisms but only a set of those possible combinations is meaningful to be examined. Particularly,

we will examine the following five combinations: 1) SEL-LRU-SUB, 2) SEL-LFU-SUB, 3) SEL-

PRT-SUB, 4) NRT-LRU-FLD and 5) NRT-LFU-FLD.

The first three combinations constitute our newly proposed caching and request policy, described

in Section 5.2.1, combined with the most known placement/replacement policies (LRU and LFU)

and the newly introduced priority replacement policy. We compare them with the en-route caching

policy combined also with the LRU and LFU placement/replacement policies and the flooding request

policy, which is commonly used in the literature. The first three mechanisms are those that maintain

the inherent characteristics of the ICN .

5.4 Stochastic Cache Modeling

To the best of our knowledge, there exists no prior work involving analytical models for dynamic

information-centric approaches. In this chapter, we assume that subscribers arrive to the network

according to a Poisson process, stay in the system for an exponentially distributed time duration and

are interested in receiving any information item matching their subscription. Information items that

are published in the network arrive according to a Poisson process as well, and the cache equipped

network nodes must decide whether to cache them or not. When the caches are full, caching an item

66

means that another item must be dropped. We focus on the survival time of an arbitrary information

item, a metric that characterizes the availability of an item in the caches of the network.

We build a multidimensional Markov model which captures the behavior of all the above policies

allowing for direct comparison as well as providing intuition for modes of operation. When copying

between nodes is not allowed (equivalently when we consider only one node), we find the distribution

of information item survival time by analyzing a two dimensional absorbing Markov process. How-

ever, even for this simple case the state space is very large and we provide a further approximation

to the system reducing the state space significantly, while having a minimal loss in accuracy. For the

general problem where copying items from one cache to another is allowed, we propose a heuristic

approximation based on estimating the mean rate of copies.

We consider a network with V nodes, each one equipped with a cache. Subscribers arrive in each

node requesting content and stay in the system for some time until they disappear. By assuming a po-

tentially infinite population of subscribers, the subscribers arrivals are modeled by a Poisson process.

For a given item m and node i ∈V , the subscribers with subscriptions matching to m arrive with a rate

λc(m, i) ≡ λc and depart with a rate μc(m, i) ≡ μc. Thus we assume that the client dynamics are all

the same for all nodes and items (different rates can be used to model item popularity). Consequently,

the population sizes of subscribers interested in m are given by Xm(t)
.
= (Xm,1(t), . . . ,Xm,V (t)), where

Xm,i (t)
distr
= X(t) is a birth-death process of the interested subscribers in node i. Given the above rates,

the stationary state probability vector for X(t) is π j = π0
ρ j

c

j! , where j = 0,1, . . . , π0 = e−ρc and ρc =
λc

μc
.

Similarly, we assume that all the new items are published in the system with equal rate λb follow-

ing a Poisson process as well. Items are published only once in the network, survive in the caches

of the system for some random time that depends on the caching, request and replacement policies,

as well as the subscriber dynamics, arrival rate of the items and the cache size. If an item disappears

from all caches at one instance, then clearly it is impossible to be recovered and thus it is lost forever.

We then say that the item is absorbed.

Let each node be equipped with a cache of size C and consider the process Ym(t)
.
=(Ym,1(t), . . . ,Ym,V (t)),

where Ym,i(t) ∈ K = {0,1, . . . ,C} is the position of item m in cache i. Here location 1 corresponds

to the top of a cache and the zero point corresponds to the fact that the item is not stored in this

cache. Assume that item m is published at t = 0 and consider the process Ym on t ≥ 0. The state

0 = {0, . . . ,0} ∈ KV corresponds to the absorbing state. Therefore, the item could be lost before

stored in any cache. The main performance metric studied is the mean survival time (MST) which is

given by

MST
.
=�{Tm |Ym(0) �= 0}�(Ym(0) �= 0)

where Tm = sup{t > 0 : Ym(t) �= 0} denotes the survival time of the item m. We also define Ploss
.
=

�(Ym(0) = 0) as the probability of initial loss of the item.

By Little’s law E(T) = E(M)/λb, where M is the number of different items in the system. Thus,

increasing the number of different items stored simultaneously increases also MST. It also gives

analytical bounds for MST in a homogeneous system. Since the number of different items varies

between C (all caches having an identical content) and V ·C (all caches storing different items), we

67

have:
C
λb
≤MST ≤ C ·V

λb
. (5.1)

In order to get deeper performance results, we need to analyze (Xm(t),Ym(t)) in detail. Unfor-

tunately, it is not a Markov process due to the dependence on which items have nonzero subscriber

population. On the other hand, the full system (X j(t),Y j(t), j ∈Z) is Markovian but too complicated

to be studied directly. Thus we will provide approximate approaches in the following sections.

The caching policy determines the initial state probabilities. In SEL policy, there is always a

probability that the set of nodes, to which interested clients are directly subscribed, is empty. In

that case we have a loss event with a probability Ploss = πV
0 = e−ρcV . The same loss probability also

occurs to the NRT policy. The caching policy also affects time to absorption since selective caching

will reduce the contention at the cache.

The request policy determines the request overhead and the item retrieval efficiency. Particularly,

the FLD request policy ensures the retrieval of a degraded item but requires the request to visit the

whole network, while the subscription based policy (SUB) retains the principles of the used architec-

tural design, since the request is propagated towards the nodes with interested subscribers. Another

effect of the request policy relates to copying items. Since the flooding request policy always dis-

covers cached items, the copying rate is higher, leading to higher replication degree, less items in the

system and smaller MST.

The replacement policy differentiates the survival time of items by bringing popular ones to the

top of the cache and thus extending the sojourn time of these items in the transient states. It is then of

interest to see whether such an approach is enough to provide a priority mechanism for popular and

unpopular items.

5.4.1 The Single-node Case

In this section we consider the simplified network composed of only one node (V = 1) which has C

cache slots. This model captures also the case where the network consists of more than one nodes,

but no item copies from cache to cache are allowed. Then the nodes are behaving independently, i.e.,

the state probabilities are just products of the single node state probabilities.

First note Eq. (5.1) implies MST =C/λb, independently of the caching mechanisms. In order to

study the distribution and more importantly to prepare the basis for the multi-node (V > 1) case, we

model both the position of a given item m in the cache as well as the number of items with interested

clients (alive items), with a two dimensional continuous-time Markov chain (CTMC) with state space

S =K×K and generator matrix Q. The matrix Q contains the transition rates qs,ŝ from any state s to

any other state ŝ, where s, ŝ ∈ S , and s = {i, j} is the state where we have i alive items and item m is

stored in the jth slot of the cache. The size of Q can be reduced to ((C+1)C+1)× ((C+1)C+1)

because there are C(C+1) transient states in the chain and we can group all C absorbing states (states

of the type s = {i,0}, j ∈K) into one. Typically, the elements qs,s of the main diagonal are defined by

qs,s =−∑ŝ�=s qŝ,s.

68

There are three events that may affect the state of the Markov process, (1) a caching event is

triggered by the publication of an item, (2) a regeneration event is triggered by the arrival of a sub-

scriber interested in an item m and (3) a degradation event is triggered by the departure of a subscriber

such that the new state for this item becomes Xm(t +Δt) = 0. Accordingly there are seven types of

transitions that can take place in system which focuses on a particular item m.

1. The event of caching a new item (other than m) in the given node increases the number of alive

items by one and moves item m one cache slot further.

2. The event of regeneration of item m when m was alive retains the number of alive items and

moves item m to state one (at the top of the cache).

3. The event of regeneration of item m when m was degraded increases the number of alive items

by one and moves item m at the top of the cache.

4. The event of regeneration of an alive item (other than m) retains the number of alive items and

may move item m one cache slot further depending on the original position of item m (before

or after the regenerated item).

5. The event of regeneration of a degraded item (other than m) increases the number of alive items

by one and may move item m one cache slot further depending on the original position of m

(before or after the regenerated item).

6. The event of degradation of item m decreases the number of alive items by one and moves m at

the bottom of the cache (slot C).

7. The event of degradation of an alive item (other than m) decreases the number of alive items by

one and may move m one cache slot towards to the top depending on the original position of m

(before or after the degraded item).

In the following we formulate the transition rates according to the above intuitive connection to

our system. We define the transition rate from state s = {i, j} to state ŝ = {î, ĵ} as

qî, ĵ = lim
τ→0

�(W (t + τ) = ŝ|W (t) = s)
τ

,∀t

by omitting the first index of q for presentation reasons. Then for any policy we get:

69

t (1) :q0,0 = λh j =C, i≤C

t (1,4) :qC, j+1 = max{0, i− j}λg +λh i =C, j <C

t (1,5) :qi+1, j+1 = min{C− i,C− j}λg +λh i <C, j <C

t (2) :qi,1 = λg j ≤ i≤C,2≤ j ≤C

t (3) :qi+1,1 = λg i < j, j ≤C

t (4) :qi, j+1 = max{0, i− j}λg i <C, j <C

t (5) :qi+1, j = (j− i−1)λg i < j,2≤ j ≤C

t (6) :qi−1,C = μd j ≤ i≤C, j ≤C

t (7) :qi−1, j−1 = min{i, j−1}μd 2≤ i≤C,2≤ j ≤C

t (7) :qi−1, j = (i− j)μd j < i≤C,2≤ j <C

qî, ĵ = 0 otherwise,

(5.2)

where in general i, j ∈ K (i, j ≥ 1 where not explicitly denoted) and C ≥ 2, μd is the rate of item

degradation, λg is the rate at which items are regenerated and λh is the rate at which item m is pushed

in the cache by one slot when a new published item is cached in node. Particularly, in the SEL

caching policy, items are stored in all nodes with interested subscribers, λh = λb(1−π0). For the rate

of regeneration we have either λg = λc in case the regeneration policy is used, or λg = 0 otherwise.

The rate of item degradation is the total rate of transitions of the type {Xm(t +Δt) = 0|Xm(t) �= 0} in

the underlying birth-death process Xm(t). Therefore we have μd =
λcπ0

1−π0
.

The studied system is a continuous time Absorbing Markov Process (AMP) (see, e.g., [83],[84]).

We renumber the states in the generator matrix so that the transient (the non-absorbing) states come

first. So if there are i absorbing states and j transient states, the generator matrix will have the

following canonical form:

Q =

(
Tr tr
0i j 0ii

)
,

where Tr is a j-by- j matrix of transition rates among transient states, tr is a j-by-i matrix of transition

rates from transient to absorption states and 0i j a i-by- j matrix of zeros.

Then

�(MST < x) = 1−φφφeTrxe j, MST =−φφφTr−1e j, (5.3)

where Tr−1 is the inverse matrix, eTrx is the exponential of the matrix and φφφ is the row vector with

the initial probabilities of the transient states.

The state probability vector for the transient states φφφ = {φ(s)} corresponds to states where

item m is positioned at the first slot, i.e., s = (i,1), i = 1, . . . ,k. Note that the cache is always full

with C different items and for the corresponding stationary subscriber birth-death processes it holds

�(X(t) = 0) = π0.

φ ({i,1}) =
(

C−1

i−1

)
πC−i

0 (1−π0)
i−1, 1≤ i≤C.

70

0 ...….
4�d

1 C-1 C32

Figure 5.5: CTMC capturing the evolution of the number of alive items in the single node scenario.

The above model can be further applied to other policies for caching, request and replacement as

long as the event rates used in the Markovian model are tractable. Finding the distribution for the

item sojourn time, i.e., applying Eq. (5.3), requires manipulation of the reduced transition matrix Tr.

This can be done numerically by any mathematical software after the transition rates in Eq. (5.2) are

defined.

5.4.2 Reducing the State Space

A two-dimensional Markov process with |S| = C(C+ 1)+ 1 states was developed in Section 5.4.1.

However, in order to use this model for a larger network (V > 1), it is important to reduce if possible

the state space. In this section we propose a further approximation which has a state space of |S| =
C+ 1 states while incurring very small errors in comparison to the original model. The approach is

based on stationary analysis of the number of alive items and an AMP which utilizes this stationarity

assumption.

In particular, we consider first a stationary CTMC which captures the evolution of the number of

alive items in the cache. Figure 5.5 depicts this Markov process and its transitions. The stationary

state probabilities are given by:

ψi =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

1+∑C
n=1

(
∏n

j=0((C− j)λc+λh)

j!μ j
d

) i = 0,

∏l
j=0 ((C− j)λc +λh)

j!μ j
d

ψ0 0 < i≤C,

where ψi is the stationary probability of having i alive items in the cache of the node.

We define as Ui the number of alive items in front of item m when m is at slot i. Then assuming

independence between the state of item m and the number of alive items, we get:

E [Ui] =
C−1

∑
j=0

(ψ j ·min(j, i−1)) .

71

0 ...….

t(2)

t(5)

1 C-1 C32

t(4)

t(2)
t(2)

t(4)
t(4)

t(1)

Figure 5.6: Markov chain for the approximated single node scenario.

Moreover, the probability that item m is alive when it is in the i-th slot of the cache is given by:

πalive
i =

⎧⎪⎪⎨
⎪⎪⎩

0, i = 0,

C

∑
j=i

ψ j otherwise.

Using ψi, E [Ui] and πalive
i we can approximate statistically the number of alive items and use the

state space S =K to denote the position of item m in the cache. In this model, there are five types of

transitions that can take place in the chain that tracks the position of item m in the cache.

1. The event of caching a new item (other than m) in the given node moves item m one cache slot

further and thus triggers an increase in the state by one.

2. The event of regeneration of item m moves item m to state one (at the top of the cache).

3. The event of regeneration of an item which is before item m (closer to the bottom of the cache)

moves m one cache slot further (closer to the end of the cache).

4. The event of degradation of item m (m should be alive) moves item m at the bottom of the cache

(slot C).

5. The event of degradation of an alive item in front of item m moves m one cache slot towards to

the top of the cache.

For any policy, the transition rates from state i to state j, with i, j ∈ K, are given by

t (1) :qC,0 = λh

t (1,3) :qi,i+1 = (C− i) ·λg +λh 0 < i≤C−2

t (1,3,4) :qC−1,C = λg +λh +πalive
C−1 ·μd

t (2) :qi,1 = λg 2 < i≤C

t (2,5) :q2,1 = E [Ui] ·μd +λg

t (4) :qi,C = πalive
i ·μd 0 < i≤C−2

t (5) :qi,i−1 = E [Ui] ·μd 2 < i≤C

qi j = 0 otherwise.

(5.4)

72

Figure 5.6 shows the transitions of the approximated single node scenario. The initial state probability

vector for the transient states is given by:

φ (i) =

{
π0 i = 1

0 otherwise.

5.4.3 The Multi-node Case

Consider a network composed of V nodes with item copying allowed. In this case, an item can be

cached initially in a subset of nodes and later copied to other nodes as well. The item disappears from

the network only when it is not cached in any node of the network. We start by making the similar

approximation as used for the single node scenario in the previous section. The state space is S =KV

and state vector s = {s1,s2, . . . ,sV} ∈ S indicates that item m is positioned at the sth
i slot in the cache

of node i.

As before, we have caching events that model the publication of an item, regeneration and degra-

dation events of a cached item. In addition to those we should cope with item copies which occur

together with the events {X(t +Δt) = 1|X(t) = 0}. We assume that all events concerning subscriber’s

activity affect only one dimension of the state, i.e., when an item is requested and sent, it will not be

cached in the cache of any intermediate node other than the serving one and only the newly arrived

subscriber will receive it. Thus, for each transition from state s to state ŝ, we get ŝi = si, ∀i �= j, where

j is the dimension where the change is taking place.

For events which depend only on subscriber activities, we write qs,ŝ(j) = qs j,ŝ j where, qs j,ŝ j is

calculated using Eq. (5.4). We collect these transitions in matrix Q1. However, a special care is

required when s j = 0. In such cases, an item may be copied from another cache reachable by the

chosen request policy. Thus we get:

qs j=0,ŝ j=1 = f request (λc) ,

where s �= 0 and f request (λc) depends on the request policy used and the prioritization or not of the

cached item.

• For the flooding request policy we get f request (λc) = λc

• For the subscription-based request policy we get

f request (λc) =

(
1−

V−1

∏
k=1

(1−πalive
sk

)�{sk>0}

)
λc.

The rest of the transitions in Q1 take place independently in each dimension and they are given by Eq.

(5.4) with the exception of the transitions reflecting the item copies. We call this additional pushing

rate as λ p
cp (p indicates that this rate is policy-dependent).

73

Next we deal with events that reflect the publication of an item other than m. These events can

cause a change in multiple dimensions of the state space. Specifically, in each node where item m is

cached, a new item may appear and cause a push of item m. The caching event in this case depends

on the caching policy. In the following, the transitions in case of selective caching policy are shown.

Consider the set S̆ = {s2 ∈ S : s2 = s1 +u,s1 ∈ S \{0},u ∈ {0,1}V}. For all s ∈ S \{0} and ŝ ∈ S̆
we write:

qs,ŝ = (1−π0)λb.

By collecting the above transition rates in Q2, we finally obtain the generator matrix as Q = Q1+Q2.

The information required to compute the rate of item copies λ p
cp is the random process Mi(t)

defined as the number of items in the network that differ from those cached in node i. Process Mi(t)

is hidden from our Markov chain and thus we need to rely on an approximation. Process Mi(t) takes

values in [0,(V −1)C] with the minimum attained when all caches contain exactly the same items and

the maximum attained when all items are cached exactly once. Note that Mi(t) is not stationary and

its behavior depends greatly on the ratio of λc/λb.

In this thesis we make a gross approximation of Mi(t). In particular, we assume that at each time

epoch all items in the network have identical replication pattern as that of item m. On the average,

this is, of course, true because of i.i.d. subscriber dynamics and publication arrivals. Let Rm(s)
be the number of copies of m cached in the network, i.e., it counts the total number of non-zero

elements in s and thus is state dependent but known at each state. We make the approximation that

M̃(s) =
⌊
C
(

V
Rm(s) −1

)⌋
. The intuition behind this approximation is driven by simulations where we

observed that the number of replicas in the network has very small variance and has quasi-stationary

behavior soon after the publication of each item.

Then depending on the request policy we have:

• For the flooding request policy we get λ FLD
cp (s) = M̃(s) ·λc.

• For the subscription-based request policy we should calculate how many out of the M̃(s) items

could be copied. Defining pfail(s) = πRm(s)
0 as the probability of an item not to be copied, we

get λ SUB
cp (s) = M̃(s)(1− pfail(s))λc.

The transitions from (5.4) in Q1 that are affected from λ p
cp and their new form are:

t (1) : qC,0 = λ p
cp(s)

t (1,3) : qi,i+1(s) = (C− i) ·λg +λ p
cp(s), 0 < i≤C−2,

t (1,3,4) : qC−1,C(s) = λg +πalive
C−1 ·μd +λ p

cp(s)

(5.5)

Also, the initial probability vector for the transient states, i.e., s �= 0, is given by:

φ (s) =

{
(1−π0)

∑i siπV−∑i si
0 , si = 0,1,∀i ∈ {1, . . . ,V}

0, otherwise.

74

0 2 4 6 8 10
0

25
50
75

100
125
150
175
200
225

C=15, �
b
=1

 analysis
 approximation

A
bs

or
pt

io
n

Ti
m

e
(s

ec
)

�c
0 2 4 6 8 10

0
25
50
75

100
125
150
175
200
225
250

�b

C=15, �
c
=2

 analysis
 approximation

A
bs

or
pt

io
n

Ti
m

e
(s

ec
)

0,1 1 10

1E-14

1E-12

1E-10

1E-8

1E-6

1E-4

0,01

 C=5
 C=10
 C=15
 C=20
 C=40

�
b
=1

(lo
g)

 re
la

tiv
e

er
ro

r (
|a

na
l-a

pp
rx

|/a
na

l)

����� �
	

 0,1 1 10

1E-7

1E-6

1E-5

1E-4

1E-3

0,01

(log)
 �b

�
c
=2

 C=5
 C=10
 C=15
 C=20
 C=40

(lo
g)

 re
la

tiv
e

er
ro

r (
|a

na
l-a

pp
rx

|/a
na

l)

Figure 5.7: Single node scenario: (up) The gray area represents the 50% of data–data between the

1st and 3rd quartile. (down) relative error between analysis and approximation for several parameter

settings.

5.5 Performance Evaluation

In this section, we evaluate the proposed opportunistic caching mechanism using a discrete event

simulator as well as the validity of the proposed stochastic model. We assign the popularities to

the information items from a Zipf-like distribution (parameter equal to 0.7). Each information item

survives in the caches of the system for some random time that depends on the policies described in

Section 5.3, as well as the subscriber dynamics, arrival rate of the publications and the cache size.

Initially we present results from the proposed models set side by side with discrete event sim-

ulations. The goal is to validate the models, show that the proposed approximations yield accurate

results. The metric for comparison is chosen to be the mean absorption time (AT), which is the time

from the publication of an item until it disappears from the network. The larger the AT the better,

indicating that an item survives longer in the system cache and thus it is available for longer time.

5.5.1 Validation of the Single-node Model

In order to validate our models we examine the SEL-PRT-SUB caching scheme. Apart from AT, we

are also interested in the relative error between the original model (we call it analysis) and the one

with the reduced state space (we call it approximation). The AT and the relative error are both random

variables and we estimate their mean by simulating 50k of observations. We set out two experiments,

one varying the client intensity ρc (C = 15 and λb = 1) and one varying the rate of newly published

75

5 10 15 20 25 30 35 40 45 50
0

20
40
60
80

100
120
140
160
180
200

 AT

AT

 analysis
 simulation

V=4, �
c
=2, �

b
=1

A
bs

or
pt

io
n

Ti
m

e
(s

ec
)

C
0 2 4 6 8 10

6

12

18

24

30

36

 analysis
 simulation

C=5, V=4, �
b
=1

A
bs

or
pt

io
n

Ti
m

e
(s

ec
)

�
c

0 2 4 6 8 10
0

20

40

60

80

�b

 analysis
 simulation

C=5, V=4, �
c
=2

A
bs

or
pt

io
n

Ti
m

e
(s

ec
)

 AT

 AT

0 5 10 15 20 25 30 35 40
5

10

15

20

25

30

35

40

 analysis
 simulation

C=5, �
c
=2, �

b
=1

A
bs

or
pt

io
n

Ti
m

e
(s

ec
)

V

 AT

 AT

Figure 5.8: Multi-node: AT vs C, ρc, λb, and V .

items λb (C = 15 and ρc = 2).

The gray area in Figure 5.7 represents the area between the 1st and 3rd quartile and thus the 50%

of the mass of data. From these Figures we extract the conclusion that the proposed models predict

very accurately the AT for several settings. Also, the approximation brings a very small error.

The relative error between analysis and approximation is also showcased for several scenarios in

Figure 5.7. The relative error is always smaller than 1% and in many cases is lower than 10−4. This

implies that approximating the number of alive items is well motivated and worthwhile.

5.5.2 Validation of the Multi-node Model

In this section we validate the proposed model for the multi-node scenario using the discrete event

simulator. For validation reasons we consider the SEL-PRT-SUB caching scheme as before. We set

out four experiments, one varying the number of cache slots C, one varying the subscriber intensity

per node ρc, one varying the rate of new publications λb and one varying V , the number of nodes

in the network. We define as AT and AT the upper and lower bound respectively obtained from Eq.

(5.1).

Figure 5.8 depicts AT for several experiments. Note that AT decreases fast with λb and ρc and

increases linearly with V and C. Also it is notable that despite the approximations that we have used,

the model is close to simulation having an error of at most 10% in the shown cases. The error seems

to increase when V and C increase where the assumption for uniform replication is less accurate. On

the other hand, the accuracy seems to be rather invariant to λb, ρc.

76

0,01 0,1 1 10
0

100

200

300

400

 SEL-LRU-SUB
 SEL-LFU-SUB
 SEL-PRT-SUB
 NRT-LRU-FLD
 NRT-LFU-FLD

C=10, V=40, �
p
=1

A

bs
or

pt
io

n
Ti

m
e

(s
ec

)

�c

0,01 0,1 1 10

1,0

1,5

2,0

2,5

3,0

3,5

�c

 SEL-LRU-SUB
 SEL-LFU-SUB
 SEL-PRT-SUB
 NRT-LRU-FLD
 NRT-LFU-FLD

C=10, V=40, �
p
=1

M
in

im
um

 H
op

 D
is

ta
nc

e
(h

op
s)

0,01 0,1 1 10
0

4

8

12

16

20

 SEL-LRU-SUB
 SEL-LFU-SUB
 SEL-PRT-SUB
 NRT-LRU-FLD
 NRT-LFU-FLD

C=10, V=40, �
p
=1

Tr
af

fic
 O

ve
rh

ea
d

(h
op

s)

�c
0,01 0,1 1 10
0

3

6

9

12

�c

 SEL-LRU-SUB
 SEL-LFU-SUB
 SEL-PRT-SUB
 NRT-LRU-FLD
 NRT-LFU-FLD

C=10, V=40, �
p
=1

Sa
tis

fa
ct

io
n

(it
em

s)

Figure 5.9: (a) Absorption Time, (b) Minimum Hop Distance, (c) Traffic Overhead per Request and

(d) Satisfaction vs ρc.

5.5.3 Simulations Varying the Subscribers’ Intensity per Node

In the following sections we evaluate the proposed opportunistic caching mechanism using a discrete

event simulator. We used network topologies from the Internet Topology Zoo dataset [50], which

contains real network topologies from all over the world. Since for a given network size more than

one topologies may exist in the dataset, we used all of them for averaging purposes and each point of

the following figures in the mean value of the different experiments executed for each topology. We

are looking at the following interesting metrics:

• The Mean Absorption Time of the item is the mean time passed from its publication until it

disappears from the network. This metric is indicative of the capability of the network to

maintain information items in its memory.

• The Minimum Hop Distance is measured for each successful response and corresponds to the

minimum number of hops between a responding node and the node where the subscriber mak-

ing the request is attached to. This metric is indicative of the delay of responses as a function

of hops in the network.

• The Traffic Overhead is measured for each successfully responded request and is the total num-

ber of hops that the duplicate responses travel in the network until the two duplicate dropping

mechanisms (proposed in Section 5.2.1) discard them.

77

0,1 1 10
0

100

200

300

400

 SEL-LRU-SUB
 SEL-LFU-SUB
 SEL-PRT-SUB
 NRT-LRU-FLD
 NRT-LFU-FLD

C=10, V=40, �c=1

A
bs

or
pt

io
n

Ti
m

e
(s

ec
)

�
b

0,1 1 10
2,0

2,5

3,0

3,5

4,0

 SEL-LRU-SUB
 SEL-LFU-SUB
 SEL-PRT-SUB
 NRT-LRU-FLD
 NRT-LFU-FLD

C=10, V=40, �c=1

M
in

im
un

 H
op

 D
is

ta
nc

e
(h

op
s)

�
b

0,1 1 10

12

14

16

18

20

 SEL-LRU-SUB
 SEL-LFU-SUB
 SEL-PRT-SUB
 NRT-LRU-FLD
 NRT-LFU-FLD

�
b

C=10, V=40, �c=1

Tr
af

fic
 O

ve
rh

ea
d

(h
op

s)

0,1 1 10
5

6

7

8

9

10

11

12

13

 SEL-LRU-SUB
 SEL-LFU-SUB
 SEL-PRT-SUB
 NRT-LRU-FLD
 NRT-LFU-FLD

�
b

C=10, V=40, �
c
=1

Sa
tis

fa
ct

io
n

(it
em

s)

Figure 5.10: (a) Absorption Time, (b) Minimum Hop Distance, (c) Traffic Overhead per Request and

(d) Satisfaction vs λb.

• The Satisfaction is the total number of cached information items (not duplicate) retrieved for

each request.

The above metrics are random variables and we estimate their mean by simulating thousands of

observations. We set out four experiments one varying the client intensity per node ρc, one varying

the publication rate λb, one varying the number of nodes in the network V and finally, one varying the

number of cache slots C per node.

In every other experiment we assume that in the ρc = λc/μc the μc = 1 (req/sec) is the same for

every item and the λc shown at every figure is the request rate per node for the most popular item.

The request rate of the other items and consequently the λc are given by the Zipf distribution of their

popularity. Figure 5.9(a) shows that the Absorption Time decreases fast with ρc for every caching

mechanism. This is also evident from Eq. (5.5) since an increase in ρc increases the rate at which

an item is pushed at the end of the cache and eventually is discarded. The Minimum Hop Distance

(Figure 5.9(b)) is only affected by the ρc when we use the selective caching policy and only when

ρc ·V < 1. When ρc ·V > 1 on average there are always subscribers for a given item that is reachable

by a request, so when ρc ·V < 1 the requests cannot retrieve distant items (as also depicted in the

Figure 5.9(d)). Also the ρc does not affect the Traffic Overhead (Figure 5.9(c)). The low overhead

when the selective caching is used and ρc ·V < 1 arises also from the fact that requests don’t travel

far in the network. It is worth mentioning that the two duplicate dropping mechanisms prevent the

excessive amount of overhead responses and that is the reason why the en-route caching policy, where

78

20 40 60 80 100 120 140 160
0

20

40

60

80

100

120

 SEL-LRU-SUB
 SEL-LFU-SUB
 SEL-PRT-SUB
 NRT-LRU-FLD
 NRT-LFU-FLD

C=10, �
c
=1, �

b
=1

A

bs
or

pt
io

n
Ti

m
e

(s
ec

)

V
20 40 60 80 100 120 140 160

2

3

4

 SEL-LRU-SUB
 SEL-LFU-SUB
 SEL-PRT-SUB
 NRT-LRU-FLD
 NRT-LFU-FLD

C=10, �
c
=1, �

b
=1

M
in

im
um

 H
op

 D
is

ta
nc

e
(h

op
s)

V

20 40 60 80 100 120 140 160
0

10

20

30

40

50

60

70

 SEL-LRU-SUB
 SEL-LFU-SUB
 SEL-PRT-SUB
 NRT-LRU-FLD
 NRT-LFU-FLD

C=10, �
c
=1, �

b
=1

Tr
af

fic
 O

ve
rh

ea
d

(h
op

s)

V
20 40 60 80 100 120 140 160

3

6

9

12

15

 SEL-LRU-SUB
 SEL-LFU-SUB
 SEL-PRT-SUB
 NRT-LRU-FLD
 NRT-LFU-FLD

C=10, �
c
=1, �

b
=1

Sa
tis

fa
ct

io
n

(it
em

s)

V

Figure 5.11: (a) Absorption Time, (b) Minimum Hop Distance, (c) Traffic Overhead per Request and

(d) Satisfaction vs V (nodes in the network).

multiple duplicates of the same item appear in the network, does not perform very bad. Regarding

the number of retrieved items per request (Satisfaction Figure 5.9(d)) it is obvious that in the same

way is not affected by ρc. From Figure 5.9 is obvious that the proposed selective caching policy

especially when combined with the the newly proposed subscription-based request policy and the

priority placement policy is on average better than the rest examined caching mechanisms.

5.5.4 Simulations Varying the Publication Rate

Figure 5.10(a) also shows that the Absorption Time decreases fast with λb for every caching mech-

anism since, large values of λb means that more and more items have to be cached every time and

replace already cached items. This is also evident from Eq. (5.4) and particularly form the rate

λh, which is the rate at which an item is pushed in the cache when a new publication occurs. The

Minimum Hop Distance (Figure 5.10(b)) is not severely affected by the λb. Particularly, it slightly

increases since the publication of new items allows request packets to find unique (not duplicate)

items further in the network. The Traffic Overhead is also decreased significantly (Figure 5.10(c)),

since the large number of new published items don’t allow the existence of many duplicates of the

same items in the network.

Regarding the Satisfaction metric, we observe a linear increase in the number of returned re-

sponses for every caching mechanism due to the increase in the number of unique items cached in

79

0 20 40 60 80
0

50

100

150

200

250

300

350

 SEL-LRU-SUB
 SEL-LFU-SUB
 SEL-PRT-SUB
 NRT-LRU-FLD
 NRT-LFU-FLD

V=40, �
c
=1, �

b
=1

A
bs

or
pt

io
n

Ti
m

e
(s

ec
)

C
0 20 40 60 80

2,4

2,6

2,8

3,0

3,2

3,4

 SEL-LRU-SUB
 SEL-LFU-SUB
 SEL-PRT-SUB
 NRT-LRU-FLD
 NRT-LFU-FLD

V=40, �
c
=1, �

b
=1

M
in

im
um

 H
op

 D
is

ta
nc

e
(h

op
s)

C

0 20 40 60 80

14

16

18

20

 SEL-LRU-SUB
 SEL-LFU-SUB
 SEL-PRT-SUB
 NRT-LRU-FLD
 NRT-LFU-FLD

V=40, �
c
=1, �

b
=1

Tr
af

fic
 O

ve
rh

ea
d

(h
op

s)

C
0 20 40 60 80

0

10

20

30

40

50

 SEL-LRU-SUB
 SEL-LFU-SUB
 SEL-PRT-SUB
 NRT-LRU-FLD
 NRT-LFU-FLD

V=40, �
c
=1, �

b
=1

Sa
tis

fa
ct

io
n

(it
em

s)

C

Figure 5.12: (a) Absorption Time, (b) Minimum Hop Distance, (c) Traffic Overhead per Request and

(d) Satisfaction vs C (cache slots per node).

the network. From Figure 5.10 is obvious that the proposed caching mechanism SEL-PRT-SUB is on

average better than the rest examined caching mechanisms, especially in the cases of the Absorption

Time and the Satisfaction metrics. The performance of those metrics is actually the main target of the

work presented in this chapter.

5.5.5 Simulations Varying the Number of Nodes in the Network

Figure 5.11(a) shows that the Absorption Time increases almost linearly with V , since more nodes

means more caching points leading to more content replicas available in the network and longer

survival time of an item in the system. This is also evident from Section 5.5.2 where large V means

larger Rm(s) (number of copies of item m in the network) which implies more time for the item to get

absorbed. The Minimum Hop Distance (Figure 5.11(b)) is increasing with the increase of the number

of nodes in the network, since now items are also fetched from more distant nodes. Traffic Overhead

is also increased linearly, but the two duplicate dropping mechanisms prevent the excessive amount

of overhead responses, especially when the en-route caching policy is used, retaining the overhead

only 5%−25% extra overhead responses than the selective caching policy (Figure 5.11(c)).

Regarding the number of retrieved items per request the increase of the number of nodes has

not such a significant impact (double responses when the number of nodes is sixteen times larger).

More nodes might mean more different cached items, but on the other hand more nodes also increase

80

 SEL-LRU-SUB-pop
 SEL-LRU-SUB-unpop
 SEL-PRT-SUB-pop
 SELPRT-SUB-unpop
 SEL-FIFO-SUB-pop
 SEL-FIFO-SUB-unpop

0,2 0,4 0,6 0,8 1,0 1,2 1,4
0

40

80

120

160

200

240 C=10, V=40, �
c
=0,2 , �

b
=1

A
bs

or
pt

io
n

Ti
m

e
(s

ec
)

Zipf's exponent

Figure 5.13: Performance evaluation in case of different item popularity.

the replication degree of the cached items (Rm(s)) which does allow the retrieval of more unique

cached items (Figure 5.11(d)). Figure 5.11 also shows that the proposed caching mechanism SEL-

PRT-SUB is on average better than the rest examined mechanisms and maintain the functionality of

the used architectural design, being slightly worse regarding Satisfaction from the schemes that use

the flooding request policy.

5.5.6 Simulations Varying the Number of Cache Slots per Node

Figure 5.12(a) shows that the Absorption Time increases linearly with C, since more cache slots per

node means more caching points and longer stay of an item in the system. This is also evident from

Eq. (5.4) where increasing C increases all the transition rates that maintain a given item m “higher”

in the cache and further from being dropped. The Minimum Hop Distance (Figure 5.12(b)) is also

improved but not significantly by the increase of the number of the caching slots per node (only 20%

decrease when we increase C sixteen times) since this metric is mainly affected by the size of the

network (number of nodes and topology). Traffic Overhead is also slightly increased by the increase

of the caching capability of the nodes (Figure 5.12(c)) since more cache slots allows the caching of

new and not duplicate items.

Regarding the Satisfaction metric the increase of the number of cache slots per node has signif-

icant impact in the number of retrieved items, since now more unique items can be cached in the

network (Figure 5.12(d)). From Figure 5.12 is obvious that the proposed caching mechanism SEL-

PRT-SUB is on average better than the rest examined mechanisms maintaining at the same time the

basic functionality of the the used architectural design. Particularly, behaves better regarding Ab-

sorption Time than any other mechanism, equally regarding Satisfaction to the mechanisms that use

en-route caching and flooding request and on average 50% better regarding the Traffic Overhead.

5.5.7 Simulations Varying the Popularity of Items

In Figure 5.13, we compare the performance of the proposed selective caching policy combined with

the LRU, the priority replacement policy and the plain FIFO replacement policy when the Zipf expo-

81

1

2

3 4

5

6

7

14

15

16

17

18

19

20

22

21

8

9 10

23

25

24

26

27

28

11 12

13

29 30

01. planetlab2.willab.fi
02. cs-planetlab4.cs.surrey.sfu.ca
03. ple2.dmcs.p.lodz.pl
04. planetlab2.koganei.wide.ad.jp
05. planet6.cs.ucsb.edu
06. planetlab3.eecs.umich.edu
07. planetlab1.cs.umass.edu
08. planetlab2.ifi.uio.no
09. plane-lab-pb2.uni-paderborn.de
10. lsirextpc01.epfl.ch
11. pub2-s.ane.cmc.osaka-u.ac.jp
12. planetlab-1.webedu.ccu.edu.tw
13. pl2.eng.monash.edu.au
14. righthand.eecs.harvard.edu
15. planetlab2.cs.umass.edu
16. planetlab-1.cs.uic.edu
17. planetlab1.utdallas.edu
18. planetlab1.unl.edu
19. planetlab2.unl.edu
20. planetlab1.arizona-gigapop.net
21. planetlab7.csres.utexas.edu
22. planetlab-01.cs.princeton.edu
23. planetlab2.aston.ac.uk
24. peeramidion.irisa.fr
25. plane-lab-pb1.uni-paderborn.de
26. kostis.di.uoa.gr
27. planetlab2.uc3m.es
28. marie.iet.unipi.it
29. vicky.planetlab.ntua.gr
30. planet3.cs.huji.ac.il

Figure 5.14: The used Planetlab nodes, arranged in one of the emulated topologies.

nent of the item popularity changes. Particularly, we compare the most and least popular items with

respect to their mean Absorption Time. First, we observe that the system promotes the differentiation

of the items by reducing significantly the Absorption Time of the unpopular item and allocating more

cache space to the popular one. Next, by comparing the policies it is possible to quantify the gain from

the prioritization inside the cache (regenerations and degradations). We conclude that our mechanism

that combines priority replacement and selective caching provides an important tool for differentiat-

ing the items based on their popularity. Finally, it is obvious that even the usage of the FIFO policy is

good enough to provide prioritization inside the cache revealing the implicit prioritization capabilities

of the newly proposed selective caching policy.

5.6 System Design And experimentation

In this section, we describe our prototype implementation of the proposed opportunistic caching

mechanism using the REDS overlay CBPS system [17]. REDS is a framework of Java classes to

build information-centric applications for large, dynamic networks. REDS provides a modular archi-

tecture whose components can be easily changed to adapt to different deployment scenarios. REDS’

Java interfaces and classes, define: i) the subscriber API, enabling access to the information-centric

services, ii) the node API, enabling access to the components inside the node.

Nodes in REDS are structured in a set of modules grouped in two layers: the Overlay and the

Routing layer. The first manages the overlay network that interconnects nodes, while the second is in

charge of routing packets. Programmers using REDS may adapt the behavior of the system to their

82

needs, while they are free to implement new versions of the components if those do not fit their needs.

We modified the REDS system in order to implement the newly introduced packets and support the

Cache and the Pending Request Table. Apart from those changes we also modified the Overlay layer

in such a way that the new packets can be transferred. Changes have also been made to the subscriber

API and particularly to the functions that generate/manipulate the request and the response packets.

In order to evaluate our system prototype, we have deployed it and performed experiments in

PlanetLab [85] using 30 sites (nodes) around the globe. PlanetLab is a global research network that

supports the development of new network services such as distributed storage, network mapping,

peer-to-peer systems, distributed hash tables, and query processing. Those sites form the network

and we emulated topologies from the Zoo dataset. Figure 5.14 illustrate the used Planetlab nodes, as

well as an emulated topology. As with the simulations, subscribers are dynamically deployed using a

birth and death process emulated by Java applications generating threads for subscribing/requesting

to and unsubscribing from items they are interested in at every node of the overlay with specific

rates. We set three experiments, one varying the subscribers intensity per node per item ρc, one

varying the publication rate λb and one varying the cache size C of each node. Apart from the Traffic

Overhead and the Satisfaction (that are similar to the simulation experiments) we are also looking at

the following interesting metrics:

• The Cache Hit Ratio is the ratio between the requests found at least one matching item (unique)

over the total requests exchanges between the nodes in the network.

• The Duplicate Dropping Ratio is the ratio of the dropped responses (using the two duplicate

dropping mechanisms presented in Section 5.2.1) over the total responses exchanged between

the nodes of the network. This metric shows how efficient are the proposed dropping mecha-

nisms and the overhead generated by each caching mechanism.

5.6.1 PlanetLab Experiments Varying the Subscribers’ Intensity per Node

Figures 5.15(b) and (c) show that the Traffic Overhead and the Satisfaction metrics are inline with

the corresponding figures from the simulation experiments. The PlanetLab experiments show that the

Traffic Overhead and the Satisfaction are not severely affected by the subscribers intensity. Also the

caching mechanisms which use the en-route caching policy and the flooding request policy manages

to return slightly more items at the cost of higher Traffic Overhead. Of course the duplicate dropping

mechanisms keeps that extra overhead only 15%−20% more than the overhead using the mechanisms

with the selective caching and the subscription based request policy. Regarding the new metrics,

Figure 5.15(a) shows that the proposed selective caching policy combined with the subscription based

request policy yields almost 20% more cache hits since the en-route counterpart tend to find more

duplicate items. This is also obvious from Figure 5.15(d) where the duplicate dropping mechanisms

need to drop at least 20% more responses when the flooding request policy is used. Figure 5.15,

as previously, shows that the proposed mechanism SEL-PRT-SUB is on average better than the rest

examined mechanisms.

83

0,1 1 10
0,2

0,4

0,6

0,8

 SEL-LRU-SUB
 SEL-LFU-SUB
 SEL-PRT-SUB
 NRT-LRU-FLD
 NRT-LFU-FLD

C=10, V=30, �
b
=1

C
ac

he
 H

it
R

at
io

�c

0,1 1 10
6

7

8

9

10

�c

 SEL-LRU-SUB
 SEL-LFU-SUB
 SEL-PRT-SUB
 NRT-LRU-FLD
 NRT-LFU-FLD

C=10, V=30, �
b
=1

Tr
af

fic
 O

ve
rh

ea
d

(h
op

s)

0,1 1 10

4

6

8

�c

 SEL-LRU-SUB
 SEL-LFU-SUB
 SEL-PRT-SUB
 NRT-LRU-FLD
 NRT-LFU-FLD

C=10, V=30, �
b
=1

Sa
tis

fa
ct

io
n

(it
em

s)

0,1 1 10
0,2

0,4

0,6

0,8

1,0

�c

 SEL-LRU-SUB
 SEL-LFU-SUB
 SEL-PRT-SUB
 NRT-LRU-FLD
 NRT-LFU-FLD

C=10, V=30, �
b
=1

D
up

lic
at

e
D

ro
pp

in
g

R
at

io

Figure 5.15: (a) Cache Hit Ratio, (b) Traffic Overhead per Request, (c) Satisfaction and (d) Duplicate

Dropping Ratio vs ρc.

5.6.2 PlanetLab Experiments Varying the Publication Rate

As previously, Figures 5.16 (b) and (c) presenting the Traffic Overhead and the Satisfaction metrics

are in conformance with the corresponding figures from the simulations depicting the same metrics.

This is another proof that our implementation manages to capture all the characteristics of the exam-

ined caching mechanisms. Regarding the Cache Hit Ratio presented in Figure 5.16(a) we observe

that the publication of new items tend to remove faster the cached ones, decreasing the possibility of

finding matching items on them. Of course when new information items are published very fast the

Satisfaction metric might slightly increase but, especially when the en-route caching policy is used,

the multiple caching of the same items in the network dictates the duplicate dropping mechanisms to

drop almost 60%− 90% of the generated responses. In other words, the high publication rate espe-

cially when the en-route caching is used degrades the placement/replacement policies into the plain

FIFO policy and the levels of differentiation that they offered among the items (popular and unpopu-

lar) is diminished. Figure 5.16 is another proof that the proposed caching mechanism SEL-PRT-SUB

is on average better than the rest examined mechanisms maintaining at the same time the functionality

of the used architectural design.

84

0,1 1 10

0,2

0,4

0,6

0,8

 SEL-LRU-SUB
 SEL-LFU-SUB
 SEL-PRT-SUB
 NRT-LRU-FLD
 NRT-LFU-FLD

C=10, V=30, �
c
=1

C

ac
he

 H
it

R
at

io

�
b

0,1 1 10
8

10

12

14

16

18

20

 SEL-LRU-SUB
 SEL-LFU-SUB
 SEL-PRT-SUB
 NRT-LRU-FLD
 NRT-LFU-FLD

�
b

C=10, V=30, �
c
=1

Tr
af

fic
 O

ve
rh

ea
d

(h
op

s)

0,1 1 10
1

2

3

4

5

 SEL-LRU-SUB
 SEL-LFU-SUB
 SEL-PRT-SUB
 NRT-LRU-FLD
 NRT-LFU-FLD

�
b

C=10, V=30, �
c
=1

Sa
tis

fa
ct

io
n

(it
em

s)

0,1 1 10
0,4

0,6

0,8

1,0

 SEL-LRU-SUB
 SEL-LFU-SUB
 SEL-PRT-SUB
 NRT-LRU-FLD
 NRT-LFU-FLD

C=10, V=30, �
c
=1

D
up

lic
at

e
D

ro
pp

in
g

R
at

io

�
b

Figure 5.16: (a) Cache Hit Ratio, (b) Traffic Overhead per Request, (c) Satisfaction and (d) Duplicate

Dropping Ratio vs λb (publication rate).

5.6.3 PlanetLab Experiments Varying the Number of Cache Slots per Node

As in the previous two cases the results from the PlanetLab are in perfect conformance with the

corresponding results obtained by the experiments in the discrete event simulator. The Cache Hit

Ratio (Figure 5.17(a)) is increasing as we increase the cache capability of each node, since now more

different items could be cached at each node of the network. Of course, increasing the cache capacity

of each node has as side effect the survival in the network of more duplicate items which increases

the Duplicate Dropping Ratio (Figure 5.17(d)).

5.7 Mobility Support Through Opportunistic Caching

The majority of the proposed information-centric approaches are designed not to tolerate any form of

topological reconfiguration, therefore they cannot be exploited in those application scenarios where

decoupling would be most beneficial. The first information-centric system that supported mobile sub-

scribers was JEDI [86], where subscribers used two functions (move-out and move-in) to explicitly

detach from the network and reconnect to it, possibly through a different node. In [87] authors im-

plement a mobility support service that is independent of the underlying overlay and transparently

manages active subscriptions and incoming items when a subscriber detaches from one node until it

reattaches at another. They use mobile service proxies which are independent, stationary components

85

0 20 40 60 80
0,2

0,4

0,6

0,8

1,0

 SEL-LRU-SUB
 SEL-LFU-SUB
 SEL-PRT-SUB
 NRT-LRU-FLD
 NRT-LFU-FLD

V=30, �
c
=1, �

b
=1

C
ac

he
 H

it
R

at
io

C
0 20 40 60 80

8

10

12

14

16

18

20

22

24

 SEL-LRU-SUB
 SEL-LFU-SUB
 SEL-PRT-SUB
 NRT-LRU-FLD
 NRT-LFU-FLD

V=30, �
c
=1, �

b
=1

Tr
af

fic
 O

ve
rh

ea
d

(h
op

s)

C

0 20 40 60 80
0

10

20

30

 SEL-LRU-SUB
 SEL-LFU-SUB
 SEL-PRT-SUB
 NRT-LRU-FLD
 NRT-LFU-FLD

V=30, �
c
=1, �

b
=1

Sa
tis

fa
ct

io
n

(it
em

s)

C
0 20 40 60 80

0,2

0,4

0,6

0,8

 SEL-LRU-SUB
 SEL-LFU-SUB
 SEL-PRT-SUB
 NRT-LRU-FLD
 NRT-LFU-FLD

V=30, �
c
=1, �

b
=1

D
up

lic
at

e
D

ro
pp

in
g

R
at

io

C

Figure 5.17: (a) Cache Hit Ratio, (b) Traffic Overhead per Request, (c) Satisfaction and (d) Duplicate

Dropping Ratio vs C.

that run at the edges of the network. In other words they use a second overlay network to take care the

mobility of the subscribers. That second overlay is responsible to gather the publications, that match

the interests of the mobile subscriber, and deliver them when they reconnect to the network. The

proxies of that second overlay should be aware of the topology of the mobile service network, since

they should directly contact each other when a subscriber moves among them. Finally in [88] authors

present COMAN (COntent-based routing for Mobile Ad-hoc Networks), a protocol to organize the

nodes of a MANET in a tree-shaped network able to self repair to tolerate the frequent topological

reconfigurations. COMAN was designed to minimize the number of nodes whose routing informa-

tion are affected by topological changes, but it does not support the retrieval of lost items after the

reconfiguration of the network.

In this section we are interested in supporting the mobility of subscribers, where a subscriber

is disconnecting from the network and reconnects from a different point later in time. Particularly,

we propose a modification to the caching mechanism described in this chapter to enable mobility of

the subscribers. Our approach is relative to [87], with the important difference that no extra func-

tionality is required. Particularly, using a portion of each node’s cache, we allow caches to manage

subscriptions and publications on behalf of the mobile subscribers, both while they are disconnected

and during the switch-over phase.

When a subscriber is connected, receives information items directly from the network. Before

detaching, the subscriber sends to the node (node 1 in Figure 5.18), that is attached to, a Request()

86

ST

A: fltra

1

2

3

ST

2: fltra

A

A:itm1
A:itm2

.

.

.
A:itmn

ST

1: fltra

ST

2: fltra

1

2

3

ST

A: fltra

A

ST

3: fltra

itm1
itm2

.

.

.
itmn

Req(fltra, A, “1”)
Sub(fltra)

Publisher

Figure 5.18: Mobility support mechanism.

packet requesting to detach. That request packet is similar to the packet described in the above

sections but instead of the requesting filter it contains only the “id” of the corresponding subscriber.

The node has already in its Subscription Table “ST” the id of the subscriber and its subscription

filters so now whenever an item, matching those filters, arrives the node directly caches it (apart from

delivering it to the rest of the connected subscribers, if any, with a matching subscription). Until now

the procedure is exactly the same with the procedure of the caching mechanism described above. The

difference appears in the treatment of those cached item.

In order to make the mobility support robust, we equip the caches with a preemption priority

mechanism for those items that are cached for a mobile subscriber. Using such a mechanism, these

items are cached in a FIFO manner disregarding the rest of the items which contend only for the

remaining cache slots. Thus, an item cached for a mobile subscriber is only dropped from the cache

when the cache is full with such items, that arrived later than the given one.

When the mobile subscriber reconnects to the network, from a different node (node 3 in the

example), issues a Request() packet with the subscription filter (or filters or part of them) that had

subscribed before the movement and the “id” of the node that was connected (node 1 in the example).

Node 1, upon receiving that request, will i) respond with the cached items (items that arrived when the

subscriber was in movement, itm1 - itmn in the example), ii) unsubscribe the mobile subscriber from

its Subscription Table and iii) remove those items that no other subscriber has matching subscriptions

to them. This means that those items are treated according to any other item in the cache.

5.7.1 Testbed Demonstration of the Mobility Support Mechanism

We used the same prototype implementation presented in Section 5.6. We used 5 laptops, the 3

were connected via Ethernet switch to set the network as shown in Figure 5.18. Another computer

played the role of publisher while the final laptop played the role of a mobile subscriber. In our

testbed experiments, the mobile subscriber issues one subscription while a series of publications are

published (all publications match that subscription) at a constant rate of λb publications per second

87

0 10 20 30 40 50
0

10

20

30

In
fo

rm
at

io
n

ite
m

s

delivery time (sec)

 �
b
=1

0 10 20 30 40 50
0

10

20

30

40

50

In
fo

rm
at

io
n

ite
m

s

delivery time (sec)

 �
b
=1

0 10 20 30 40 50
0

10

20

30

40

50

60

70

In
fo

rm
at

io
n

ite
m

s

delivery time (sec)

 �
b
=2

0 10 20 30 40 50
0

20

40

60

80

100

In
fo

rm
at

io
n

ite
m

s

delivery time (sec)

 �
b
=2

Figure 5.19: No mobility support (left-side), mobility support (right side).

(λb = 1 and 2), which lasts for 50 seconds (50 and 100 items accordingly). The mobile subscriber

disconnects from one node and connects to another only once, while the mobility interval is fixed and

equal to Δt = 15 sec.

The y axis of Figure 5.19 corresponds to the number of items delivered to the mobile subscriber,

while the delivery time is when the item is received by him (set time to zero when the first item is

delivered). To the left, the case where no mobility is supported is showcased, while to the right, the

effect of our mobility support mechanism is demonstrated. Every point in the figures corresponds to

an item received by the subscriber either through the publish or the request process. The part of the

figures where there is no item delivery represents the time interval that the subscriber is disconnected

from the network, while the vertical part of delivered items (right-side figures) after the reconnection

of the subscriber represents the responses delivered to the subscriber to his request sent to the node

that was attached before the movement. It is obvious that all the published items finally are delivered

to the client.

5.8 Chapter Conclusions

In this chapter, we put forward a new mechanism for in-network opportunistic caching in information-

centric peer-to-peer networks. Particularly, we enhanced the CBPS architectural design with a re-

quest/response scheme so that subscribers can retrieve previously published items. The proposed

caching mechanism maintains the loose-coupled and asynchronous communication of the CBPS

88

model since there are not assumed predefined caching points and the requests for cached items are

handled transparently by the network. We also proposed a stochastic model that captures the dynam-

ics of the newly proposed caching mechanism. Evaluation through simulations and system prototype

experimentation in PlanetLab shows that the proposed caching mechanism outperforms traditional

caching mechanisms retaining at the same time the traffic overhead in low levels. Moreover, two

duplicate dropping mechanisms have been proposed to diminish the amount of duplicate responses

in the network. Finally, we presented a modification to the proposed caching mechanism to support

mobility of the subscribers.

89

90

Chapter 6

Cache Aware Routing

The research issues addressed by most of the proposed ICN architectures are related to persistent/u-

nique naming, efficient content distribution and discovery through name-based addresses, in-network

caching and security. Given this emergence of ICN oriented solutions, the relevant management needs

in terms of performance have not been extensively studied with most efforts focusing on the perfor-

mance of the in-network caching schemes. Moreover, little attention has been given on designing

efficient routing mechanisms suitable for ICN, since most of the approaches assume either traditional

shortest path or inefficient flooding schemes without taking into consideration the caching capability

of the used path and the possibility of using an alternative routing scheme. In this chapter, we propose

an intra-domain cache aware routing scheme that computes the paths with the minimum transporta-

tion cost based on the information item demands and the caching capabilities of the network, we

derive analytically the communication and computational complexity of the proposed approach and

we evaluate its performance through simulations.

6.1 Introduction

Given this emergence of ICN oriented solutions, the relevant management needs in terms of perfor-

mance have not been adequately addressed, yet they are absolutely essential for relevant network

operation and crucial for the ICN approaches to succeed. Performance management and traffic engi-

neering approaches are also required to control routing, to configure the logic for replacement policies

in cache enabled nodes and to control decisions where to cache, for instance. While quite a lot of

studies have been performed related to caching, routing functionality is completely missing from the

current ICN design with only simple flooding or OSPF-like shortest path mechanisms having been

proposed. This choice has been deliberately left open in order to allow routing solutions ranging

from schemes potentially based on known protocols to innovative solutions best suited to the specific

communication model of ICN.

In the area of routing in ICN authors in [89] present what inter-domain routing policies could

look like in an NDN Internet (policies are realized by tuning a variety of parameters or knobs, avail-

able in the Internet BGP routing protocol). They describe the knobs available to network operators

91

and their possible settings and they explore new economic incentives that may be present in an NDN

Internet and consider what types of routing policies they may develop. In [90] authors propose a scal-

able routing and name resolution framework, called Scalable Multi-level Virtual Distributed Hash

Table (SMVDHT). SMVDHT uses a combination of name aggregation and multilevel virtual DHTs

to achieve scalability. SMVDHT also exploits underlying intra- and inter-domain IP routing proto-

cols to build multi-level virtual DHTs for name resolution, which is more efficient than conventional

hierarchical DHT schemes and simplifies network management. Finally, authors in [91] propose the

Potential Based Routing (PBR) in ICN to achieve several design goals such as availability, adaptabil-

ity, diversity, and robustness. The proposed PBR is more close to the service discovery mechanism

[92] which has been applied to mobile ad-hoc networks.

Moreover, in [93] authors study the viability of joint use of load-balancing, multipath routing and

caching in the CCN architecture. Particularly, they classify the information items in three popularity

groups based on a popularity estimation mechanism and they propose a popularity aware load bal-

ancing scheme (PALB) in order to maximize the effectiveness of caching while balancing link load.

In more details, all the interests for a high/medium popular item are transmitted over a unique tree

towards the origin server in order to maximize the probability that this item is cached in the network,

while the interests for the least popular items use random paths in order to eliminate the probability

to be cached. The selection of the outgoing interface over which an interest for a popular item is to be

sent is decided according to a modulo hash first (MHF) load-balancing scheme. Additionally, in [94]

authors propose a simple content caching, location and routing system that adopts an implicit, trans-

parent and best-effort approach towards in-network caching. Each cache equipped node sets aside

some of its cache space for the purpose of storing routing history, or breadcrumbs (BC), of previ-

ously seen files. The proposed Best Effort Content Search (BECONS) query routing policy forwards

a request/query for an information item either upstream towards the origin server or downstream the

breadcrumb trail in an attempt to locate the item faster and closer to the requesting node. Though best

effort the proposed policy outperform classic policies (e.g. route only to the source) or policies with

explicit coordination between caches.

Finally, in [95] authors investigate whether hash-routing [96] is a viable and efficient caching ap-

proach when applied outside enterprize networks, but within the boundaries of a domain. Every edge

domain router implement a hash function that determines both the placement of the content across

the in-network caches of a domain and how content requests are resolved to the corresponding cache

nodes. Each information item can be cached in a domain at most once, thus preventing redundant

replication of cached content and resulting in a more efficient utilization of cache space. This ap-

proach also allows edge routers to forward content requests to the designated cache directly, without

performing any lookup. In particular, when the edge routers of a domain receive a content request,

they calculate the hash of the content identifier and redirect it to the responsible cache. In the case of a

cache hit, the content is returned to the client, otherwise, the request is forwarded towards the original

server. Similarly, incoming contents are forwarded according to the hash of their identifier. The five

proposed hash-routing schemes manage to reduce significantly the inter-domain traffic by increasing

92

the cache hit ratio within the domain with minimal impact on the traffic dynamics of intra-domain

links. A similar approach to increase content availability through hash-routing, regardless of the in-

crease in the overall network traffic, has also been presented in [97], where authors also present an

extension to inter-domain scenarios. All the related work presented above aims at improving content

availability inside a domain, i.e. maximising cache hit ratios even by following longer routes to an

available cache, thus increasing the overall network utilisation, while the optimisation objective of our

routing scheme is to minimize the overall network traffic taking into account the caching capabilities

of the nodes.

In this chapter, we propose a new cache aware intra-domain routing scheme that dynamically

computes the routes followed by each request for each item and from each node in the network. Par-

ticularly, we present a dynamic programming (DP) approach for the computation of the minimum

transportation cost paths based on the observed item request patterns, such as their popularity and

locality and the used caching scheme, in order to minimize the overall transportation cost imposed by

the user requests. Moreover, we propose an iterative algorithm for the computation of the minimum

cost transportation paths for those scenarios where the routing decisions interact with the caching

decisions. Finally, we shortly present a resource management system architecture for the cache aware

routing in ICN, where resource managers make route decisions, and we validate the proposed scheme

through simulations providing also insight on its ability to adapt to the ever-changing ICN environ-

ment caused by the volatility of the user requests.

The rest of the chapter is organized as follows. In Section 6.2, we present the functionality of the

resource management architecture that will take care the cache aware routing decisions in ICN based

on the selected caching scheme and the volatility of the user requests. In Section 6.3, we formulate

the cache aware routing problem and present the DP approach for the computation of the minimum

transportation cost paths given the cache hit probability of each item at each node of the network.

Moreover, in Section 6.4 we present the iterative algorithm for those scenarios where the cache hit

probability of each item depends on the routing decisions. Finally, in Section 6.5 we evaluate the

performance of the proposed routing scheme and we compare its outcome with the traditional shortest

path routing scheme, while in Section 6.6 we conclude the chapter.

6.2 Resource Management System Architecture

Despite the fact that in-network caching has emerged as one of the most important research fields in

the context of ICN, most of the research attempts assumed the use of the shortest (in terms of hops)

path as the delivery path and attempt to optimize the network performance through the exploration

of various caching schemes in the nodes, without exploring at the same time the caching capabilities

of alternative possibly longer paths. Consequently, efficient management of such networks entails

managing both the routing and the caching scheme used at each node with objectives such as mini-

mizing the content access latency from clients, maximizing the traffic volume served by caches and

thus minimizing the bandwidth cost and congestion of the server.

93

Server/Publisher

Client/Subscriber

RV

Traffic engineering/
Routing Decisions

TM Cache allocation/
replacement policies

Cache
Subscribers

CM

TM: Topology Manager
CM: Cache and Route Manager
RV: Rendezvous node

Cache Monitoring
and Configuration

Figure 6.1: ICN resource management in a PURSUIT-like network architecture.

In this section, we present an ICN resource management system architecture for controlling the

routing processes as well as the cache resources of the network. In Figure 6.1, we depict how such

a system can be deployed on top of a PURSUIT-like network architecture following a centralized

approach, while a distributed approach applied on a NDN-based network is shown in Figure 6.2.

Although, the PURSUIT architecture originally followed a PUSH communication model, in order

to support opportunistic in-network caching a PULL model has also been described in [70]. In this

ICN implementation, the entities that decide on the routing and caching scheme adopted in the man-

aged network are called Topology Manager (TM) and Cache and Route Manager (CM) and reside

either in a node of the network or in a management server and can be co-located with the Rendezvous

Node. The TM/CM may either take long term traffic engineering decisions based on predicted in-

formation item demands or dynamically control the routing and cache resources based on real-time

network information by monitoring the status of the network e.g. cache hit probabilities, link utiliza-

tion, etc. The TM/CM can extract the demand patterns by monitoring the RV node, which gathers the

subscriptions of every user in the network in order to bind the publishers to the subscribers, and passes

the successful bindings to the TM to compute the paths from the subscribers to the publisher(s), based

on its optimization objectives.

In NDN [13] when a user wishes to receive data, he/she issues an Interest packet that contains

the data name. The network propagates the Interests to the nearest data source (anycast) and then the

requested item is delivered back to the user in the form of a Data packet. Each node uses the Pending

Interest Table (PIT) to keep track of the forwarded Interests. In Figure 6.2, a distributed approach

is depicted, where a Resource Manager (RM) is installed in every node of the network. The RMs

are responsible for computing the routes to the server(s) of the information items and enforce cache

allocation and replacement policies in the co-located node. Their decisions may be based on local

information i.e. by monitoring the PIT table to estimate the local demands, cache hit probabilities,

94

Server (Data)

Client

Cache Monitoring
and Configuration Enforce routing

decisions

Resource Manager

PIT FIB

Clients (Interests)

CS

CS: Content Store
PIT: Pending Interest Table
FIB: Forwarding Information Base

Figure 6.2: ICN resource management in a NDN-based network architecture.

replacements or relevant information received by adjacent nodes for acquiring a network-wide view

and take co-operative decisions with the other managers. In NDN nodes, the routing decisions are

enforced by configuring the Forwarding Information Base (FIB) table of the NDN node so that Inter-

ests follow the paths that the manager has computed. The RM also configures the Content Store (CS)

management interface with the appropriate allocation, partitioning and replacement directives.

In the above analysis, we described the functionality of the required additional control compo-

nents and their interactions with the network components of the two ICN architectures, the CM in

PURSUIT and the RM in NDN, that are able to extract from the network all the necessary monitoring

information regarding the items request pattern and enforce new cache allocation and replacement

policies as well as alternative routing schemes. In the next section, we describe a routing algorithm

appropriate for ICNs that takes into account cache related information and realizes the logic of the

Topology and Resource Managers as described in the above system deployments. The routing deci-

sions aim at minimizing an overall network-wide utility function i.e. the total transportation cost for

the delivery of an item from the hosting server to a local client. The proposed routing algorithm is ap-

plicable in both (centralized and distributed) ICN architectures, but we present in detail the distributed

case, which also requires coordination and exchange of relevant information between the managers.

6.3 Problem Formulation

We consider a network of arbitrary topology, represented by a graph G = (V,E). V denotes the set

of nodes and E the communication links interconnecting them. In this chapter we will also use the

calligraphic letters to denote sets and the corresponding capitals for cardinality; for example |V|=V .

We also denote with M the set of the M information items available at the network. For simplicity

we assume that each item is of unit size.

95

Requests for content access are generated by the users of the network, with each user being

directly connected to a node. Each information items m is stored permanently at a node of the network

(server sm, s ∈ V) and every request for that item from every other node is headed towards that node.

Every node v ∈ V has a cache of size Cv slots (each slot can hold an item) and requests are gen-

erated by clients attached to the node with rate rv = {r1
v , . . . ,r

M
v }, where rm

v denotes the aggregate

incoming request rate (in requests per second) at node v for information item m. Each node oppor-

tunistically caches passing by items following a given caching scheme and serves requests for items

that are cached. Each item m ∈M is cached with probability pm
v (cache hit probability) at each node

v ∈ V , independently from node to node.

Assume that node v1 needs to access the information item m and chooses the path p=(v1,v2, . . . ,vn,vn+1)

(vn+1 is the server of item m, pm
vn+1

= psm = 1) from v1 to vn+1. We will use the notation v1�p vn+1

to represent a path from node v1 to node vn+1 (generally every path will be denoted by�p).

The average number of hops to find item m through path p is:

Hm(v1�p vn+1) = 0 · pm
v1
+1 · pm

v2
· (1− pm

v1
)+2 · pm

v3
· (1− pm

v2
) · (1− pm

v1
)+

+ · · ·+n · pm
vn+1
· (1− pm

vn
) · . . . · (1− pm

v2
) · (1− pm

v1
) (6.1)

where n is the number of hops from node v1 to node vn+1 (n+ 1 is the number of nodes along the

path).

For the i-th node in the path p, we define:

wm
�p

(vi) =

⎧⎪⎪⎨
⎪⎪⎩

0 i = 1,

i−1

∏
j=1

(1− pm
v j
) 2≤ i≤ n+1.

(6.2)

We call wm
�p

(vi) the multiplicative weight of node vi along path p for the information item m and

wm
�p

= ∏n
j=1(1− pm

v j
) the multiplicative weight along path p. The multiplicative weight of the whole

path denotes also the probability of a request to reach the server of the requested item. Note that

the multiplicative weight of a node vi depends only on the cache hit probabilities of the items at the

nodes in the path up to that node and not on the cache hit probability of the node itself. Eq. 6.1 is

transformed as:

Hm(v1�p vn+1) = Hm
�p

(vn+1) = 0 · pm
v1
·wm
�p

(v1)+1 · pm
v2
·wm
�p

(v2)+

2 · pm
v3
·wm
�p

(v3)+ · · ·+n · pm
vn+1
·wm
�p

(vn+1) (6.3)

From the above equation is obvious that the average number of hops that a request will travel along

path p until item m is found is:

96

Shortest�path�(hops) Cache�hit�probability�
of�item�m

pA
m =�0.5

pE
m =�0.5

pC
m =�0.2

C

Subscriber

Server/Publisher�
of�item�m

pB
m =�0.8pD

m =�0.8
A

BD

E
Subscriber

Shortest�path�(transportation�cost)

Figure 6.3: A motivation example where the longest path (bottom) produces less traffic in the network

than the shortest path (top).

Hm
�p

(sm) = Hm
�p

=
i

∑
j=1

(j−1) · pm
v j
·wm
�p

(v j) 1≤ i≤ n+1 (6.4)

We call Hm
�p

the transportation cost of the unit size item m along path p.

We define the minimum transportation cost of an item m ∈M from node v, where the request

was generated, to node sm (the server node for the particular item) as follows:

δ (v,sm) = min{Hm(v�p sm)}= min{Hm
�p
} (6.5)

We assume that the graph G is connected and there is always a path from node v ∈ V to node

sm, m ∈M. The statement min{Hm
�p
} means that a path p with the minimum transportation cost is

selected among every path from node v to node sm. A minimum transportation cost path from v to

sm is defined as a path p with Hm
�p

= δ (v,sm). The cache aware routing problem is then defined as a

problem to find the path with the minimum transportation cost for every unit size item m ∈M from

each node v ∈ V\{sm} to the hosting server sm.

Consider the motivating example of Figure 6.3 where the request from the subscriber for item m

towards the server of that particular item will travel on average 2.1 hops following the shortest (in

terms of hops) path, whereas following a potential longer path will actually travel on average 1.63

hops based on the given cache hit probabilities of item m. This means that the longer red path is the

path with the minimum transportation cost for the given scenario.

6.3.1 Dynamic Programming approach

In the traditional shortest path problem the weight of each link is static and known a priori. In the

above setting the transportation cost between two neighboring nodes depends on their history on the

path. From the Eq. (6.2)-(6.4) the transportation cost of item m from node vi to node vi+1 ((vi,vi+1) ∈
E) is i ·

(
∏i

j=1(1− pm
v j
)
)
· pm

vi+1
. The multiplicative term i ·∏i

j=1(1− pm
v j
) is the dependence of the

transportation cost between the two nodes to the history of the path.

97

From the formulation of the problem described above is obvious that:

Hm
�p

(vi+1) = Hm
�p

(vi)+ i ·
(

i

∏
j=1

(1− pm
v j
)

)
· pm

vi+1
(6.6)

and for the minimum transportation cost of an item m ∈M from node v1, where the request was

generated, to node vi+1 (the server node for the particular item) we have:

δ (v1,vi+1) = min

{
Hm
�p

(vi)+ i ·
(

i

∏
j=1

(1− pm
v j
)

)
· pm

vi+1

}

= δ (v1,vi)+min

{
i ·
(

i

∏
j=1

(1− pm
v j
)

)
· pm

vi+1

}

= δ (v1,vi)+ i ·min

{(
i

∏
j=1

(1− pm
v j
)

)}
· pvm

i+1

= δ (v1,vi)+ i ·min
{

wm
�p

(vi+1)
}
· pvm

i+1
(6.7)

From Eq. (6.2) and (6.7) is obvious that the minimum transportation cost path is the path with the

minimum multiplicative weight. In order to minimize the multiplicative weight of a path in Eq. (6.2),

we select as the next hop the node with the maximum cache hit probability, since this will minimizes

the probability of a request to further be forwarded in the network (an item is more likely to be found

at a intermediate node).

From the Dynamic Programming (DP) theory a problem should fulfill two key attributes so that

the DP be applicable; optimal substructure and overlapping subproblems. Optimal substructure means

that the solution to a given optimization problem can be obtained by the combination of optimal

solutions to its subproblems, while overlapping subproblems means that the space of subproblems

must be small, that is, any recursive algorithm solving the problem should solve the same subproblems

over and over, rather than generating new subproblems. Eq. 6.7 fulfills both attributes and its recursive

application for each item m∈M and for each node v∈ V\{sm} provides the paths with the minimum

transportation cost for every item m from every node v, where requests for that particular item were

made, to the server sm of that item. At each recursion the minimum transportation cost towards a

neighbor closer to the server is selected.

6.4 Iterative Routing Algorithm

In Section 6.3 for the computation of the minimum transportation cost paths we assumed that each

item m ∈M is cached with probability pm
v at each node v ∈ V , independently from node to node. The

cache hit probability of each item at a given node depends on the caching scheme that is used. The

caching scheme consists of two phases; in the first phase it is decided which passing by items to cache

(caching algorithm) and in the second phase it is decided which cached item should be removed from

the cache in case of an overflow (replacement algorithm). In [98] authors consider the well known

98

Least Recently Used (LRU) replacement algorithm combined with local caching, where only the node

that hosts the requesting subscriber caches an item, and derive a closed-form formula that can be used

for obtaining approximate cache hit probabilities in constant time.

In the approach presented in [98] the cache hit probability of each item at each node is indepen-

dent of the routing scheme and depends only on the local demand for each item. In this section we

present an iterative algorithm for the computation of the minimum transportation cost paths for those

caching schemes where the cache hit probability of each item at each node not only depends on the

local demand for that item, but also depends on the selected routing scheme (e.g. cache-everything-

everywhere caching algorithm [5]). Since there are is no closed-form formula for the computation of

the cache hit probabilities of each item in the network we assume that this information is extracted

by the CM in the PURSUIT-like architecture (centralized) or the RM in the NDN-like architecture

(distributed) after observing the network for a time period T , using the approach described in Section

6.2. Next we present the steps of the proposed iterative algorithm for the distributed scenario.

Step 1: Set itr = 1. Observe the network operating for a time period T . At the end of this period each

manager at node v computes for each item m its cache hit probability based on the observed

incoming requests, and informs the rest managers by sending a report message. For the given

cache hit probabilities each manager (installed at node v) execute the DP algorithm, presented

in Section 6.3.1, to obtain the minimum transportation cost paths for every item m to the server

of item m. Store those paths at Pv(itr) = Pv(1).

Step 2: Set itr = itr+ 1. Observe the network operating for a time period T (the routing paths are

those computed in the previous iteration) and at the end of that period each manager updates

the cache hit probabilities of each item m and informs the rest managers.

Step 3: For the given cache hit probabilities each manager executes the DP algorithm to obtain the

new minimum transportation cost paths for every item m to the server of that item. Store those

paths at Pv(itr).

Step 4: If at each manager the current paths are the same to the paths computed in the previous

iteration (Pv(itr+1)≡ Pv(itr), ∀v∈V) terminate the iterative algorithm, otherwise repeat steps

2-4 until no new paths are computed (no further reduction in the overall total transportation cost

is possible).

In a centralized scenario a centrally located component (e.g. TM/CM in PURSUIT) executes the

DP algorithm for each one of the nodes without sending report messages to them. Assuming that

the user request patterns does not change over the periods that we observe the network the iterative

algorithm finally converges to a point where the cache hit probabilities of each item at each node

does not change as well. This means that the DP algorithm computes the same paths over the differ-

ent iterations. In the performance evaluation section we show that the iterative algorithm converges

very fast, after a small number of iterations, regardless of the size of the time T that we observe the

99

network. Of course, the larger this time the more accurate is the computation of the cache hit prob-

abilities of each item. The iterative algorithm at convergence computes the paths with the minimum

transportation cost, given a caching scheme. Of course, this is not the optimal solution, since such

an optimal solution requires also the existence of an optimal caching scheme, which is by itself an

NP-hard problem.

6.4.1 Complexity Analysis

In this section we present the communication and computational complexity of the iterative and the

DP algorithm presented above. This will give significant insight regarding the incurred computational

burden for each distributed manager and the communications requirements of the management archi-

tecture. Each manager needs to have a network-wide knowledge of the cache hit probabilities of the

items in the nodes of the network. This requires each manager to forward its local vector with the

observed cache hit probabilities to all the other managers using a report message. One of the inherent

characteristics of the ICN architecture is the multicast nature of the information dissemination. When

a manager wishes to disseminate a management message to the rest of the managers in the network

this is done through a single transmission over the minimum spanning tree of the network topology (a

tree that connects all the nodes/managers). Such a tree has V−1 links, where V is the number of nodes

in the network, hence a message from a manager to every other manager produces a communication

overhead of V −1 messages. For this purpose a report message with the cache hit probabilities of size

M needs to be forwarded to any other manager, leading thus to a total of V ·(V −1) management mes-

sages. As a result, the communication complexity of the DP algorithm is O(V 2 ·M) (assuming that

M different report messages have to be sent; each message contains the relative information of only

one information item). This is also the per iteration communication overhead of the above iterative

algorithm.

For the calculation of the computational complexity of the DP algorithm we firstly define the

calculation of the transportation cost from node vi to node vi+1 (the second term in the summation of

Eq. 6.7; two simple multiplications) as the basic operation. The DP algorithm executed for a given

item m and for every node in the network is similar to any other DP approach for the computation

of the shortest path (e.g. single destination shortest path problem) and it requires O(V · E) basic

operations, where E is the number of links in the network. Since the DP algorithm should be executed

for each item m ∈M the total computational complexity of the DP algorithm is O(V ·E ·M) basic

operations (O(E ·M) for each manager). This is also the per iteration computation overhead of the

above iterative algorithm.

In order to use an ICN architecture for the dissemination of the management report messages

each manager should act both as a subscriber and as a publisher. Particularly, each manager should

subscribe to the relative management information of every other manager (e.g. a given scope in the

PURSUIT architecture) and should publish its own management information (e.g. under the same

scope in PURSUIT) over the ICN, so that it could reach the rest of the managers in the network.

In other words, the relative management information that is used by the proposed DP algorithm is

100

treated as another information item by the ICN.

6.4.2 Discussion

In this section, we discuss in detail the fundamental assumptions made throughout the chapter, as

well as the applicability of the proposed routing scheme. Each manager requires the rv vector with

the local request pattern in order to execute the DP algorithm. The rv vector is an estimation of

the actual request pattern based on observed, historical data (within a given time window) and this

estimation is used as a forecast for the future behavior of the clients attached at each node. The

optimal way to perform this estimation is out of the scope of this work, but in an ICN implementation

this information could be extracted by the managers monitoring the components described in Section

6.2. In [93] authors propose a method to estimate the number of requests for each item using an

exponential moving average function in each measurement window. The proposed iterative algorithm

requires the rv vector of each node to be stable in order to converge. Obviously, if during the iterations

the request patterns significantly change, the proposed algorithm is not able to converge. In the

evaluation section that follows, we always assume that the request patterns are not changing during

the iterations, but we also include an experiment to show how the proposed routing scheme performs

when the request patterns change between the iterations.

The proposed cache aware routing scheme is applicable in both centralized and distributed ICN

architectures. Of course, in a distributed environment managers should exchange information regard-

ing the topology formation and the cache hit rates for each item at each node. Almost every utility

maximization algorithm that has been proposed in the literature, operates in such a distributed iterative

way, where nodes exchange information until the algorithm converges. For example both classes of

routing protocols used in packet switching networks, (link-state routing protocol and distance-vector

routing protocol) operate in a similar way. Of course, our algorithm as already mentioned might

not be applicable in Internet scale (also the link-state routing protocol and distance-vector routing

protocol are not applicable in Internet-scales). Particularly, from the above complexity analysis we

observe that the complexity of the proposed cache aware routing scheme, and as a consequence its

future applicability, depends on the number of information items M and the number of the nodes V

in the network (consequently the number of links in the network E). In this work, we assume that the

proposed cache aware routing scheme is not deployed at full Internet scale but in a domain scale (like

all the current ICN implementations), where the number of items and nodes are significantly smaller

and hence our scheme is applicable. Moreover, the communication and computational complexity

could be further reduced using the appropriate aggregation schemes regarding the naming of items,

i.e. scopes in PURSUIT and hierarchical names in NDN.

Finally, since we assume that during the iterations of the proposed iterative algorithm the request

patterns of the clients are stable, a centralized off-line approach for the computation of the routing

scheme could be adopted in every ICN architecture (centralized or distributed). Particularly, a com-

ponent similar to the TM/CM in PURSUIT could be deployed in a centralized server e.g. in a NMS

(Network Management System), where it monitors the items request pattern from all the nodes of the

101

network and enforcing back its decisions. This component, having also the information regarding

the network topology and given the utility that needs to be maximized/minimized, can emulate the

behavior of the network between the iterations of the iterative algorithm and configure the network

nodes with the final routes to be followed by the requests i.e. after the algorithm converges. Of course,

such a centralized deployment minimizes the amount of the communication overhead but looses all

the benefits of the distributed approach (immunity to node failures and sharing of the computational

overhead).

6.5 Performance Evaluation

In this section, we evaluate through simulations (using a discrete event simulator) the performance of

the proposed cache aware routing scheme (CAWR) and we compare it against the traditional shortest

path routing scheme (SHPT) when the nodes use two different caching schemes. Particularly, the

first scheme is the Cache-everything-everywhere caching scheme described in [5], where each item is

stored at every intermediate node along the path and each node uses the LRU (Least Recently Used)

replacement algorithm in case of an overflow (we call it En-Route caching scheme). In the second

caching scheme only the node that hosts the requesting subscriber caches an item. Also the LRU

replacement algorithm is used within a node in case of an overflow (we call it Local caching scheme).

The cache hit probabilities of each item at each node for the Local scheme could be retrieved using

the closed-form formula presented in [98], but in this chapter we use the discrete event simulator for

both strategies in order to compute those probabilities. Without loss of generality we also assume that

all caches have the same caching capacity (Cv =C, ∀v ∈ V).

Since no ICN infrastructure has been deployed for commercial use yet, no publicly available

data sets exist for performance evaluation. Thus, realistic synthetic workload generators are used

instead [99]-[49]. The request rate for an item at each node is determined by its popularity. Here we

approximate the popularity of the items by a Zipf law of exponents zpop. Literature provides ample

evidence that the file popularity in the Internet follows such a distribution [44]-[47]. We denote by

ϑ v = {ϑ m
v : m ∈M,v ∈ V} the popularity of each item m at node v.

In particular, we consider seven typical values for zpop (popularity exponent of the Zipf distribu-

tion) ranging from −1 to 1, i.e. zpop ∈ Z = {−1,−0.75,−0.5, 0,0.5,0.75,1}). A Zipf distribution of

negative exponent (e.g. zpop =−1) means that out of the M items the most popular item is the M-th,

the second most popular is the (M−1)-th and so on, with the first item being the least popular. On the

other hand a Zipf distribution of positive exponent (e.g. zpop = 1) means that the first item is the most

popular and the M-th is the least popular. A zero value of zpop = 0 corresponds to equally popular

items. We assume that in each node a total of 5 requests per second is generated. Thus, the request

rate of each item at each node varies from 0-5 reqs/sec according to its popularity.

Generally, the popularity of each item differs from place to place, a phenomenon that is referred

to as locality of interest. Thus, we assume that the network is partitioned in |Z| neighborhoods.

Within each neighborhood the popularity of each item m is constant. We assume that the size of

102

each neighborhood follows a Zipf distribution of exponent zloc, i.e. λk : k = 1, . . . , |Z| is the size of

partition k, where the popularity of items is given by the corresponding popularity exponent zpop.

In particular, the first partition k = 1 consists of �λ1 ·V� nodes, where the popularity of each item

follows a Zipf law of popularity exponent −1. This set of nodes is computed by choosing randomly

a central node and its �λϑ ·V�−1 closest neighbors, by executing a Breadth First Search (as long as

a node has not been already assigned to another neighborhood). Note that zloc = 0 means that the

items are of uniform locality and hence the |Z| neighborhoods are of equal size (V
|Z| nodes each). We

used network topologies from the Internet Topology Zoo dataset [50], which contains real network

topologies from all over the world. Since for a given network size more than one topologies may exist

in the dataset, we used all of them for averaging purposes.

We are interested in the following performance metrics:

• The Total Transportation Cost, TTC (in resps ·hops/sec) for each one of the routing schemes

for the transportation of all the items to the nodes, where the requests were made. This metric

is the mean number of hops that all the requests (and the corresponding responses) will travel

in the network until they reach the server or a cache where the requested item is cached.

• The Server Hit Ratio, SHR (in reqs/sec) for each one of the routing schemes. This metric is the

mean number of requests that will finally reach the hosting server of the requested item, since

the item could not be found at an intermediate cache.

• The Average Link Utilization, ALU (in resps/sec) for each one of the routing schemes. This

metric is the average number of responses that travel through each link of the network.

• The Maximum Link Utilization, MLU (in resps/sec) for each one of the routing schemes. This

metric is the maximum number of responses that travel through the most constrained link (“bus-

iest”) of the network. This metric along with the ALU metric is indicative of the load balancing

capabilities of each routing scheme.

• The Average Path Computation Time, APCT (in sec) is the average time for the computation

of a path by the DP algorithm. Particularly, it is the processing time that the computer used

in the simulations requires for the computation of a path. This metric is also indicative of the

computational complexity of the proposed DP algorithm.

The performance evaluation part consists of six different experiments. Initially, we examine the

convergence of the iterative algorithm presented in Section 6.4 for a given network topology size

of the Zoo dataset. Next, we consider scenarios that arise from the synthetic workload generator in

order to compare the performance of the proposed routing and caching schemes when varying the

number of caches V in the network, the cache capacity C of each cache, the exponent of the locality

zloc and the exponent of the popularity zpop. In all the above experimental scenarios we assume that

the request pattern at each node does not change between the iterations of the iterative algorithm. In

the last experiment we examine the performance of the proposed CAWR scheme when the request

pattern is not stable between the iterations.

103

0 2 4 6 8 10 12 14 16 18 20
295

300

305

310

315

320

350

 450sec
 900sec
 1800sec
 3600sec
 7200sec
 14400sec
 average

 CAWR, V=50, C/M=25%

To
ta

l T
ra

ns
p.

 C
os

t (
re

sp
s*

ho
ps

/s
ec

)

iteration
0 2 4 6 8 10 12 14 16 18 20

45

48

51

54

57

 450sec
 900sec
 1800sec
 3600sec
 7200sec
 14400sec
 average

 CAWR, V=50, C/M=25%

Se
rv

er
 H

it
R

at
io

 (r
eq

s/
se

c)

iteration

Figure 6.4: Convergence of the cache aware routing algorithm for various observation periods of the

discrete event simulator.

Figure 6.4 presents the evolution of the proposed iterative algorithm for a given number of iter-

ations for various values of the observation time period T . It is obvious that the iterative algorithm

converges very fast (only after 5 iterations) regardless of the used observation period. Convergence

means that after each iteration the DP algorithm computed the same paths computed in the previous

iteration. This implies that the cache hit probabilities of the items have also converged and they won’t

change until the demand pattern changes. Moreover, we observe that the outcome of each different

experiment deviates less than 1% from the average value, which implies that the value of the ob-

servation period T is of little importance. Of course, in the following experiments we used in our

discrete-event simulator a large value for period T and we depict the performance of the network

after the convergence of the iterative algorithm.

In Figure 6.5 we depict the impact of the number of nodes/caches V in the network. The capacity

of each cache is expressed as the fraction of the items that can be stored in the particular cache

(Cv/M = C/M = 25%, M = 1000 items). We notice that both the TTC and the SHR performance

metrics exhibit a sublinear behavior. Also, the proposed CAWR scheme outperforms the traditional

SHPT regardless of the size of the network. Particularly we observe 10%− 35% (5%− 18% when

the Local caching scheme is used) improvement regarding the total transportation cost when the En-

Route caching scheme is used, even for very small networks where the availability of alternative

paths is small, and 15%− 65% (10%− 42% accordingly) improvement regarding the Server Hit

Ratio. Particularly, in the case of the SHR when the En-Route scheme is used the results are very

impressive, where up to 65% less requests, compared to the SHPT, finally reach the server implying

a better utilization of the network resources and minimizing the needs for the deployment of server

replicas in the network. This is also evident from the two link utilization metrics where we observe

50%− 60% decrease of the links’ utilization when the the CAWR routing scheme is used instead

of the traditional shortest path scheme. Finally, from Figure 6.5 is obvious that the simplistic Local

caching scheme outperforms the En-route caching scheme up to 20% regarding TTC (30% regarding

SHR) regardless of the used routing scheme. This remark, also observed in the rest of the experiments,

further enforces the doubts that have already questioned the cache-everything-everywhere (En-Route)

104

25 50 75 100 125 150 175 200

0

200

400

600

800

1000

1200

 CAWR_En-Route
 SHPT_En-Route
 CAWR_Local
 SHPT_Local

 C/M=25%

To

ta
l T

ra
ns

p.
 C

os
t (

re
sp

s*
ho

ps
/s

ec
)

V
25 50 75 100 125 150 175 200

0

5

10

15

20

25

30

35 TTC_En-route (CAWR/SHPT)
 TTC_Local (CAWR/SHPT)
 TTC_CAWR (Local/En-Route)
 TTC_SHPT (Local/En-Route)

 C/M=25%

%
 im

pr
ov

em
en

t T
TC

V

25 50 75 100 125 150 175 200
0

50

100

150

200

250

 CAWR_En-Route
 SHPT_En-Route
 CAWR_Local
 SHPT_Local

 C/M=25%

Se
rv

er
 H

it
R

at
io

 C
os

t (
re

qs
/s

ec
)

V
25 50 75 100 125 150 175 200

0

10

20

30

40

50

60

70
 SHR_En-route (CAWR/SHPT)
 SHR_Local (CAWR/SHPT)
 SHR_CAWR (Local/En-Route)
 SHR_SHPT (Local/En-Route)

 C/M=25%

%
 im

pr
ov

em
en

t S
H

R

V

25 50 75 100 125 150 175 200
0

1

2

3

4

5

 CAWR_En-Route
 SHPT_En-Route
 CAWR_Local
 SHPT_Local

 C/M=25%

A
ve

ra
ge

 L
in

k
U

til
iz

at
io

n
(r

es
ps

/s
ec

)

V
25 50 75 100 125 150 175 200

0

20

40

60

80

100

120

 CAWR_En-Route
 SHPT_En-Route
 CAWR_Local
 SHPT_Local

 C/M=25%

M
ax

im
um

 L
in

k
U

til
iz

at
io

n
(r

es
ps

/s
ec

)

V

Figure 6.5: The performance of the proposed cache aware routing scheme and the traditional shortest

path routing vs. the number V of nodes (caches) in the network, for two different caching strategies.

scheme.

In Figure 6.6 we depict the impact of the cache capacity, expressed as the fraction of the items that

can be stored in a cache. In general, we notice similar behavior with the previous experiment, with the

proposed CAWR scheme performing better than the SHPT scheme. We also observe that the Local

caching scheme outperforms the En-Route scheme, but as expected with the benefit diminishing as

we relax the storage capacity constraint and allowing more items to fit in each cache. Finally, in

almost every experiment we observed that the SHR improvement is almost twice as much as the

improvement in the TTC. This means that even if there are cases where the new routing scheme

cannot alleviate the transportation costs, it can at least achieve significantly better utilization of the

network resources and reduce the load at the hosting servers. The inherent load balancing capabilities

of the proposed CAWR scheme are also evident from the two utilization metrics, where the CAWR

105

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7
0

200

400

600

800

 CAWR_En-Route
 SHPT_En-Route
 CAWR_Local
 SHPT_Local

 V=50

To
ta

l T
ra

ns
p.

 C
os

t (
re

sp
s*

ho
ps

/s
ec

)

C/M
0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7

0

5

10

15

20

25

30

35

40
 TTC_En-route (CAWR/SHPT)
 TTC_Local (CAWR/SHPT)
 TTC_CAWR (Local/En-Route)
 TTC_SHPT (Local/En-Route)

 V=50

%
 im

pr
ov

em
en

t T
TC

C/M

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7
0

50

100

150

200

 CAWR_En-Route
 SHPT_En-Route
 CAWR_Local
 SHPT_Local

 V=50

Se
rv

er
 H

it
R

at
io

 C
os

t (
re

qs
/s

ec
)

C/M
0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7

0

10

20

30

40

50

60

70
 SHR_En-route (CAWR/SHPT)
 SHR_Local (CAWR/SHPT)
 SHR_CAWR (Local/En-Route)
 SHR_SHPT (Local/En-Route)

 V=50

%
 im

pr
ov

em
en

t S
H

R

C/M

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7
0

1

2

3

4

5

6

7

 CAWR_En-Route
 SHPT_En-Route
 CAWR_Local
 SHPT_Local

 V=50

A
ve

ra
ge

 L
in

k
U

til
iz

at
io

n
(r

es
ps

/s
ec

)

C/M
0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7

0

20

40

60

80

100

120

140

 CAWR_En-Route
 SHPT_En-Route
 CAWR_Local
 SHPT_Local

 V=50

M
ax

im
um

 L
in

k
U

til
iz

at
io

n
(r

es
ps

/s
ec

)

C/M

Figure 6.6: The performance of the proposed cache aware routing scheme and the traditional shortest

path routing vs. the fraction of the items that can be stored in a cache, for two different caching

strategies.

scheme is on average 10%−30% better than the SHPT regardless of the underlying caching scheme.

In Figure 6.7 we examine the impact of the locality variations on the performance of the routing

schemes. We notice that the proposed CAWR scheme performs better than the SHPT scheme for each

one of the metrics. Generally, the changes of the locality exponent cause a domino effect requiring

significant reorganization of the routing scheme, since they alter the topology of the demands in the

network under consideration and consequently the cache hit probabilities of each item in the network.

Of course at the convergence the routing schemes perform identical over the different locality values,

implying that the sizes of the neighborhoods, where the popularities are assigned, has limited impact

on the performance of the routing schemes and those minor differences are due to the way we choose

the nodes for the assignment of the popularities.

106

-1,0 -0,8 -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6 0,8 1,0
300

350

400

450

500

 CAWR_En-Route
 SHPT_En-Route
 CAWR_Local
 SHPT_Local

 V=50, C/M=25%

To

ta
l T

ra
ns

p.
 C

os
t (

re
sp

s*
ho

ps
/s

ec
)

z
loc

-1,0 -0,8 -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6 0,8 1,0

8

10

12

14

16

18

20

22

24

 TTC_En-route (CAWR/SHPT)
 TTC_Local (CAWR/SHPT)
 TTC_CAWR (Local/En-Route)
 TTC_SHPT (Local/En-Route)

 V=50, C/M=25%

%
 im

pr
ov

em
en

t T
TC

z
loc

-1,0 -0,8 -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6 0,8 1,0
40

50

60

70

80

z
loc

 CAWR_En-Route
 SHPT_En-Route
 CAWR_Local
 SHPT_Local

 V=50, C/M=25%

Se
rv

er
 H

it
R

at
io

 C
os

t (
re

qs
/s

ec
)

-1,0 -0,8 -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6 0,8 1,0

15

20

25

30

35

 SHR_En-route (CAWR/SHPT)
 SHR_Local (CAWR/SHPT)
 SHR_CAWR (Local/En-Route)
 SHR_SHPT (Local/En-Route)

 V=50, C/M=25%

%
 im

pr
ov

em
en

t S
H

R

z
loc

-1,0 -0,8 -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6 0,8 1,0
2,0

2,4

2,8

3,2

3,6

4,0

 CAWR_En-Route
 SHPT_En-Route
 CAWR_Local
 SHPT_Local

 V=50, C/M=25%

A
ve

ra
ge

 L
in

k
U

til
iz

at
io

n
(r

es
ps

/s
ec

)

z
loc

-1,0 -0,8 -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6 0,8 1,0

25
30
35
40
45
50
55
60
65

 CAWR_En-Route
 SHPT_En-Route
 CAWR_Local
 SHPT_Local

 V=50, C/M=25%

M
ax

im
um

 L
in

k
U

til
iz

at
io

n
(r

es
ps

/s
ec

)

z
loc

Figure 6.7: The performance of the proposed cache aware routing scheme and the traditional shortest

path routing vs. the locality exponent zloc, for two different caching strategies.

In Figure 6.8 we examine the impact of the popularity variations on the performance of the

CAWR routing schemes. We also examine its adaptivity when the popularity of the requests change.

In order to examine the adaptivity of the proposed routing scheme we initially assume that the

popularities assigned to the nodes of the network, using a given locality, are given by the vector

Z = (−1,−0.75,−0.5,0,0.5,0.75,1) and at each different experiment (different points in the figure)

this vector changes by a given factor. This factor ranges from 10% to 200%. A change of 10% means

that the new vector of popularities is Z = (−0.9,−0.675,−0.45,0,0.45,0.675,0.9), whereas a change

of 100% transforms the vector of popularities to Z = (0,0,0,0,0,0,0) and a change of 200% inverts

the vector Z = (1,0.75,0.5,0,−0.5,−0.75,−1). We also depict the performance of the initial routing

CAWR init with the new demand pattern. Particularly, we compare the performance of the CAWR

after the computation of the new paths to the performance of the CAWR when we use the initial paths

107

20 40 60 80 100 120 140 160 180 200
300

350

400

450

500

550

600

650

700

 CAWR
 SHPT
 CAWR_init

 En-Route, V=50, C/M=25%

To
ta

l T
ra

ns
p.

 C
os

t (
re

sp
s*

ho
ps

/s
ec

)

% dif. z
pop

20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

40

 CAWR/SHPT
 CAWR/CAWR_init

En-Route, V=50, C/M=25%

%
 im

pr
ov

em
en

t T
TC

% dif. z
pop

20 40 60 80 100 120 140 160 180 200

50

60

70

80

90

100

110

120

130

% dif. z
pop

 CAWR
 SHPT
 CAWR_init

 En-Route, V=50, C/M=25%

Se
rv

er
 H

it
R

at
io

 C
os

t (
re

qs
/s

ec
)

20 40 60 80 100 120 140 160 180 200
0
5

10
15
20
25
30
35
40
45
50

 CAWR/SHPT
 CAWR/CAWR_init

 En-Route, V=50, C/M=25%

%
 im

pr
ov

em
en

t S
H

R

% dif. z
pop

20 40 60 80 100 120 140 160 180 200

2,5

3,0

3,5

4,0

4,5

5,0

 CAWR
 SHPT
 CAWR_init

En-Route, V=50, C/M=25%

A
ve

ra
ge

 L
in

k
U

til
iz

at
io

n
(r

es
ps

/s
ec

)

% dif. z
pop

20 40 60 80 100 120 140 160 180 200

30

40

50

60

70

80

90

 CAWR
 SHPT
 CAWR_init

En-Route, V=50, C/M=25%

M
ax

im
um

 L
in

k
U

til
iz

at
io

n
(r

es
ps

/s
ec

)

% dif. z
pop

Figure 6.8: The performance of the proposed cache aware routing scheme and the traditional shortest

path routing vs. the popularity exponent zpop.

computed for the initial vector of popularities, but under the new demand pattern.

Similarly to the previous experimental scenarios the proposed CAWR scheme performs better

than the SHPT scheme for each one of the used metrics. Particularly, we observe 15%− 20% im-

provement regarding the total transportation cost and 35%−45% improvement regarding the Server

Hit Ratio. The interesting in this experimental scenario is in the comparison of the CAWR with the

CAWR init. We observe that when the changing factor of the initial popularities is smaller that 100%

the CAWR performs only 1%−6% better than the CAWR init and only when the changing factor is

larger than 100% and the popularity vector reverts its sign we observe a difference is the performance

up to 35% and 25% regarding the TTC and the SHR metric. This means that as long as the ranking

of the items, regarding their popularity, do not change and despite that fact that the items’ popularity

become more uniform the initial paths are still good enough and even better than the shortest paths.

108

25 50 75 100 125 150 175 200
0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

 CAWR_En-Route
 CAWR_Local

 C/M=25%

A

ve
r.

pa
th

 c
om

pu
t.

tim
e

pe
r i

te
m

 (s
ec

)

V
0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7

0,0

1,0

2,0

3,0

4,0

5,0

6,0

 CAWR_En-Route
 CAWR_Local

 V=50

A
ve

r.
pa

th
 c

om
pu

t.
tim

e
pe

r i
te

m
 (s

ec
)

C/M

-1,0 -0,8 -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6 0,8 1,0
0,10

0,15

0,20

0,25

0,30

0,35

0,40

 CAWR_En-Route
 CAWR_Local

 V=50, C/M=25%

A
ve

r.
pa

th
 c

om
pu

t.
tim

e
pe

r i
te

m
 (s

ec
)

z
loc

20 40 60 80 100 120 140 160 180 200
0,12

0,14

0,16

0,18

0,20

0,22

 CAWR_En-Route
 CAWR_Local

 V=50, C/M=25%

A
ve

r.
pa

th
 c

om
pu

t.
tim

e
pe

r i
te

m
 (s

ec
)

% dif. z
pop

Figure 6.9: Average path computation time per item vs. the number of caches in the network, the

cache capacity of each node, the locality and the popularity exponent for two different caching strate-

gies.

Note that we omit the Local caching scheme from Figure 6.8, since it performs similarly to the En-

route scheme but being, as in every other experiment, 10% better regarding TTC (20% regarding

SHR) than the En-Route scheme.

Figure 6.8 could also be used as a benchmark for the resource managers in their decision to re-

compute the minimum transportation cost paths or not upon the detection of a change in the popularity

pattern. Particularly, the difference between the TTC and SHR metric produced by the initial routing

and the TTC and the SHR metric after the completion of the iterative algorithm enables the RMs to

skip or not the changing of the routing scheme. For example when the observed popularities change

up to 100% we observe only a 1%− 7% decrease in the performance, whereas when the observed

popularities revert the decrease in the performance is in the area of 30%, meaning that in the first case

the RMs could skip the change of the routing scheme, whereas in the second case such a change is

crucial.

In Figure 6.9 we depict the average path computation time per item of an average computer (a

laptop with a dual-core 1.3 GHz CPU and 2 GB RAM that runs MATLAB for the execution of the

DP algorithm). This metric along with the complexity analysis of Section 6.4.1 give pointers for

the future applicability of the proposed iterative algorithm and the new cache aware routing scheme.

Apart from the size of the network we observe that the APCT metric depends heavily on the cache

size of each node, whereas the locality and the popularity exponent has no impact at all. The proposed

109

0 2 4 6 8 10 12 14 16 18 20

220

240

260

280

300

320

340

360

 5%
 10%
 20%
 30%

 CAWR, V=50, C/M=25%

To
ta

l T
ra

ns
p.

 C
os

t (
re

sp
s*

ho
ps

/s
ec

)

iteration
0 2 4 6 8 10 12 14 16 18 20

33
36
39
42
45
48
51
54
57

 5%
 10%
 20%
 30%

 CAWR, V=50, C/M=25%

Se
rv

er
 H

it
R

at
io

 (r
eq

s/
se

c)

iteration

0 2 4 6 8 10 12 14 16 18 20

10

15

20

25

30

 5%
 10%
 20%
 30%

 V=50, C/M=25%

%
 im

pr
ov

em
en

t T
TC

 (C
A

W
R

/S
H

PT
)

iteration
0 2 4 6 8 10 12 14 16 18 20

30

35

40

45

50

 5%
 10%
 20%
 30%

 V=50, C/M=25%

%
 im

pr
ov

em
en

t S
H

R
 (C

A
W

R
/S

H
PT

)

iteration

Figure 6.10: The performance of the proposed cache aware routing scheme when the request request

patterns are not stable between the iterations of the DP algorithm.

DP algorithm, at each step, adds to the path the link that leads to a node closer to the server and has

the largest cache hit probability for the given item. Increasing the cache capacity of each node also

increases the cache hit probability of every item. This means that in order to retrieve an item with the

minimum transportation cost we follow shorter paths and the DP algorithm terminated faster (“visits”

less links in the network).

In all of the above experiments we assumed that the request patterns are stable between the it-

erations of the iterative algorithm. This is also a necessary condition for the iterative algorithm to

converge. In Figure 6.10 we examine the performance of the CAWR routing scheme when the re-

quest pattern at each node changes randomly between the iterations of the iterative algorithm up to a

given factor a ∈ A = {5%,10%,20%,30%}. Particularly, we use a uniform random value Λ ∈ [−1,1]

and if at iteration itr the exponent of the zipf popularity at a given node v ∈ V is zv
pop(itr) at the

following iteration itr+1 the exponent of the zipf popularity at the same node v is:

zv
pop(itr+1) =

{
zv

pop(itr) · (1+Λ) ·a, if zv
pop(itr) �= 0

Λ ·a, otherwise.
(6.8)

From Figure 6.10, it is obvious that the iterative algorithm is not converging when the request pattern

at each node of the network is not stable between the iterations, but for small values of the changing

factor a (a ≤ 20%) the DP algorithm computes up to 95% the same paths between two consecutive

110

iterations. This is actually the reason that for small values of a the performance of the CAWR deviates

less than 5% between two different iterations. What is interesting from this experiment is the com-

parison of the CAWR scheme over the SHPT scheme. It is obvious that by executing no more than

two iterations of the iterative algorithm we can achieve at least 18% less traffic in the network and at

least 35% less server hits despite the factor a. This means that the proposed CAWR routing scheme

is robust and could be applied in highly volatile environments, outperforming the traditional shortest

path routing scheme, even if the proposed DP algorithm computes paths with outdated information.

Of course, in such a volatile environment a network operator can assume that the algorithm converges

when at two consecutive iterations the DP algorithm computes a large number β (e.g. β ≥ 0.95) of

the same paths. In that scenario Step 4 of the iterative algorithm presented in Section 6.4 terminates

when Pv(itr+1)≡ β ·Pv(itr), ∀v ∈ V .

6.6 Chapter Conclusions

In this chapter, we proposed a new intra-domain cache aware routing scheme for the computation

of the paths with the minimum transportation cost in ICN implementations, where in-network op-

portunistic caching is enabled. We particularly presented a Dynamic programming approach for the

computation of the paths when the cache hit probability of each item at each node change based on

the observed item request patterns such as their popularity and locality and the used caching scheme.

We also presented an iterative algorithm for the cases where the cache hit probability of each item

depends on the routing scheme. Finally, we present a resource management architecture for the cache

aware routing in an ICN, where distributed resource managers make route decisions, and we validate

the proposed approach through extensive simulations. It is evident that the use of alternative paths

other than the shortest path (in terms of hops) with different caching capabilities for each item give

significant performance benefits and reduce significantly the total transportation cost and the load of

the hosting server.

111

112

Chapter 7

Conclusions and Future Work

7.1 Summary of the Contributions

In this thesis, we investigated and developed key network management functions for ICN approaches

related to route and cache management. Particularly, we developed mechanisms that manage the

routing processes by influencing the forwarding of interest/subscription packets and make caching

decisions about where and which item to cache as well as influence the cache replacement policies.

Our aim was to improve the operations and overall utility of the ICN architectures through extensive

and novel usage of caching as an inherent architectural function. Both opportunistic in-network and

service-specific managed caching (CDN-like replication) were considered in addressing this chal-

lenge.

7.1.1 Replication management

We have presented a three phase framework as a contribution to the problem of information replication

in an ICN environment. The objective of the proposed framework was to minimize the total traffic

load in the network subject to installing a predefined number of replication devices, and given that

each device has storage limitations. The proposed framework is composed by three phases namely the

Planning, the Off-line Assignment and the On-line Replacement phase which manage the content and

the location of each replication device in the network. In the Planning phase, the proposed framework

selects those nodes of the network to place the replication devices while in the Off-line Assignment

phase each information item is assigned, based on its popularity, at a subset of the selected replication

points so that the targeted objective is satisfied. Finally, the On-line Replacement/Reassignment

phase dynamically reassigns information items in the replication devices based on the observed items

changing request patterns.

Particularly, we enhanced the CBPS communication paradigm with an advertisement and a re-

quest/response mechanism so that replicas can advertise what they have stored and subscribers can

retrieve it, while we proposed a new algorithm for the selection of the replication points in the net-

work based on the locality and the popularity of the interests for each information item, the targeted

113

replication degree of each item and the storage capacity (limitation) of each replication device. We

further proposed two alternative mechanisms for the off-line assignment of the replicas of each item

among the selected replication points. Evaluation via simulations of the performance of the system

regarding the clients response latency and the network traffic shows that our planning and off-line

replica assignment scheme is a promising solution in almost any scenario.

We also proposed an autonomic cache management architecture that dynamically reassigns in-

formation items to the caches of an ICN approach. In particular, we proposed four distributed on-

line cache management algorithms requiring different levels of cooperation among the autonomic

managers and we compare them in terms of their performance, complexity, message overhead and

convergence time. We provided also a method to calculate a lower bound of overall network traffic

cost, for distance-regular network topologies. Our numerical results provide evidence that network

wide knowledge and cooperation give significant performance benefits and reduce the time to con-

vergence at the cost of additional message exchanges and computational effort. In more details the

cooperative algorithm provides the best performance regarding overall network traffic, but requires a

high level of cooperation among the managers and hence is of very high computational and commu-

nication complexity. On the other hand, the two holistic algorithms perform close to the cooperative,

but converge in a fraction of the iterations required by the cooperative. Finally, the myopic algorithm

requires the least cooperation and hence is appropriate for larger network setups, but its performance

is significantly worse that the rest. Thus, the proposed analysis may serve as a valuable tool for the

network manager so as to select the most appropriate algorithm for his needs, depending on specific

network parameters (e.g. network size, number of information items, volatility of the request pattern).

The proposed three phase replication framework is generic so that it can apply in almost every ICN

proposed architecture.

7.1.2 In-network opportunistic caching

We have described our design and implementation of an opportunistic caching mechanism for peer-to-

peer ICN approach, where servers do not exist. The proposed opportunistic caching mechanism aims

also at preserving the information over time instead of only making information available in nearer

space as in traditional caching schemes. Particularly, we enhanced the CBPS architectural design with

a request/response scheme so that subscribers can retrieve cached information/data from other nodes

in the network, assuming that each network node has a limited cache and there are no servers in the

network. We also proposed two duplicate preventing mechanisms, that will handle the possible pro-

duction of multiple identical responses to a request, due to the multiple caching of information/data at

different nodes. We have also decomposed the caching mechanism in a set of basic policies/strategies,

present at each set the most known and traditional policies and propose an information-centric policy

at each one of them. Additionally, we have proposes a stochastic model that captures the dynamics

of the newly proposed policies and we described a prototype implementation of the proposed oppor-

tunistic caching mechanism that was evaluate it through simulations and Planetlab experimentation.

Finally, we presented a modification to the proposed caching mechanism to enable mobility of the

114

subscribers. Both the evaluation through simulations and the system prototype experimentation in

PlanetLab shows that the proposed caching mechanism outperforms traditional caching mechanisms

retaining at the same time the traffic overhead in low levels.

7.1.3 Cache aware routing

We proposed a new cache aware intra-domain routing scheme for both centralized and distributed

ICN architectures, that dynamically computes the routes followed by each subscription/interest for

each item and from each node in the network. Particularly, we presented a dynamic programming

(DP) approach for the computation of the minimum transportation cost paths based on the observed

item request patterns, such as their popularity and locality and the used caching scheme, in order

to minimize the overall transportation cost imposed by the user requests. Moreover, we propose an

iterative algorithm for the computation of the minimum cost transportation paths for those scenarios

where the routing decisions interact with the caching decisions. The validation of the proposed routing

scheme through simulations revealed that the usage of alternative paths other than the shortest path (in

terms of hops) with different caching capabilities for each item give significant performance benefits

and reduce significantly the total transportation cost and the load of the hosting server.

7.2 Future Work

The core work presented in this thesis can be extended in many ways such as optimizing different

objectives to serve different QoS metrics and SLAs among the storage providers and the content

providers. Also it would be interesting, as future work, to explore enhancements to the proposed on-

line replacement algorithms that would also take into consideration the cost of replacing the items at

the replication points of the network, as well as the processing load of each replacement component

when assigning items to them. The work in opportunistic caching can also be extended in many ways,

from deriving applications to combining the proposed mechanism with permanent storages/servers.

Finally, it would be interesting to explore enhancements to the proposed routing scheme that would

also take into consideration the presence of multiple server replicas.

In the area of management of ICN approaches we believe that crucial questions remain and should

be considered as future work. Particularly, security/anomaly detection as well as support of seamless

mobility and energy efficient use of the ICN resources have not been considered yet. Solutions to mit-

igate attacks and detect anomalies are prerequisites for network operators to trust the ICN technology.

ICN can prevent some security attacks, such as man-in-the-middle attacks or address spoofing, via

its native design (i.e., no end-to-end connection between two end-users, no location-based addresses

in the ICN implementation, built-in content authentication). But even if security has been taken into

consideration from the beginning, many network security aspects are still not yet addressed. For

example, some components of a CCN node architecture, such as the Pending Interest Table (PIT)

or the Content Store (CS) or the Rendezvous Nodes (RVs) in the PSIRP/PURSUIT architecture are

vulnerable to denial of service attacks, e.g., by malicious users sending many simultaneous subscrip-

115

tions/interests for content that does not exist in the network which will completely fill the nodes’ PIT

tables or the RV with useless subscriptions (content “poisoning”). It would be interesting to identify

which attacks are possible in a ICN environment and investigate solutions to mitigate them. These

solutions can be based on network behavior analysis offered by generic management modules to de-

tect bursts of interest packets which are possibly part of an attack. Moreover, cooperation between

nodes to cache particular content will reduce the impact of a possible attack by preventing nodes from

storing the same content.

Another interesting extension of the proposed work would be the identification and analysis of

user and content mobility patterns. Considerable research has been dedicated to understand and

model the behaviour of mobile users from the social and technological perspectives. Most existing

work on predicting mobility patterns, attachment points and connectivity durations aims to minimize

periods of disconnection. With ICN however, content can “follow” mobile users, thus achieving

shorter transaction periods, therefore this work needs to be re-evaluated.

It is interesting not only to consider user-mobility patterns, but also to extend it to cover group

mobility (e.g., in a VAN), as well as content-mobility. The outcome will be monitoring mechanisms

for user, group and content mobility, as well as algorithms for predicting the future connectivity points

of users, groups and content in order to move or migrate content accordingly. The inherent support

of in-network caching provided by ICN could be exploited to identify strategic caching points at the

edges of the network. The identification of these points should be based on: i) route selection and

transmission scheduling and tradeoffs between energy, delay and cost. For example, caching content

closer to the user reduces energy consumption and delivery delay, as seen from the end-users point

of view, as well as reducing core-network traffic, as seen from the operators point of view, but it also

increases caching deployment costs for the operator. Based on the investigation of such tradeoffs,

the outcome could be: i) the identification of strategic caching points close to the user, ii) caching

strategies to increase the amount of time content stays in the cache, iii) the corresponding effect to

the route selection and transmission scheduling algorithms.

In ICN, mobile nodes can select an access point by taking into account more information than

just signal strength. By making each access point aware of its associated mobile nodes interests, this

knowledge can be exploited when new nodes join the network or are in the process of a handover.

Associating nodes with similar interests within an access point will lead to better utilization of net-

work and device-specific resources and also increase the probability of retrieving the content they are

interested in from a nearby cache or, even, from another node in the group. Furthermore, better uti-

lization of resources can be achieved by sophisticated content multiplexing in caches, which can lead

to an optimized distribution of both the content and the mobile nodes associated to the network. This

procedure can guarantee the efficient utilization of network resources, since overload or underload

situations will be avoided and load balancing will take place in a self-managed way between mobile

and access network nodes.

Finally, another interesting task would be to investigate strategies and mechanisms to reduce

energy consumption in current and future ICN approaches. Energy efficiency should be considered

116

from the design phase, based on the tradeoffs between energy, delay and cost. Considering network

operation, new solutions should be investigated to balance costs and QoS constraints. In contrast to

past research, which focuses on routing per se, it is interesting to investigate route selection, which

incorporates selecting both a content source and a path towards it. The tradeoffs between energy,

delay and cost should be studied both from the end-users and from the operators perspective, in

order to achieve better network performance and more cost-effective network operation. Mobile node

interests for content can be utilized to provide better network performance in terms of throughput,

end-to-end delay and energy consumption both in wireless and wired access networks.

117

118

Bibliography

[1] S. Carew, “Users complain, AT&T blames data tsunami,” Reuters Media File, Feb. 14, 2012.

[2] Cisco Systems, “Cisco visual networking index: Forecast and methodology, 2011-2016” 30

May 2012.http://tinyurl.com/VNI2011

[3] http://www.intel.com/content/www/us/en/communications/internet-minute-infographic.html

[4] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim, S. Shenker, and I. Stoica, “A

Data-Oriented (and Beyond) Network Architecture,” In Proc. of SIGCOMM, 2007.

[5] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. Briggs, R. Braynard, “Networking

named content,” ACM CoNEXT, Rome, Italy, Dec. 2009.

[6] A. Detti, N. Blefari-Melazzi, S. Salsano, and M. Pomposini, “CONET: A Content Centric Inter-

Networking Architecture,” in ACM SIGCOMM workshop in Information-centric networking,

2011.

[7] PURSUIT project, available at http://www.fp7-pursuit.eu, 2011.

[8] D. Lagutin, K. Visala, and S. Tarkoma, “Valencia FIA book 2010 Publish/Subscribe for Internet:

PSIRP Perspective,” IOS Press, 2010.

[9] SAIL FP7 EU project, http://www.sail-project.eu/.

[10] The IETF DECADE Working Group, 2012, available at:

https://datatracker.ietf.org/wg/decade/charter/

[11] Object Management Group. “CORBAservices: Common Object Service Specification,” Tech-

nical report, Object Management Group, July 1998.

[12] TIBCO. “TIB/Rendezvous,” White paper, TIBCO, Palo Alto, CA.1999.

[13] Named Data Networking project, available at http://named-data.net, 2011.

[14] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley and T. D. Chandra, “Matching events in

a content-based subscription system,” In Proc. of 18th ACM PODC Atlanta, May, 1999.

[15] A. Carzaniga, D. Rosenblum and A. Wolf, “Design and evaluation of a wide-area event notifi-

cation service,” ACM Transactions On Computer Systems, vol. 19, pp. 332–383, 2001.

[16] B. Segall and D. Arnold, “Elvin has left the building: A publish/subscribe notification service

with quenching,” In Proc. of AUUG, Brisbane, Australia, Sept. 3-5, pp. 243–255, 1997.

119

[17] G. Cugola and G. Picco, ”REDS, A Reconfigurable Dispatching System,” in 6th International

workshop on Software Engineering and Middleware, pp. 9-16, Oregon, 2006.

[18] A. Ghodsi, S. Shenker, T. Koponen, A. Singla, B. Raghavan and James Wilcox, “Information-

centric networking: seeing the forest for the trees,” 10th ACM Workshop on Hot Topics in

Networks, p.1-6, November 14-15, 2011, Cambridge, Massachusetts.

[19] B. Li, M. J. Golin, G. F. Ialiano and X. Deng, “On the Optimal Placement of Web Proxies in the

Internet,” In Proc. of INFOCOM, March 1999.

[20] I. Cidon, S. Kutten, R. Soffer, “Optimal allocation of electronic content,” In Proc. of INFOCOM,

Anchorage, April 2001.

[21] J. Kangasharju, J. Roberts, K. Ross, “Object replication strategies in content distribution net-

works,” Comput. Commun. Elsevier, vol. 25, pp. 376–383, March 2002.

[22] L. Qiu, V.N. Padmanabhan and G. Voelker, “On the placement of web server replicas,” In Proc.

of IEEE INFOCOM, Anchorage, USA, Apr. 2001.

[23] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala and V. Pandit, “Local search

heuristics for k-median and facility location problems,” In Proc. of 33rd ACM Symp. on Theory

of Computing, 2001.

[24] M. Charikar and S. Guha, “Improved combinatorial algorithms for facility location and k-

median problems,” In Proc. of the 40th Annual IEEE Symp. on Foundations of Computer Sci-

ence, pp. 378-388, Oct. 1999.

[25] M. Charikar, S. Khuller, D. Mount, and G. Narasimhan, “Facility location with outliers,” In

Proc. of the 12th Annual ACM-SIAM Symp. on Discrete Algorithms, Washington DC, Jan.

2001.

[26] D.B. Shmoys, E. Tardos and K.I. Aardal, “Approximation algorithms for facility location prob-

lems,” In Proc. of the 29th Annual ACM Symp. on Theory of Computing, pp. 265-274, 1997.

[27] E. Cronin, S. Jamin, C. Jin, T. Kurc, D. Raz and Y. Shavitt, “Constrained mirror placement on

the Internet,” in IEEE JSAC, 36(2), Sept. 2002.

[28] N. Laoutaris, O. Telelis, V. Zissimopoulos, and I. Stavrakakis, ”Distributed selfish replication,”

IEEE TPDS, vol. 17, no. 12, 2006.

[29] S. Zaman, D. Grosu, ”A Distributed Algorithm for the Replica Placement Problem,” IEEE

TPDS, Jan. 2011.

[30] S. Borst, V. Gupta, A. Walid, ”Distributed Caching Algorithms for Content Distribution Net-

works”, in IEEE INOFCOM, San Diego, USA, March 2010.

[31] M. Karlsson, Ch. Karamanolis and M. Mahalingam, “A Framework for Evaluating Replica

Placement Algorithms”, http://www.hpl.hp.com/ techreports/2002/HPL-2002-21, 2002.

[32] Li G., Cheung A., Hou S., Hu S., Muthusamy V., Sherafat R., Wun A., Jacobsen H., and

Manovski S., “Historic data access in publish/subscribe,” In Proc. of DEBS, pp. 80–84, Toronto,

Canada, 2007.

120

[33] W. Jiang, R. Zhang-Shen, J. Rexford, and M. Chiang, Cooperative content distribution and traf-

fic engineering in an isp network, in Proceedings of the eleventh international joint conference

on Measurement and modeling of computer systems, ser. SIGMETRICS 09, 2009, pp. 239250.

[34] B. Frank, I. Poese, G. Smaragdakis, S. Uhlig, and A. Feldmann, “Content-aware traffic engineer-

ing,” in Proceedings of the ACM SIGMET- RICS/PERFORMANCE 2012 joint international

conference on Measurement and Modeling of Computer Systems, 2012, pp. 413414.

[35] N. Kamiyama, T. Mori, R. Kawahara, S. Harada, and H. Hasegawa, “Isp- operated cdn,” in Pro-

ceedings of the 28th IEEE international conference on Computer Communications Workshops,

ser. INFOCOM09, 2009, pp. 4954.

[36] K. Cho, H. Jung, M. Lee, D. Ko, T. Kwon, and Y. Choi, “How can an isp merge with a cdn?’

Communications Magazine, IEEE, vol. 49, no. 10, pp. 156162, oct. 2011.

[37] R. Cohen, L. Katzir and D. Raz, “An Efficient Approximation for the Generalized Assignment

Problem,” Information Processing Letters, Vol. 100, pp. 162-166, Nov. 2006.

[38] G. B. Dantzig, “Discrete-Variable Extremum Problems,” Operations Research Vol. 5, No. 2,

April, pp. 266-288, 1957.

[39] D. P. Palomar, M. Chiang, “ A tutorial on decomposition methods for network utility maximiza-

tion,” IEEE JSAC, 24(8), pp. 1439–1451, 2006.

[40] A. Rouskov, D. Wessels, “Cache Digest,” 3rd Inter. WWW caching workshop, June 1998.

[41] L. Fan, P. Cao, J. Almeida, A. Broder, “Summary Cache: A Scalable Wide-Area Web Cache

Sharing Protocol,” ACM SIGCOMM, pp. 254–265, Feb. 1998.

[42] A.E. Brouwer, A.M. Cohen, A. Neumaier (1989), “Distance Regular Graphs,” New York:

Springer-Verlag.

[43] http://mathworld.wolfram.com/Distance-RegularGraph.html

[44] L. Breslau, P. Cao, L. Fan, G. Phillips, S. Shenker, “Web caching and Zipf-like distributions:

evidence and implications,” IEEE INFOCOM, NY, March 1999.

[45] V. N. Padmanabhan, L. Qiu, “ The content and access dynamics of a busy wed site,” ACM

SIGCOMM, Stockholm, Sweden, Aug. 2000.

[46] M. E. J. Newman, “Power laws, pareto distributions and Zipfs law,” Contemporary Physics, vol.

46, pp. 323-351, 2005.

[47] L. A. Adamic and B. A. Huberman, “Zipfs law and the Internet,” Glottometrics, vol. 3, pp.

143150, 2002.

[48] S. Tarkoma, J. Kangasharju, “Optimizing content-based routers: posets and forests,” Distributed

Computing, vol. 19, Springer, pp. 62-77, 2006.

[49] A. Majumder, N. Shrivastava, R. Rastogi and A. Srinivasan,“Scalable content-based routing in

Pub/Sub systems,” IEEE INFOCOM, pp. 567-575, 2009.

[50] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden and M. Roughan, “The Internet Topology

Zoo,” IEEE JSAC, vol. 29, no. 9, Oct 2011.

121

[51] T. Wauters, J. Coppens, F. D. Turck, B. Dhoedt and P. Demeester, “Replica placement in ring

based content delivery networks,” Elsevier Computer Communications, vol. 29, pp. 3313-3326,

2006.

[52] L. Qiu, V. Padmanabhan, G. Voelker, ”On the placement of web server replicas,” IEEE INFO-

COM, pp. 15871596, 2001.

[53] D. Wessels, K. Claffy, “Applications of Internet Cache Protocol (ICP), v.2,” ITF, May 1997.

[54] P. Vixie, D. Wessels, “RFC 2756: Hyper Text Caching Protocol,” Jan. 2000.

[55] P. Rodriguez, C. Spanner, E.W. Biersack, “Analysis of Web Caching Architectures: Hierarchical

and Distributed Caching,” in ACM Trans. on Networking, Aug. 2001.

[56] M. Pitkanen and J. Ott, “Enabling Opportunistic Storage for Mobile DTNs,” in Elsevier, Perva-

sive and Mobile Computing Vol. 4, pp. 579-594, Oct. 2008.

[57] A. Anand, A. Gupta, A. Akella, S. Seshan and S. Shenker, “Packet caches on routers: the

implications of universal redundant traffic elimination,” in SIGCOMM Comput. Commun. Rev.,

Oct. 2008.

[58] P. Srebrny, T. Plagemann, V. Goebel, A. Mauthe, “CacheCast: Eliminating Redundant Link

Traffic for Single Source Multiple Destination Transfers,” in 2010 International Conference on

Distributed Computing Systems.

[59] Y. Zhu, M. Chen and A. Nakao, “CONIC: Content-Oriented Network with Indexed Caching,” in

INFOCOM IEEE Conference on Computer Communications Workshops, pp.1-6, 15-19 March

2010.

[60] Y. Chen, et al., “Efficient and adaptive Web replication using content clustering,” IEEE Journal

on Selected Areas in Communications 21, 6 (Aug.2003), 979–994.

[61] N. Fujita, Y. Ishikawa, A. Iwata, R. Izmailov, “Coarse-grain replica management strategies for

dynamic replication of Web contents,” Computer Networks 45, (2004), 19–34.

[62] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: a scalable wide-area web cache

sharing protocol,” IEEE/ACM Trans. Netw., vol. 8, pp. 281–293, June 2000.

[63] A. Dan and D. Towsley, “An approximate analysis of the lru and fifo buffer replacement

schemes,” ser. SIGMETRICS, 1990, pp. 143–152.

[64] P. R. Jelenkovic , A. Radovanovic , and M. S. Squillante, “Critical sizing of lru caches with

dependent requests,” Journal of Applied Probability, vol. 43, no. 4, pp. 1013–1027, 2006.

[65] H. Che, Z. Wang, and Y. Tung, “Analysis and Design of Hierarchical Web Caching Systems,”

in IEEE INFOCOM, 2001, pp. 1416–1424.

[66] S. Srikantaiah, E. Kultursay, T. Zhang, M. T. Kandemir, M. J. Irwin and Y. Xie, “Morphcache:A

reconfigurable adaptive multi-level cache hierarchy,” HPCA 2011, pp. 231–242.

[67] N. Laoutaris, G. Smaragdakis, A. Bestavros, I. Matta and I. Stavrakakis, “Distributed Selfish

Caching,” IEEE TPDS, vol. 18, no. 10, pp. 1361–1376, October 2007.

122

[68] E. J. Rosensweig and J. Kurose, “Breadcrumbs: Efficient, Best-Effort Content Location in

Cache Networks,” in INFOCOM, 2009.

[69] D. Perino and M. Varvello, “A reality check for content centric networking,” in ACM SIG-

COMM ICN Workshop, 2011, pp. 4449.

[70] S. Arianfar, P. Nikander, and J. Ott, “On content-centric router design and implications,” in

ReArch Workshop, vol. 9. ACM, 2010, p. 5.

[71] W. K. Chai, I. Psaras and G. Pavlou, “Cache Less for More In Information-Centric Networks,”

IFIP NETWORKING 2012, Prague, Czech Republic, May 2012.

[72] S. Wang, J. Bi, J. Wu, Z. Li, W. Zhang and X. Yang, “Could in-network caching benefit

information-centric networking?,” in AINTEC 2011.

[73] Z. Li and G. Simon, “Time-Shifted TV in Content Centric Networks: the Case for Cooperative

In-Network Caching,” in IEEE ICC 2011.

[74] C. Fricker, P. Robert, J. Roberts and N. Sbihi, “Impact of traffic mix on caching performance in

a content-centric network,” in IEEE NOMEN 2012.

[75] R. Chand and A. Felber, “A scalable protocol for content-based routing in overlay networks,” in

2nd IEEE International Symp. on Network Computing and Applications, 2003.

[76] J. Wang, “A survey of web caching schemes for the Internet,” in ACM SIGCOMM Computer

Communication Review, pp. 36-46, 1999.

[77] S. U. Khan and I. Ahmad, “Comparison and analysis of ten static heuristics-based Internet data

replication techniques,” in Journal of Parallel and Distributed Computing, vol. 68, pp. 113-136,

2008.

[78] P. Padmanabhan, L. Gruenwald,, A. Vallur and M. Atiquzzaman, “A survey of data replication

techniques for mobile ad hoc network databases,” in VLDB Journal, vol. 17, pp. 1143-1164,

2008.

[79] J. Ardelius, B. Grönvall, L. Westberg and Å. Arvidsson, “On the effects of caching in access

aggregation networks,” In ACM workshop on Information-centric networking, pp. 67-72, 2012.

[80] H. Che, Y. Tung, and Z. Wang, “Hierarchical web caching systems: Modeling, design and

experimental results,” in IEEE JSAC, pp. 1305-1314, 2002.

[81] A. Dan and D. Towsley, “An approximate analysis of the LRU and FIFO buffer replacement

schemes,” IN ACM SIGMETRICS Performance Evaluation Review, pp. 143-152, 1990.

[82] C. Fricker, P. Robert, and J. Roberts, “A versatile and accurate approximation for LRU cache

performance,” Arxiv preprint arXiv:1202.3974, 2012.

[83] Latouche G., Ramaswami V., “Introduction to Matrix Analytic Methods in Stochastic Model-

ing,” SIAM, Philadelphia, 1999.

[84] Neuts M., “Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach”,

Johns Hopkins, 1994.

[85] http://www.planet-lab.org/

123

[86] Cugola G., Nitto E.D. and Fugetta A., “The Jedi event-based infrastructure and its application to

the development of the opss wfms,” IEEE Trans. Softw. Eng. 27, 9 (Sept.), pp. 827–850, 2001.

[87] M. Caporuscio, A. Carzaniga, A. L. Wolf, “Design and evaluation of a support service for mo-

bile, wireless publish/subscribe applications,” in IEEE Transactions on Software Engineering,

Vol. 29, pp. 1059- 1071, 2003.

[88] L. Mottola, G. Cugola, G.P. Picco, “A Self-Repairing Tree Topology Enabling Content-Based

Routing in Mobile Ad Hoc Networks,”in IEEE Transactions on Mobile Computing, Vol. 7, pp.

946-960, 2008.

[89] S. Dibenedetto, C. Papadopoulos and D. Massey, “Routing Policies in Named Data Network-

ing,” in ACM SIGCOMM ICN workshop, 2011.

[90] H. Liu, X. De Foy and D. Zhang, “A Multi-Level DHT Routing Framework with Aggregation,”

in ACM SIGCOMM ICN workshop, 2012.

[91] S. Eum, K. Nakauchi, M. Murata, Y. Shoji and N. Nishinaga, “CATT: Potential Based Routing

with Content Caching for ICN,” in ACM SIGCOMM ICN workshop, 2012.

[92] V. Lenders, M. May and B. Plattner, “Service discovery in mobile ad hoc networks: A field

theoretic approach,” inPervasive and Mobile Computing, vol. 3, pp. 343–370, 2005.

[93] T. Janaszka, D. Bursztynowski and M. Dzida, “On popularity-based load balancing in content

networks,” in 24 International Teletraffic Congress, pp. 1–8, 2012.

[94] E. Rosensweig and J. Kurose, “Breadcrumbs: efficient, best-effort content location in cache

networks,” in INFOCOM (Mini-Conference), pp. 2631–2635, 2009.

[95] L. Saino, I. Psaras and G. Pavlou, “Hash-routing Schemes for Information-Centric Networking,”

to appear in ACM SIGCOMM ICN workshop, 2013.

[96] K. W. Ross, “Hash routing for collections of shared web caches,” Networking Magazine of

Global Internetworking, pp. 37–44, 1997.

[97] S. Saha, A. Lukyanenko, A Ylä-Jääski, “Cooperative Caching through Routing Control in

Information-Centric Networks,” in Infocom (Mini-Conference), 2013.

[98] N. Laoutaris, “A Closed-Form Method for LRU Replacement under Generalized Power-Law

Demand,” arXiv:0705.1970v1, 2007.

[99] A. Carzaniga, M.J. Rutherford and A.L. Wolf, “A routing scheme for content-based network-

ing,” IEEE INFOCOM 2004, pp. 918-928, 2004.

[100] F. Cao and J.P. Singh, “Efficient event routing in content-based publishsubscribe service net-

works,” Twenty-third Annual Joint Conference of the IEEE Computer and Communications

Societies, IEEE INFOCOM 2004, pp. 929940, 2004.

124

